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4.2 U -statistics and Hájek’s projection . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5 General linear model 76

5.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

5.2 Gauss-Markov theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3 Normal linear model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.1 Canonical form . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3.2 Estimating σ2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.3.3 Noncentral F and chi-square distributions . . . . . . . . . . . . . . . 82

5.4 Testing in the general linear model . . . . . . . . . . . . . . . . . . . . . . . 83

5.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6 M-estimation (or empirical risk minimization) 86

6.1 Consistency of M -estimators . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.1.1 Glivenko-Cantelli (GC) classes of functions . . . . . . . . . . . . . . 88

6.1.2 Bracketing numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.1.3 GC by bracketing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.2 Asymptotic normality of Z-estimators . . . . . . . . . . . . . . . . . . . . . 93

6.2.1 Heuristic proof of asymptotic normality of Z-estimators . . . . . . . 93

6.3 Asymptotic normality of M -estimators . . . . . . . . . . . . . . . . . . . . . 96

6.4 Limiting distribution of the sample median . . . . . . . . . . . . . . . . . . 99

6.4.1 Lindeberg-Feller Central Limit Theorem . . . . . . . . . . . . . . . . 101

6.4.2 Back to the limiting distribution of the sample median . . . . . . . . 102

6.5 Asymptotics for minimizers of convex processes . . . . . . . . . . . . . . . . 104

6.5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.5.2 Asymptotic normality of M -estimators for convex processes . . . . . 106

2



7 Bootstrap methods 108

7.1 Bootstrap: Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.2 Parametric bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

7.3 The nonparametric bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4 Consistency of the bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.4.1 Bootstrapping the sample mean . . . . . . . . . . . . . . . . . . . . . 114

7.5 Second-order accuracy of the bootstrap . . . . . . . . . . . . . . . . . . . . 115

7.6 Bootstrapping regression models . . . . . . . . . . . . . . . . . . . . . . . . 116

7.7 Failure of the bootstrap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

8 Multiple hypothesis testing 118

8.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

8.2 Global testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.2.1 Bonferroni procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

8.2.2 Power of the Bonferroni procedure . . . . . . . . . . . . . . . . . . . 120

8.2.3 Chi-squared test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

8.3 Simultaneous inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

8.4 Multiple testing/comparison problem: False discovery rate . . . . . . . . . . 125

8.4.1 Family-wise error rate . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.4.2 False discovery rate . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8.4.3 Benjamini-Hochberg procedure . . . . . . . . . . . . . . . . . . . . . 126

A Appendix 129

A.1 Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

3



1 Hypothesis Testing

We are given data X ∼ Pθ (X ∈ X ) from a model that is parametrized by θ (e.g., say

X = (X1, . . . , Xn) where Xi’s are i.i.d. from a parametric family with parameter θ). We

consider a statistical problem involving θ whose value is unknown but must lie in a certain

space Θ. We consider the testing problem

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1, (1)

where Θ0 ∩Θ1 = ∅ and Θ0 ∪Θ1 = Θ.

Here the hypothesis H0 is called the null hypothesis and H1 is called the alternative hypoth-

esis. In hypothesis testing data are used to infer which of two competing hypotheses1, H0

or H1, is correct. H0 is simple if Θ0 is a set with only one point; otherwise, H0 is composite.

Example 1.2. Suppose that X1, . . . , Xn are i.i.d N(θ, σ2) where θ ∈ R is unknown, and

σ > 0 is assumed known. Suppose that we want to test H0 : θ = θ0 versus H1 : θ 6= θ0.

Under the null hypothesis theXi’s are i.i.dN(θ0, σ
2) and the sample meanX ∼ N(θ0, σ

2/n).

Thus, a reasonable test can be to reject H0 if T := |X − µ0| > c, for some “large” constant

c (as large deviations of the observed value of X from µ0 would lead us to suspect that the

null hypothesis might not be true).

But how large is large? We will discuss this soon...

A nonrandomized test of H0 versus H1 can be specified by a critical region S ⊂ X with the

convention that we accept H1 (or reject H0) when X ∈ S and accept H0 when X /∈ S. The

performance of this test is described by its power function β(·), which gives the chance of

rejecting H0 as a function of θ ∈ Θ:

β(θ) := Pθ(X ∈ S).

Ideally, we would want β(θ) = 0 for θ ∈ Θ0 and β(θ) = 1 for θ ∈ Θ1, but in practice this is

generally impossible.

For technical reasons it is convenient to allow external randomization to “help” the re-

searcher decide between H0 and H1. Randomized tests are characterized by a test or

1

Definition 1.1 (One-sided and two-sided hypotheses). Let θ be a one-dimensional parameter.

• one-sided hypotheses

– H0 : θ ≤ θ0, and H1 : θ > θ0, or

– H0 : θ ≥ θ0, and H1 : θ < θ0

• two-sided hypotheses H0 : θ = θ0, and H1 : θ 6= θ0.
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critical function φ with range a subset of [0, 1], i.e., φ : X → [0, 1]. Given X = x, φ(x) is

the chance of rejecting H0. The power function β(·) still gives the chance of rejecting H0,

and by smoothing,

β(θ) = Pθ(Reject H0) = Eθ[Pθ(Reject H0|X)] = Eθ[φ(X)].

A nonrandomized test with critical region S can be viewed as a randomized test with φ = 1S .

Conversely, if φ(x) is always 0 or 1, then the randomized test with critical function φ can

be considered a nonrandomized test with critical region S = {x ∈ X : φ(x) = 1}.

Goals: We would like the power function β(θ) to be low for values of θ ∈ Θ0, and high for

θ ∈ Θ1. Hence, there is a need to strike an appropriate balance between the two goals of

low power in Θ0 and high power in Θ1.

The most popular method for striking a balance between the two goals is to choose a number

α ∈ (0, 1) and require that

βφ(θ) ≤ α, for all θ ∈ Θ0. (2)

This α will usually be a small positive fraction (historically .05 or .01) and will be called the

level of significance or simply level. Then, among all tests that satisfy (2), the statistician

seeks a test whose power function is as high as can be obtained for θ ∈ Θ1.

The size of a (randomized) test φ is defined as supθ∈Θ0
βφ(θ).

1.1 Uniformly most powerful (UMP) tests

Definition 1.3. A test φ∗ with level α is called uniformly most powerful (UMP) if

Eθ[φ∗(X)] ≥ Eθ[φ(X)], for all θ ∈ Θ1,

for all φ with level at most α.

Uniformly most powerful tests for composite hypotheses generally only arise when the pa-

rameter of interest is univariate, θ ∈ Θ ⊂ R and the hypotheses are of the form H0 : θ ≤ θ0

versus H1 : θ > θ0, where θ0 is a fixed constant2. In addition, the family of densities needs

to have an appropriate structure.

1.2 Simple versus simple testing

A hypothesis is called simple if it completely specifies the distribution of the data, so

Hi : θ ∈ Θi is simple when Θi contains a single parameter value θi. When both hypotheses,

2Minor variants are possible here: H0 could be θ = θ0, θ < θ0, θ ≥ θ0, etc.
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H0 and H1 are simple, the Neyman-Pearson lemma (Theorem 1.4) provides a complete

characterization of all reasonable tests. This result makes use of Lagrange multipliers, an

important idea in optimization theory of independent interest.

Theorem 1.4 (Neyman-Pearson (NP) lemma). Let Pθ0 and Pθ1 have densities p0 and p1

with respect to (w.r.t.) some dominating measure (recall that µ = Pθ0 +Pθ1 always works).

Consider testing

H0 : θ = θ0 versus H1 : θ = θ1.

Let α ∈ [0, 1]. Then:

(i) There exists a constant k and a critical function φ0 of the form

φ0(x) =

1 when p1(x) > kp0(x),

0 when p1(x) < kp0(x)
(3)

such that

E0[φ0(X)] = α. (4)

(ii) The test φ0 in (3) satisfying (4) is a most powerful level α test of Pθ0 versus Pθ1 .

(iii) If φ is a most powerful level α test of Pθ0 versus Pθ1 , then it must be of the form (3)

a.e. µ. It also satisfies (4) unless there is a test of size < α with power = 1.

1.3 Duality between testing and interval estimation

1.4 Generalized NP lemma

Theorem 1.5 (Generalized NP lemma). Let f1, . . . , fm+1 be real-valued, µ-integrable func-

tions defined on a Euclidean space X . Suppose that for given constants c1, . . . , cm there

exists a critical function φ satisfying∫
φfidµ = ci, i = 1, . . . ,m. (5)

Let C be the class of critical functions φ for which (5) holds.

(i) Among all members of C there exists one that maximizes
∫
φfm+1dµ.

(ii) A sufficient condition for a member φ0 of C to maximize
∫
φfm+1dµ (over C) is the

existence of constants k1, . . . , km such that

φ0(x) =

1 when fm+1(x) >
∑m

i=1 kifi(x),

0 when fm+1(x) <
∑m

i=1 kifi(x).
(6)
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(iii) If a member of C satisfies (6) with k1, . . . , km ≥ 0, then it maximizes
∫
φfm+1dµ

among all critical functions satisfying
∫
φfidµ ≤ ci, for i = 1, . . . ,m.

(iv) The set

M :=

{(∫
φf1dµ, . . . ,

∫
φfmdµ

)
: φ is a critical function

}
is convex and closed. If (c1, . . . , cm) is an interior point of M , then there exists

constants k1, . . . , km and a test φ0 satisfying (5) and (6). And a necessary condition

for a member of C to maximize
∫
φfm+1dµ is that (6) holds a.e. µ.

Proof. We will only prove parts (ii) and (iii) here; for the proofs of the existence results

see Lehmann and Romano [8, Theorem 3.6.1].

Proof of (ii): Take φ ∈ C. Note that
∫

(φ0−φ)(fm+1−
∑m

i=1 kifi)dµ ≥ 0 since the integrand

is ≥ 0 (by the definition of φ0). Hence,∫
(φ0 − φ)fm+1dµ ≥

m∑
i=1

ki

∫
(φ0 − φ)fidµ = 0 ⇒

∫
φ0fm+1dµ ≥

∫
φfm+1dµ.

This completes the proof of (i).

Proof of (iii): Suppose that φ0 ∈ C satisfies (6) with k1, . . . , km ≥ 0. Take a critical func-

tion φ such that
∫
φfidµ ≤ ci, for i = 1, . . . ,m. As in (i),

∫
(φ0−φ)(fm+1−

∑m
i=1 kifi)dµ ≥ 0,

and thus,∫
(φ0 − φ)fm+1dµ ≥

m∑
i=1

∫
ki(φ0 − φ)fidµ ≥ 0 ⇒

∫
φ0fm+1dµ ≥

∫
φfm+1dµ,

as
∑m

i=1 ki
∫
φ0fidµ =

∑m
i=1 kici and

∑m
i=1 ki

∫
φfidµ ≤

∑m
i=1 kici.

Example 1.6. Suppose that X1, . . . , Xn are i.i.d. from the Cauchy location family pθ(x) =
1
π

1
1+(x−θ)2 , for x ∈ R (let X = (X1, . . . , Xn)). Consider testing H0 : θ = θ0 versus H1 : θ >

θ0
3. Can we find a test φ of size α such that φ maximizes

d

dθ
βφ(θ0) =

d

dθ
Eθ[φ(X)]|θ=θ0? (7)

For any test φ the power is given by

βφ(θ) = Eθ[φ(X)] =

∫
φ(x)p(x; θ)dx,

where p(x; θ) is the joint density of the model. So, if the interchange of differentiation and

integration is justifiable4, then

β′φ(θ) =

∫
φ(x)

∂

∂θ
p(x; θ)dx.

3Exercise 1 (HW1): Show that here a UMP test for testing H0 against H1 does not exist when n = 1.
4Quite often, the dominated convergence theorem (DCT) can be used to justify the interchange.
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Thus, by the generalized N-P lemma, a test of the form

φ0(x) =

1 when ∂
∂θp(x; θ0) > kp(x; θ0),

0 when ∂
∂θp(x; θ0) < kp(x; θ0).

maximizes β′φ(θ0) among all φ with Eθ0φ(X) = α. This test is said to be locally most

powerful5 of size α; cf. Ferguson, Section 5.5, page 235. But

∂

∂θ
p(X; θ0) > kp(X; θ0) ⇔ ∂

∂θ
log p(X; θ0) > k ⇔ Sn(θ0) :=

1√
n

n∑
i=1

˙̀
θ0(Xi) > k′.

Here `θ(x) ≡ log pθ(x) and ˙̀
θ0(x) = ∂

∂θ `θ(x). Hence for the Cauchy family (with θ0 = 0

without loss of generality), since ˙̀
θ0(x) = 2(x−θ)

1+(x−θ)2 , the locally most powerful test is given

by

φ(X) =

1 when n−1/2
∑n

i=1
2Xi

1+X2
i
> k′,

0 when n−1/2
∑n

i=1
2Xi

1+X2
i
< k′.

(8)

where k′ is such that E0[φ(X)] = α. Although an exact value of k′ above might be difficult

to obtain, we can easily approximate k′ as follows.

Under H0 : θ = θ0 = 0, with Yi = 2Xi/(1 +X2
i ),

E0Yi = 0 and Var0(Yi) =
1

2
.

Hence, by the CLT, k′ may be approximated by 2−1/2zα where P(Z > zα) = α with

Z ∼ N(0, 1).

1.5 Unbiased tests

We know that in Example 1.2 a uniformly most powerful (UMP) test cannot exist6. One

appealing constraint restricts attention to tests that are unbiased according to the following

definition.

5When a UMP test does not exist, one may restrict the class of tests to, say, the class of unbiased tests

(see Section 1.5), and then look for a UMP test in this smaller class. Alternatively, one may look for tests

that have maximum power against alternatives in a subset of Θ1. The case when the subset of alternatives

is “close” to the null parameter values has received a good deal of attention, presumably because tests that

have good power for “local alternatives”, which are the hardest to detect, may also retain good power for

“nonlocal” alternatives.
6Note that for testing

H0 : θ ≤ θ0 versus H1 : θ > θ0.

a UMP test exists, since the family has monotone likelihood ratio; see e.g., Lehmann and Romano [8, Section

3.4]. Exercise 2 (HW1): Find a level α test has better power (for some θ’s) than the usual two-sided z-test

based on X.
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Definition 1.7 (Unbiased tests). A test φ for H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1 with level α

is unbiased if its power βφ(θ) := Eθ[φ(X)] satisfies

βφ(θ) ≤ α, for all θ ∈ Θ0 and βφ(θ) ≥ α for all θ ∈ Θ1.

If there is a UMP test φ∗, then it is automatically unbiased because βφ∗(θ) ≥ βφ(θ), for all

θ ∈ Θ1, where φ is the degenerate test, which equals α regardless of the observed data.

Definition 1.8 (UMP unbiased test). A UMP unbiased (UMPU) level α test is a test φ0

for which

βφ0(θ) ≥ βφ(θ) for all θ ∈ Θ1,

for all unbiased level α tests φ.

Indeed, we will see that a UMP unbiased test exists for Example 1.2. The following result,

stated in the generality of a one-parameter exponential family, yields this desired result.

Theorem 1.9 (Application to one-parameter exponential family). Consider i.i.d. data

X1, . . . , Xn from a one-parameter exponential family with density such that the joint density

of the data can be expressed as

p(x; θ) = c(θ) exp(θT (x))h(x), for x ∈ X ⊂ Rn,

for θ ∈ Θ ⊂ R, w.r.t. a σ-finite measure on X . For θ0 ∈ Θ, consider testing

H0 : θ = θ0 versus H1 : θ 6= θ0.

Then, for α ∈ (0, 1), the test φ0 with

Eθ0 [φ0(T (X))] = α and Eθ0 [T (X)φ0(T (X))] = αEθ0 [T (X)]

and given by

φ0(T (x)) =


1 if T (x) < c1 or T (x) > c2,

γi if T (x) = ci,

0 if otherwise.

(9)

(for some γ1, γ2 ∈ [0, 1] and c1 < c2) is a UMPU level α for H0 versus H1.

Furthermore, if T is symmetrically distributed about a under θ0, then Eθ0 [φ0(T (X))] = α,

c2 = 2a− c1 and γ1 = γ2 determine the constants.

Proof. We will restrict attention to tests of the form φ(x) = ψ(T (x)) based on the sufficient

statistic T 7, whose distribution is of the form pθ(t) = c(θ)eθt (w.r.t. some σ-finite measure

ν); see e.g., Lehmann and Romano [8, Lemma 2.7.2].

7Note that if φ(X) is any test then we can consider the test function φ̃(T ) = E[φ(X)|T ], which is valid

test based on the the sufficient statistic T (as the distribution of X|T does not depend on θ), and has the

exact same power function as φ, i.e., Eθ[φ(X)] = Eθ[φ̃(T )] for all θ ∈ Θ.
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Since all power functions are continuous in the case of an exponential family8, it follows

that any unbiased test ψ satisfies α = βψ(θ0) = Eθ0 [ψ(T )]. Further, βψ(·) has a minimum

at θ0.

By Lehmann and Romano [8, Theorem 2.7.1], βψ(·) is differentiable, and can be differenti-

ated under the integral sign. Hence

β′ψ(θ) =
d

dθ

∫
ψ(t)c(θ) exp(θt)dν(t)

=
c′(θ)

c(θ)
Eθ[ψ(T )] + Eθ[Tψ(T )]

= {−Eθ[T ]}Eθ[ψ(T )] + Eθ[Tψ(T )]

since, with ψ0 ≡ α, 0 = β′ψ0
(θ) = α{c′(θ)/c(θ) + Eθ[T ]} (which implies that c′(θ)/c(θ) =

−Eθ[T ]). Thus,

0 = β′ψ(θ0) = Eθ0 [Tψ(T )]− αEθ0 [T ].

Thus any unbiased level α test ψ(T ) satisfies the two conditions:

Eθ0 [ψ(T (X))] = α and Eθ0 [T (X)ψ(T (X))] = αEθ0 [T (X)]. (10)

We will apply the generalized NP lemma to show that φ0 as given in (9) is UMPU.

Fix θ′ 6= θ ∈ Θ and consider maximizing Eθ′ [ψ(T )] subject to the constraints in (10). By

the generalized NP lemma Theorem 1.5-(iv)9, there exist k1, k2 such that

ψ0(t) =

1 when c(θ′)eθ
′t > c(θ0)(k1 + k2t)e

θ0t,

0 when c(θ′)eθ
′t < c(θ0)(k1 + k2t)e

θ0t

=

1 when ebt > a1 + a2t,

0 when ebt < a1 + a2t,
(11)

maximizes Eθ′ [ψ(T )] subject to the constraints Eθ0 [ψ(T )] = α and Eθ0 [Tψ(T )] = αEθ0 [T ].

But the region described in (11) is either one-sided or the complement of an interval. But

by Lehmann and Romano [8, Theorem 3.4.1] a one-sided test has a strictly monotone power

function violating β′ψ0
(θ0) = 0. Thus,

ψ0(T ) =

1 when T < c1 or T > c2,

0 when c1 < T < c2.

8Exercise 3 (HW1): Show this (Hint: Apply Lehmann and Romano [8, Theorem 2.7.1] with φ ≡ 1 to find

that c(θ) is continuous; then apply it again with φ denoting an arbitrary critical function).
9Here we show that the assumption in Theorem 1.5-(iv) holds. Let

M ≡ {(Eθ0 [ψ(T )],Eθ0 [Tψ(T )]) : ψ(T ) is a critical function} .

Then M is convex and contains {(u, uEθ0T ) : 0 < u < 1}. Also M contains points (α, v) with v > αEθ0T ;

since, by Lehmann and Romano [8, Problem 18 of Chapter 3], there exist tests (UMP one-sided ones) having

β′(θ0) > 0. Likewise M contains points (α, v) with v < αEθ0T . Hence (α, αEθ0) is an interior point of M .

10



Since this test does not depend on θ′ 6= θ0, it is the UMP within the class of level α tests

subject to (10). This test is unbiased, as is seen by comparing it with φ(x) ≡ α. It is then

also UMP unbiased, since the class of tests satisfying (10) includes all unbiased tests. Hence

ψ0 is UMPU level α.

If T is distributed symmetrically about some point a under θ0, then any test ψ symmetric

about a that satisfies Eθ0 [ψ(T )] = α will also satisfy

Eθ0 [Tψ(T )] = Eθ0 [(T − a)ψ(T )] + aEθ0 [ψ(T )] = 0 + aα = αEθ0 [T ],

automatically.

1.6 UMPU tests in higher dimensions

Suppose that we have data X ∼ Pθ where θ ∈ Θ (here Θ is a subset of the Euclidean space).

Consider testing

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1.

If the power function βφ(·) of an unbiased level α test φ is continuous, then βφ(θ) ≤ α

for θ ∈ Θ0 (the closure of Θ0) and βφ(θ) ≥ α for θ ∈ Θ1 (the closure of Θ1). If we take

ΘB := Θ0 ∩Θ1, the common boundary of Θ0 and Θ1, then

βφ(θ) = α for θ ∈ ΘB. (12)

Test functions φ satisfying (12) are called similar on the boundary (SOB).

Lemma 1.10. Suppose that the distributions {Pθ}θ∈Θ are such that the power function

of every test is continuous. Suppose that φ0 is UMP among all tests satisfying (12) and is

level α. Then φ0 is a UMPU level α test.

Proof. The degenerate test that equals α regardless of the observed data is SOB level α.

Since φ0 has better power, βφ0(θ) ≥ α, for all θ ∈ Θ1. As φ0 is level α (i.e., βφ0(θ) ≤ α for

all θ ∈ Θ0) φ0 is unbiased.

Take a competing test φ which is level α and unbiased. Since its power function is continuous

it is SOB level α. Then βφ ≤ βφ0 on Θ1 because φ0 is uniformly most powerful among all

SOB tests.

The tests we develop use conditioning to reduce to the univariate case. Part of why this

works is that the tests have the structure in the following definition.

Definition 1.11. Suppose that T is sufficient for the subfamily PB := {Pθ : θ ∈ ΘB}. A

test φ function is said to have Neyman structure w.r.t. T if10

Eθ[φ(X)|T = t] = α, for a.e. t (PT ), ∀ θ ∈ ΘB. (13)

10A statement is said to hold a.e. P if it holds except on a set N with P (N) = 0 for all P ∈ P.
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where PT := {P Tθ : θ ∈ ΘB} and P Tθ is the distribution of T under θ.

Remark 1.1. If φ has Neyman structure w.r.t. T , then φ is SOB. This easily follows from

the fact that

Eθ[φ(X)] = Eθ
[
E[φ(X)|T ]

]
= α, ∀ θ ∈ ΘB.

Lemma 1.12. If T is complete and sufficient for {Pθ : θ ∈ ΘB}, then every SOB test has

Neyman structure.

Proof. Let φ be a SOB level α test and define ψ(T ) = E[φ(X)|T ] (as T is sufficient, ψ does

not dependent on θ ∈ ΘB). Now

Eθ[ψ(T )− α] = Eθ[E[φ(X)|T ]]− α = Eθ[φ(X)]− α = 0, ∀ θ ∈ ΘB,

and hence, by completeness ψ(T ) − α = 0 a.e., for all θ ∈ ΘB. Hence φ has Neyman

structure w.r.t. T .

Remark 1.2. Suppose that:

(i) All critical functions have continuous power functions. Note that this is always true

for exponential families.

(ii) T is complete sufficient for PB = {Pθ : θ ∈ ΘB} (actually boundedly complete suffices;

see Lehmann and Romano [8, Theorem 4.3.2]). Lehmann and Romano [8, Theorem

4.3.1] allows us to check (ii) for exponential families.

Then all unbiased tests are SOB and all SOB tests have Neyman structure (by Lemmas 1.10

and 1.12). Thus if we can find a UMP Neyman structure test φ0 and we can show that φ0

is unbiased, then φ0 is UMPU.

Why is it easier to find UMP Neyman structure tests? Neyman structure tests are char-

acterized by having conditional probability of rejection equal to α on each surface T = t.

But the distribution on each such surface is independent of θ ∈ ΘB because T is sufficient

for PB. Thus the problem has been reduced to testing a one parameter hypothesis for each

fixed value of t; and in many problems we can easily find the most powerful test of this

simple hypothesis (see e.g., Theorem 1.9).

1.6.1 Application to general exponential families

Suppose that X has distribution following an exponential family P = {Pθ,η}(θ,η)∈Θ with

density

pθ,η(x) = c(θ, η) exp

[
θU(x) +

k∑
i=1

ηiTi(x)

]
h(x) (14)

12



w.r.t. a σ-finite dominating measure µ on some subset X , where θ is univariate, η =

(η1, . . . , ηk) and T = (T1, . . . , Tk), and the parameter space Θ is convex, has dimension

k + 1 and contains an interior point θ0.

Goal: Find a UMPU test for

H0 : θ = θ0 versus H1 : θ 6= θ0. (15)

Idea: Consider the conditional distribution of U given T .

We know that the conditional distribution of U given T form a one-parameter exponential

family with canonical parameter θ (independent of η)11; see e.g., Lehmann and Romano [8,

Lemma 2.7.2]. Theorem 1.9 gives a UMPU conditional test of (15).

Theorem 1.14. If the exponential family (14) is of full rank12 and Θ is open, then φ0

given by

φ0(u, t) =


1 if u < c1(t) or u > c2(t),

γi(t) if u = ci(t),

0 if c1(t) < u < c2(t).

(17)

with the ci’s and γi’s determined by (for a.e. t)

Eθ0,η[φ0(U, T )|T = t] = α and Eθ0,η[Uφ0(U, T )|T = t] = αEθ0,η[U |T = t] (18)

is a UMPU test of (15).

Proof. We make the following observations:

(i) First note that the conditions on the exponential family ensure that the densities

{Pθ0,η}η form a full rank exponential family with T as a complete13 sufficient statistic.

(ii) When T = t is given, U is the only remaining variable and the conditional distribution

of U given T = t is an exponential family with the form (16) (note that this conditional

distribution does not depend on η).

11

Lemma 1.13 (Lemma 2.7.2 of Lehmann and Romano (2005)). Let X be distributed according to the

exponential family (14). Then there exists a measure νt on R such that the conditional distribution of U

given T = t is an exponential family of the form

dP
U|t
θ· (u) = Ct(θ)e

θudνt(u), (16)

and hence in particular, is independent of η.

12The exponential family (14) is said to be of full rank if the interior of Θ is not empty and the sufficient

statistics do not satisfy a linear constraint.
13In an exponential family of full rank, T is complete.
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Claim 1: φ0 is level α SOB (and unbiased).

From observation (ii), given T = t, by Theorem 1.9, φ0 (as in (17)) is such that Eθ0,η[φ0|T =

t] = α for all t, so by smoothing Eθ0,η[φ0] = α (thus φ0 is level α SOB). Moreover, by

Theorem 1.9, Eθ,η[φ0] ≥ α, by comparing with the degenerate level α test.

Take a competing test φ which is level α and unbiased. As before, we will restrict attention

to tests of the form φ(x) ≡ ψ(U(x), T (x)) based on the sufficient statistic (U(X), T (X)).

Claim 2: φ satisfies the two constraints:

Eθ0,η[φ|T ] = α and Eθ0,η[U(X)φ(X)|T ] = αEθ0,η[U(X)|T ]. (19)

Since the power function of φ is continuous it is SOB level α. Thus, by Lemma 1.12, φ has

Neyman structure, i.e., Eθ0,η[φ|T = t] = α for a.e. t (by observation (i) above).

The derivative ∂
∂θβφ(θ, η)

∣∣∣
θ=θ0

must be zero, and thus14

Eθ0,η[U(X)φ(X)− αU(X)] = 0.

Conditioning on T , we have

0 = Eθ0,η
[
E[U(X)φ(X)− αU(X)|T ]

]
,

and since T is complete for the family of distributions with θ = θ0, this implies that

E[U(X)φ(X)− αU(X)|T ] = 0 ⇒ Eθ0,η[U(X)φ(X)|T ] = αEθ0,η[U(X)|T ].

Claim 3: φ0 is UMP for testing (15) among all tests satisfying (19).

The power of a test φ(X) ≡ ψ(U(X), T (X)) against an alternative (θ, η) is

Eθ,η[ψ(U, T )] = Eθ,η [Eθ[ψ(U, T )|T ]] .

As the conditional distribution of U given T = t does not depend on η, one therefore maxi-

mizes the overall power by maximizing the power of the conditional test, Eθ[ψ(U, T )|T = t],

separately for each t.

14By (14), as ∂
∂θ
pθ,η(x) = exp

[
θU(x) +

∑k
i=1 ηiTi(x)

]
h(x)

{
∂
∂θ
c(θ, η) + U(x)c(θ, η)

}
, we have

∂

∂θ
βφ(θ, η) =

∂

∂θ

∫
φ(x)pθ,η(x)dµ(x)

=
c′(θ, η)

c(θ, η)
Eθ,η[φ(X)] + E[U(X)φ(X)]

= {−Eθ,η[U(X)]}Eθ,η[φ(X)] + Eθ,η[U(X)φ(X)]

since, with ψ0 ≡ α, 0 = β′ψ0
(θ, η) = α{c′(θ, η)/c(θ, η) + Eθ,η[U(X)]} (which implies that c′(θ, η)/c(θ, η) =

−Eθ,η[U(X)]). Thus,

0 =
∂

∂θ
βφ(θ, η)

∣∣∣
θ=θ0

= Eθ0,η[U(X)φ(X)]− αEθ0,η[U(X)].

14



Using observation (ii), given T = t, from the proof of Theorem 1.9 (see e.g., (10) and (11); a

consequence of the generalized NP lemma), φ0 (as in (17)) maximizes the conditional power

against any θ 6= θ0 subject to (19), and thus

Eθ[φ0(U, T )|T ] ≥ Eθ[ψ(U, T )|T ] ⇒ Eθ,η[φ0(U, T )] ≥ Eθ,η[ψ(U, T )] = Eθ,η[φ(X)].

Thus φ0 is uniformly most powerful unbiased.

1.6.2 The t-test

Suppose that X1, . . . , Xn is a random sample from N(µ, σ2). Let X = (X1, . . . , Xn) and

consider testing

H0 : µ ≤ 0 versus H1 : µ > 0.

Letting x = (x1, . . . , xn), the joint density of the data is

1

(
√

2π)n
exp

[
µ

σ2
U(x)− 1

2σ2
T (x)− nµ2

2σ2
− n log σ

]
,

with U(x) :=
∑n

i=1 xi and T (x) = x2
1 + . . . + x2

n. This has form (14) with θ = µ/σ2 and

η = −1/(2σ2). Note that the hypotheses expressed using the canonical parameters are

H0 : θ ≤ 0 versus H1 : θ > 0.

To proceed we need the conditional distribution of U given T = t when µ = 015. As

U = 1>X (here 1 denotes a column of 1s) and T = ‖X‖2, we will study the distribution of

X|T .

Note that the family of normal distributions with µ = 0 is an exponential family with com-

plete sufficient statistic T . Also, if we define Z = X/σ, so that Z1, . . . , Zn are i.i.d. standard

normal, or Z ∼ N(0, In), then W = X/‖X‖ = Z/‖Z‖ is ancillary. By Basu’s theorem, T

and W are independent. Because ‖X‖ =
√
T ,X = W

√
T , and using independence between

T and W , for any measurable function h(·),

E[h(X)|T = t] = E[h(W
√
t)|T = t] = E[h(W

√
t)].

15Exercise 4 (HW1): Show that in the general exponential family setting of Section 1.6.1, if we consider

testing

H0 : θ ≤ θ0 versus H1 : θ > θ0,

a UMP unbiased test is given by

φ0(u, t) =


1 if u > c(t),

γ(t) if u = c(t),

0 if u < c(t).

(20)

with the c(·) and γ(·) determined by (for a.e. t) Eθ0,η[φ0(U, T )|T = t] = α.
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This shows that

X|T = t ∼W
√
t.

The vector W is said to be uniformly distributed on the unit sphere16.

Using the above, since U = 1>X,

P0,σ2 [U > c(t)|T = t] = P0,σ2

[
1>W >

c(t)

‖X‖

∣∣∣T = t

]
= P

[
1>W >

c(t)√
t

]
.

This equals α if we take c(t)/
√
t = q, the upper α-th quantile for 1>W . Thus the uniformly

most powerful unbiased test rejects H0 if

U√
T
> q.

Although it may not be apparent, this is equivalent to the usual test based on the t-statistic,

as

t =
X̄

s/
√
n

=
U/
√
n√

(T − U2/n)/(n− 1)
=

√
n− 1U/

√
T√

n− U2/T
= g

(
U√
T

)
,

where X̄ = U/n, s2 =
∑n

i=1(Xi − X̄)2/(n− 1) = [T − U2/n]/(n− 1), and g(v) =
√
n−1v√
n−v2 .

The function g(·) here is strictly increasing (on (−
√
n,
√
n)), and so

U√
T
> q if and only if t > g(q).

When µ = 0, t has the t-distribution on n− 1 degrees of freedom, and so level α is achieved

taking g(q) = tα,n−1, the upper α-th quantile of this distribution. So our test then rejects

H0 when

t > tα,n−1. (21)

Example 1.15 (Two-sample t-test). Exercise 5 (HW1): Suppose that we have dataX1, . . . , Xm

i.i.d. N(µX , σ
2) and Y1, . . . , Yn i.i.d. N(µY , σ

2), where µX , µY and σ2 > 0 are unknown.

Find UMP unbiased test for testing the hypothesis

H0 : µX = µY versus H1 : µY > µX .

This testing procedure naturally arises when comparing a treatment with a control to see

if the treatment has an effect.

16Note that if A is an arbitrary orthogonal matrix (i.e., AA> = In), then AZ ∼ N(0, AA>) = N(0, In).

Also ‖AZ‖2 = (AZ)>(AZ) = Z>A>AZ = Z>Z = ‖Z‖2. Thus Z and AZ have the same length and

distribution. Then,

AW =
AZ

‖Z‖ =
AZ

‖AZ‖ ∼
Z

‖Z‖ = W.

So W and AW have the same distribution, which shows that the uniform distribution on the unit sphere

(in Rn) is invariant under orthogonal transformations. In fact, this is the only probability distribution on

the unit sphere that is invariant under orthogonal transformations.
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Example 1.16 (Comparing two Poisson distributions). Exercise 6 (HW1): Suppose that

we have independent data X ∼ Poisson(λ) and Y ∼ Poisson(µ) where λ, µ > 0 are unknown.

It is natural to consider testing the hypothesis:

H0 : µ ≤ aλ versus H1 : µ > aλ,

for some known a (e.g., a = 1). Using the framework of (14) (using the parameter of interest

θ = log(µ/λ)) find a UMP unbiased test for the above hypothesis. Describe the test and

how to compute the critical value.

Example 1.17 (Fisher’s exact test). Exercise 7 (HW1): Fisher’s exact test is a statistical

significance test used in the analysis of contingency tables17. Suppose that we have two

binary variables X and Y , each taking values 0 or 1. The goal is to test for the independence

between X and Y . Thus, if

pij = P(X = i, Y = j), for i, j = 0, 1,

given i.i.d. data {(Xk, Yk)}nk=1 from the model, the goal is to test

H0 : p00 = p0·p·0 versus H1 : p00 6= p0·p·0, (22)

where p0· = P(X = 0) and p·0 = P(Y = 0). The joint density of the data is

P(X1 = x1, . . . , Xn = xn, Y1 = y1, . . . , Yn = yn) = Π1
i=0Π1

j=0 p
nij
ij ,

where nij = #{k : xk = i, yk = j}. If we take Nij = #{k : Xk = i, Yk = j} then

N = (N00, N01, N10, N11) is a sufficient statistic. It is convenient to introduce new variables

U = N00, T1 = N00 + N01, and T2 = N00 + N10. There is a one-to-one relation between N

and variables T := (T1, T2) and U and thus, the distribution of (U, T1, T2) belongs to a full

rank exponential family. Let θ = log
(
p00p11
p01p10

)
. Using Theorem 1.14 find the UMP unbiased

test for testing (22) (which can be expressed as H0 : θ = 0 versus H1 : θ 6= 0). To describe

the test in a more explicit fashion, we need the conditional distribution of U given T = t

when θ = 018. Show that U given (T1, T2) = (t1, t2) follows a hypergeometric distribution,

which arises in sampling theory.

1.6.3 Statistics independent of a sufficient statistic

A general expression for the UMP unbiased tests of the hypotheses H0 : θ = θ0 in the expo-

nential family (14) was given in Theorem 1.14. However, this turns out to be inconvenient

in the applications to normal and certain other families of continuous distributions, with

17It is named after its inventor, Ronald Fisher, and is one of a class of exact tests, so called because the

significance of the deviation from a null hypothesis (e.g., p-value) can be calculated exactly.
18This distribution does not depend on η.

17



which we shall be concerned in the present chapter. In these applications, the tests can be

given a more convenient form, in which they no longer appear as conditional tests in terms

of U given T = t, but are expressed unconditionally in terms of a single test statistic. This

is summarized in the following result.

Theorem 1.18. Suppose that the distribution of X is given by (14) and that V = h(U, T )

is independent of T when θ = θ0. Then φ∗ given by

φ∗(v) =


1 if v < C1 or u > C2,

γi(t) if v = Ci,

0 if C1 < v < C2.

(23)

with the Ci’s and γi’s determined by

Eθ0,η[φ
∗(V )] = α and Eθ0 [V φ∗(V )] = αEθ0 [V ] (24)

is UMP unbiased for testing H0 : θ = θ0 versus H1 : θ 6= θ0 provided

h(u, t) = a(t)u+ b(t) with a(t) > 0.

Proof. The test given in (17) is equivalent to (23) with constants Ci’s and γi’s determined

by Eθ0 [φ0(V, t)|t] = α and

Eθ0
[
φ0(V, t)

V − b(t)
a(t)

|t
]

= αEθ0
[
V − b(t)
a(t)

|t
]
,

which reduces to Eθ0 [V φ0(V, t)|t] = αEθ0 [V |t]. Since V is independent of T for θ = θ0, so

are the Ci’s and γi’s as was to be proved.

See Lehmann and Romano [8, Section 5.1] for the form of the UMP unbiased test when

testing for one-sided alternatives as in Section 1.6.2.

1.7 Permutation tests

In Example 1.15 we compared two distributions, assuming normality of each population. For

non-normal distributions however, the above method will not guarantee the level condition

(for small m and n).

In the following we study a method that would yield an exact level α unbiased test when

the two distributions have densities f(·) and f(· −∆), for unknown f(·) and ∆. The joint

density of the data then has the form

p∆(x,y) = f(x1) · · · f(xm)f(y1 −∆) · · · f(yn −∆), where f ∈ F (25)
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for x = (x1, . . . , xm) ∈ Rm and y = (y1, . . . , yn) ∈ Rn, and F can be taken to be the family

of all probability densities that are continuous a.e. We consider testing

H0 : ∆ = 0 versus H1 : ∆ > 0.

Unbiasedness of a test φ(·) in this case implies that, for all f ∈ F ,∫
Rm+n

φ(x,y)p0(x,y)dxdy = α, (26)

where p0(x,y) is defined as in (25) with ∆ = 0. In the following result we provide an easily

verifiable equivalent condition for (26). Let N = m+n and let Zi = Xi if i = 1, . . . ,m, and

Zi = Ym−i if i = m+ 1, . . . , N .

Theorem 1.19. If F is the family of all probability densities that are continuous a.e.,

then (26) holds for f ∈ F iff

1

N !

∑
z′∈S(z)

φ(z′) = α a.e., (27)

where S(z) is the set of points obtained by permuting the coordinates of z = (z1, . . . , zN ) ∈
RN in all N ! possible ways.

Proof. Note that the set of order statistics T (Z) = (Z(1), . . . , Z(N)) is a complete sufficient

statistic for F (see e.g., Lehmann and Romano [8, Example 4.3.4]). Then, a necessary and

sufficient condition for (26) is (see e.g., the proof of Lemma 1.12)

E[φ(Z)|T (Z)] = α a.e.

Note that S(z) = {z′ : T (z′) = T (z)}. It follows that the conditional distribution of Z given

T (Z) = T (z) assigns probability 1/N ! to each of the N ! points of S(z), thereby completing

the proof.

We shall now determine the test which, subject to (27), maximizes the power against a fixed

alternative (25) or more generally against an alternative with arbitrary fixed alternative h(·).
Thus, we want to test

H0 : Z1, . . . , ZN are i.i.d. f versus H1 : (Z1, . . . , ZN ) ∼ h(·).

The power of a test φ is
∫
φ(z)h(z)dz = Eh [Eh[φ(Z)|T ]] . Since the conditional densities

under the composite null hypothesis and under the simple alternative h are

p0(z|t) =
1

N !
and p1(z|t) =

h(z)∑
z′∈S(t) h(z′)

, for z ∈ S(t),

the conditional power is Eh[φ(Z)|T = t] =
∑

z∈S(t) φ(z)p1(z|t), where t = (t1, . . . , tN ) such

that t1 < t2 < . . . < tN . It is enough to maximize the conditional power for each t subject
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to the constraint (27). By the NP lemma, this is achieved by rejecting z ∈ S(t) for large

values of p1(z|t)
p0(z|t) . Thus the most powerful test is given by

φ0(z) =


1 if h(z) > c(T (z)),

γ if h(z) = c(T (z)),

0 if h(z) < c(T (z)).

(28)

Given z such that T (z) = t, to carry out the test, the N ! points of the set S(t) are ordered

according to the values of the density h(·). The hypothesis is rejected for the k largest values

and with probability γ for the (k + 1)’st value, where k and γ are defined by k + γ = αN !

(assuming that the k, (k + 1)’st and (k + 2)’nd largest values are distinct).

Consider now in particular the alternatives (25). The most powerful permutation test is

seen to depend on ∆ and the f , and is therefore not UMP.

Example 1.20 (Permutation t-test (Exercise 8 (HW1))). Of special interest is the class of

normal alternatives with common variance, i.e., f ≡ N(µX , σ
2) in (25). The most powerful

permutation test, which turns out to be independent of µX , σ
2, and ∆19, is appropriate

when approximate normality is suspected but the assumption is not felt to be reliable. It

may then be desirable to control the size of the test at level α regardless of the form of

the densities f and to have the test unbiased against all alternatives (25). However, among

the class of tests satisfying these broad restrictions it is natural to make the selection so

as to maximize the power against the type of alternative one expects to encounter, that is,

against the normal alternatives, i.e.,

h(z) = (
√

2πσ2)−N exp

[
− 1

2σ2

{ m∑
i=1

(zi − µX)2 +
N∑

i=m+1

(zi − µX −∆)2
}]

.

1.8 Exercises

9. Lehmann and Romano [8, Problem 3.55].

10. Lehmann and Romano [8, Problem 3.62].

11. Suppose X is a random variable with density

pθ(x) := eη(θ)T (x)−A(θ)h(x)

w.r.t. some dominating σ-finite measure µ on X , and θ ∈ Θ, where Θ is an interval

19Show this. Also, show that the rejection region in this case has the form of the t-test in which the

constant cutoff point tα,n−1 in (21) is replaced by a random one (under appropriate conditions it can be

shown (you do not have to show this) that the difference between the random and the constant cut-off is

small in an asymptotic sense). Further, show that this test is unbiased.
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in R. Assume that η is C∞ and η′(θ) > 0. Fix θ0 ∈ Θ, and let

M :=
{(

Eθ0ψ(X),Eθ0ψ(X)T (X)
)

: ψ : X 7→ [0, 1]
}
⊂ R2.

Show that for any α ∈ (0, 1), the point (α, αEθ0T (X)) is an interior point in M .

12. Lehmann and Romano [8, Problem 5.5].

13. Lehmann and Romano [8, Problem 5.11].

14. Lehmann and Romano [8, Problem 5.15].
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2 Smooth parametric families

As seen in the last chapter, the finite sample theory of optimality for hypothesis testing

applied only to rather special parametric families, primarily exponential families (and group

families; see Lehmann and Romano [8, Chapter 6]). On the other hand, as we will see in this

chapter, asymptotic optimality will apply more generally to parametric families satisfying

smoothness conditions.

2.1 Local asymptotic normality and quadratic mean differentiability

Consider a parametric model {Pθ : θ ∈ Θ}, where, throughout this section, Θ is assumed

to be an open subset of Rk (k ≥ 1). The probability measures Pθ are defined on some

measurable space X . We assume that each Pθ is absolutely continuous w.r.t. a σ-finite

measure µ, and set pθ(x) = dPθ(x)/dµ(x), for x ∈ X .

We consider smooth parametric models. To motivate the smoothness condition given in

Definition 2.3 below, consider the case of n i.i.d. random variables X1, . . . , Xn and the

problem of testing a simple null hypothesis H0 : θ = θ0 against a simple alternative H1 :

θ = θ1 (possibly dependent on n). The MP test rejects when the loglikelihood ratio statistic

log[pn(θ1)/pn(θ0)]

is sufficiently large, where pn(θ) := Πn
i=1pθ(Xi) denotes the likelihood function. In the

following two examples we illustrate the behavior of the loglikelihood ratio for two “simple”

models.

Example 2.1 (Normal location model). Suppose that Pθ is N(θ, σ2), where σ2 is known.

Then,

log[pn(θ1)/pn(θ0)] =
n

σ2
[(θ1 − θ0)X̄n −

1

2
(θ2

1 − θ2
0)], (29)

where X̄n :=
∑n

i=1Xi/n. By the weak law of large number (LLN), under H0 : θ = θ0,

(θ1 − θ0)X̄n −
1

2
(θ2

1 − θ2
0)

p−→ (θ1 − θ0)θ0 −
1

2
(θ2

1 − θ2
0) = −1

2
(θ1 − θ0)2,

and so log[pn(θ1)/pn(θ0)]
p→ −∞20.

A more useful result is obtained if θ1 in (29) is replaced by θ0 + hn−1/2 (local alternative);

here h ∈ R is fixed. We then find,

log[pn(θ0 + hn−1/2)/pn(θ0)] =
h
√
n(X̄n − θ0)

σ2
− h2

2σ2
= hZn −

h2

2σ2
, (30)

20It can also be shown that the power of the test (for testing H0 : θ = θ0 versus H1 : θ = θ1) will converge

to 1.
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where Zn =
√
n(X̄n − θ0)/σ2 ∼ N(0, 1/σ2). Notice that the expansion (30) is a linear

function of Zn and a simple quadratic function of h, with the coefficient of h2 nonrandom.

Furthermore, log[pn(θ0 + hn−1/2)/pn(θ0)] is distributed as N(−h2/(2σ2), h2/σ2)21 under

H0 : θ = θ0 for every n22.

Example 2.2 (One-parameter exponential family). Let X1, . . . , Xn be i.i.d. having density

pθ(x) = exp[θT (x) − A(θ)] (for x ∈ X ) w.r.t. a σ-finite measure µ. Assume θ0 lies in the

interior of the natural parameter space Θ ⊂ R. Then23, for a fixed h ∈ R,

log[pn(θ0 + hn−1/2)/pn(θ0)] = hZn −
h2

2
A′′(θ0) + op(1), (31)

where, under H0 : θ = θ0,

Zn := n−1/2
n∑
i=1

{
T (Xi)− Eθ0 [T (Xi)]

} d−→ N(0, A′′(θ0)).

Thus, the loglikelihood ratio (31) behaves asymptotically like the loglikelihood ratio (30)

from a normal location model in Example 2.1 with σ2 = [A′′(θ0)]−1. This is usually referred

to as local asymptotic normality24. As we will see, such approximations allow one to deduce

asymptotic optimality properties for the exponential model (or any model whose likelihood

ratios satisfy an appropriate generalization of (31)) from optimality properties of the simple

normal location model.

2.1.1 Local asymptotic normality: Heuristics

We would like to obtain an approximate result like (31) for more general families; in the

following we give a heuristic proof sketch. Let `θ(x) = log pθ(x) be “twice differentiable”

w.r.t. θ ∈ Θ ⊂ Rk, and can be approximated by its second order Taylor series, i.e., for every

fixed x,

`θ+h(x) = `θ(x) + h> ˙̀
θ(x) +

1

2
h> ῭

θ(x)h+ ox(|h|2).

Here | · | denotes the usual Euclidean norm and the subscript x in the remainder term is a

reminder of the fact that this term depends on x as well as on h (and on θ). Then, using

21The relationship that the mean is the negative of half the variance will play a key role in the sequel.
22Moreover, it can be shown that the power of the test will converge to a number strictly between 0 and

1 (depending on h).
23Recall that Eθ0 [T (Xi)] = A′(θ0), and Varθ0(T (Xi)) = A′′(θ0), and by a Taylor expansion,

n[A(θ0 + hn−1/2)−A(θ0)] = hn1/2A′(θ0) +
h2

2
A′′(θ0) + o(1).

24The notion of local asymptotic normality was introduced by Le Cam.
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the above expansion,

log[pn(θ + hn)/pn(θ)] =
n∑
i=1

[log pθ+hn(Xi)− log pθ(Xi)]

= h>n

n∑
i=1

˙̀
θ(Xi) +

1

2
h>n

n∑
i=1

῭
θ(Xi)hn + o(n|hn|2). (32)

Note that ˙̀
θ is called the score function. For X ∼ Pθ (and for `θ satisfying regularity

conditions), we have

1. The score function has mean zero: Pθ ˙̀
θ ≡ Eθ[ ˙̀

θ(X)] = 025.

2. The mean curvature of the loglikelihood is the negative Fisher information: Pθ ῭
θ =

−Iθ, where Iθ := Pθ ˙̀
θ

˙̀>
θ .

Thus26,

n−1/2
n∑
i=1

˙̀
θ(Xi)

Pθ N(0, Iθ),

1

n

n∑
i=1

῭
θ(Xi)

Pθ→ −Iθ.

So, if
√
nhn → h, then using (32),

log[pn(θ + hn)/pn(θ)] = (
√
nhn)>

1√
n

n∑
i=1

˙̀
θ(Xi) +

1

2
(
√
nhn)>

1

n

n∑
i=1

῭
θ(Xi)(

√
nhn) + o(1)

Pθ N(−1

2
h>Iθh, h

>Iθh).

This behavior is known as local asymptotic normality (see Remark 2.2 below for a more

detailed explanation).

What conditions make the above argument rigorous? As we will now see that a weaker

condition than twice differentiability suffices; in fact, θ 7→
√
pθ(x) differentiable for most x

suffices.

2.1.2 Quadratic mean differentiable

Classical smoothness conditions on the function pθ(x) usually assume that, for fixed x, pθ(x)

is differentiable in θ at θ0 ∈ Θ ⊂ Rk; i.e., for some function ṗθ(x),

pθ0+h(x)− pθ0(x)− h>ṗθ(x) = o(|h|)
25We can justified this if we are allowed to interchanging the order of integration and differentiation in

the integral:
∫

˙̀
θ0(x)pθ0(x)dµ(x) =

∫
ṗθ0(x)dµ(x) = ∂

∂θ

(∫
pθ(x)dµ(x)

)
= 0.

26Here denotes weak convergence (i.e., convergence in distribution), and
Pθ indicates that the true data

distribution is Pθ.

24



as |h| → 0. In addition, higher order differentiability is typically assumed with further

assumptions on the remainder terms (e.g., twice continuous differentiability of log pθ(x)

w.r.t θ along with a dominated second derivative).

In order to avoid such strong assumptions, it turns out to be useful to work with square

roots of densities. For fixed x, differentiability of p
1/2
θ (x) at θ = θ0 requires the existence of

a function η(x, θ0) such that

R(x, θ0, h) ≡ p1/2
θ0+h(x)− p1/2

θ0
(x)− h>η(x, θ0) = o(|h|).

To obtain a weaker, more generally applicable condition, we will not require R2(x, θ0, h) =

o(|h|2) for every x, but we will impose the condition that R2(·, θ0, h) averaged w.r.t. µ

is o(|h|2). Let L2(µ) denote the space of functions g : X → R such that ‖g‖2L2(µ) :=∫
g2(x)dµ(x) <∞. The convenience of working with square roots of densities is due to the

fact that p
1/2
θ (·) ∈ L2(µ) and, more importantly, it is an element with norm 1 (a fact first

exploited by Le Cam).

Definition 2.3 (Quadratic mean differentiable). The family P := {Pθ, θ ∈ Θ ⊂ Rk} is

quadratic mean differentiable (abbreviated QMD) at θ0 if there exists a vector of real-

valued functions ˙̀
θ0(·) = ( ˙̀

θ0,1(·), . . . , ˙̀
θ0,k(·))> such that∫

X

[√
pθ0+h(x)−

√
pθ0(x)− 1

2
h> ˙̀

θ0(x)
√
pθ0(x)

]2

dµ(x) = o(|h|2) (33)

as |h| → 0. Whenever (33) holds, we will call ˙̀
θ0 as the score function.

In other words, if P satisfies QMD at θ0, then we have: If {θn} is a sequence converging to

θ0 then √
pθn(x) =

√
pθ0(x) +

1

2
(θn − θ0)> ˙̀

θ0(x)
√
pθ0(x) + rθn(x) (34)

for all x ∈ X and n with

lim
n→∞

‖rθn‖L2(µ)

|θn − θ0|
= 0. (35)

It is natural to ask why does the term 1
2h
> ˙̀

θ0(x)
√
pθ0(x) arise in (33)? Note that if pθ(x)

is differentiable in θ at θ0, then

∇θ
√
pθ

∣∣∣
θ=θ0

=
1

2

∇θpθ√
pθ

∣∣∣
θ=θ0

=
1

2

√
pθ0
∇θpθ0
pθ0

=
1

2

√
pθ0 ∇θ`θ0 =

1

2

√
pθ0

˙̀
θ0 .

From above it can be seen that, if smoothness conditions hold, ˙̀
θ0 is indeed the usual score

function, i.e., ˙̀
θ0(x) = ∂

∂θ log pθ(x)
∣∣∣
θ=θ0

.

Le Cam showed that, under QMD, classical asymptotic results in statistics (such as the

asymptotic normality of maximum likelihood estimators) can be proved without requiring

the density θ 7→ pθ(x) to be twice (or thrice) differentiable at θ0. One appears to get the
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benefit of the quadratic expansion without paying the twice-differentiability price usually

demanded by such a Taylor expansion.

Example 2.4 (Normal distribution). Suppose that X1, . . . , Xn are i.i.d. N(θ, 1), where

θ ∈ Θ = R. Show that this family is QMD. (Exercise 1 (HW2))

Example 2.5 (Double exponential). For the model pθ(x) = 1
2e
−|x−θ| (x, θ ∈ R), differen-

tiability fails at the point θ = x, but this model satisfies QMD as (33) holds. (Exercise 2

(HW2))

Example 2.6 (Uniform distribution). Suppose that Pθ = Uniform([0, θ]), for θ ∈ Θ =

(0,∞). This model is not QMD as (for θ0 > 0)∫ [
√
pθ0+h −

√
pθ0 −

1

2
h ˙̀
θ0
√
pθ0

]2

dµ ≥
∫ θ0+h

θ0

[
√
pθ0+h −

√
pθ0 −

1

2
h ˙̀
θ0
√
pθ0

]2

dµ

=

∫ θ0+h

θ0

[
1√

θ0 + h
− 0− 1

2
h · ˙̀

θ0 · 0
]2

dµ

=
h

θ0 + h
= O(|h|).

Definition 2.7 (Fisher information). For the QMD family P with score function ˙̀
θ0 ,

we define the Fisher Information matrix to be the matrix Iθ ∈ Rk×k with (i, j) entry∫
X

˙̀
θ0,i(x) ˙̀

θ0,j(x)pθ0(x) dµ(x). Thus,

Iθ0 =

∫
( ˙̀
θ0
√
pθ0)( ˙̀

θ0
√
pθ0)>dµ =

∫
X

˙̀
θ0(x) ˙̀

θ0(x)>pθ0(x) dµ(x).

A standard fact about the classical score function is that its expectation w.r.t. the prob-

ability measure Pθ0 equals zero. The classical proof for this involves interchanging the

order of differentiation w.r.t. θ (see Section 2.1.1). The following lemma shows that the

QMD assumption implies this fact directly.

Lemma 2.8. Suppose P satisfies QMD at θ0 with score function ˙̀
θ0 . Then∫

˙̀
θ0(x)pθ0(x)dµ(x) = 0, (36)

and the Fisher information matrix Iθ0 exists and is well-defined.

Proof. For i = 1, . . . , k, we will first show that the i’th diagonal entry of the Fisher in-

formation matrix Iθ0 is finite, i.e.,
∫

˙̀2
θ0,i

(x)pθ0(x)dµ(x) < ∞ (for i = 1, . . . , k), which

will show that Iθ0 is well-defined. This follows from the fact that for any h ∈ Rk, taking

θn = θ0 + hn−1/2 in (34), we get∫ [
n1/2

{√
pθ0+hn−1/2(x)−

√
pθ0(x)

}
− 1

2
h> ˙̀

θ0(x)
√
pθ0(x)

]2

dµ(x)→ 0,
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as n→∞. Take gn := n1/2(
√
pθ0+hn−1/2 −√pθ0) and g := 1

2h
> ˙̀

θ0
√
pθ0 . We will show that

g ∈ L2(µ). We are given that
∫

(gn−g)2dµ→ 0 as n→∞. Observe that {gn}n≥1 is Cauchy

(as
∫

(gn − gm)2dµ =
∫

[(gn − g)− (gm − g)]2dµ ≤ 2
∫

(gn − g)2dµ+ 2
∫

(gm − g)2dµ→ 0 as

m,n → ∞). Hence, gn has a limit q (say) in L2(µ) (as L2(µ) is a complete space). Hence∫
(g − q)2dµ ≤ 2

∫
(g − gn)2dµ +

∫
(gn − q)2dµ → 0 as n → ∞, and thus,

∫
(g − q)2dµ = 0.

Therefore, g = q in L2(µ) and hence g belongs to L2(µ).

By taking h to be the vector of zeros except for 1 in the i’th component shows that∫
˙̀2
θ0,i

(x)pθ0(x)dµ(x) <∞.

Let θn be a sequence converging to θ0 as n → ∞. By the QMD representation, we can

write (34) with the remainder term rθn satisfying (35). Note then that

1 =

∫
pθndµ =

∫ (
√
pθ0 +

1

2
(θn − θ0)> ˙̀

θ0
√
pθ0 + rθn

)2

dµ.

We now expand the square in the right hand side above which will lead to six terms. One

of the terms equals
∫
pθ0dµ = 1 which cancels with the left hand side. We thus obtain

0 = (θn − θ0)>
∫

˙̀
θ0pθ0dµ+ 2

∫
√
pθ0rθndµ+

1

4
(θn − θ0)>[

∫
˙̀
θ0

˙̀>
θ0pθ0dµ] (θn − θ0)

+ (θn − θ0)>
∫

˙̀
θ0
√
pθ0rθndµ+

∫
r2
θndµ (37)

The first term in the right hand side above is clearly O(|θn − θ0|) in absolute value. The

third term is O(|θn − θ0|2). The final term (by (35)) equals o(|θn − θ0|2). The remaining

two terms (second and fourth) can be controlled via the Cauchy-Schwarz inequality as

2

∫
√
pθ0 |rθn |dµ ≤ 2

√∫
pθ0dµ

√∫
r2
θn
dµ = 2

√∫
r2
θn
dµ = 2o(|θn − θ0|)

by (35) and∣∣∣∣(θn − θ0)>
∫

˙̀
θ0
√
pθ0rθndµ

∣∣∣∣ ≤√(θn − θ0)>Iθ0(θn − θ0)

√∫
r2
θn
dµ = o(|θn − θ0|2)

again by (35) (and using the fact that Iθ0 =
∫

˙̀
θ0

˙̀>
θ0
pθ0dµ). It is clear therefore that the

leading term on the right hand side in (37) is the first term. By dividing the equation (37)

through by |θn − θ0| and letting n→∞, we deduce (36).

Remark 2.1 (Why work with square-roots of densities?). The argument used in the proof

of Lemma 2.8 above leads to an interesting and important fact involving ˙̀
θ0 and the Fisher

information. Because
∫

˙̀
θ0pθ0dµ = 0, we can plug this into (37) to obtain (also using the

fact that the last two terms in (37) are o(|θn − θ0|2)):

2

∫
√
pθ0rθndµ+

1

4
(θn − θ0)>Iθ0(θn − θ0) + o(|θn − θ0|2) = 0.
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Thus, we obtain

2

∫
√
pθ0rθndµ = −1

4
(θn − θ0)>Iθ0(θn − θ0) + o(|θn − θ0|2). (38)

This fact is crucial for establishing that QMD implies local asymptotic normality (see The-

orem 2.10 in Section 2.1.3). The interesting aspect about (38) is the following. The state-

ment (35) implies that ‖rθn‖L2(µ) = o(|θn − θ0|). Therefore, if we use the Cauchy-Schwarz

inequality on the left hand side in (38), we obtain that the left hand side is o(|θn − θ0|).
But the equality above implies that the right hand side is O(|θn − θ0|2) which is a much

stronger conclusion that what can be derived from Cauchy-Schwarz inequality. Therefore∫
rθn
√
pθ0dµ is much smaller in comparison to the L2(µ) norm of rθn . Pollard [12] attributes

this phenomenon to the fact that the functions
√
pθn in L2(µ) all have norm one (this is

clear from the above proof of (38)) and argues that this is the main reason behind the magic

of the QMD27.

To establish QMD of specific models requires a convergence theorem for integrals. Usually

one proceeds by showing differentiability of the map θ 7→ pθ(x) for a.e. x plus µ-equi-

integrability (e.g., domination). The following theorem takes care of many examples.

Theorem 2.9. Let Θ be an open subset of Rk. Assume that the map θ 7→ sθ(x) ≡
√
pθ(x)

is a continuously differentiable function of θ in some neighborhood of θ0, for µ-a.e. x. If

the elements of the matrix Iθ =
∫

(ṗθ/pθ)(ṗ
>
θ /pθ)pθ dµ are well-defined and continuous at

θ0, then the map θ 7→ √pθ is QMD at θ0 with ˙̀
θ0 given by ṗθ0/pθ0 .

Proof. We will prove this when Θ ⊂ R (i.e., k = 1).

By the chain rule, the map θ 7→ pθ(x) = s2
θ(x) is differentiable in θ is some neighborhood

of θ0 with gradient ṗθ = 2sθṡθ, for µ-a.e. x. Because sθ is nonnegative, its gradient ṡθ at

a point at which sθ = 0 must be zero. Conclude that we can write ṡθ = 1
2(ṗθ/pθ)

√
pθ,

where the quotient ṗθ/pθ may be defined arbitrarily if pθ = 0. By assumption, the map

θ 7→ Iθ = 4
∫

(ṡθ)
2 dµ is continuous.

Because the map θ 7→ sθ(x) is continuously differentiable around θ0, the difference sθ0+h(x)−
sθ0(x) can be written as the integral h

∫ 1
0 ṡθ0+uh(x)du of its derivative. Integrating over all

x w.r.t. µ, and using Cauchy-Schwarz’s inequality we have

1

h2

∫
(sθ0+h(x)− sθ0(x))2dµ(x) =

∫ (∫ 1

0
ṡθ0+uh(x)du

)2

dµ(x)

≤
∫ ∫ 1

0
(ṡθ0+uh(x))2du dµ(x) =

1

4

∫ 1

0
Iθ0+uh du,

27A part of this subsection and the next is taken from Adityanand Guntuboyina’s lecture notes (see

https://www.stat.berkeley.edu/~aditya/resources/FullNotes210BSpring2018.pdf), which in turn is

taken from Pollard [12].
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where the last equality follows by Fubini’s theorem and the definition of Iθ. For h→ 0 the

right side converges to Iθ by the continuity of the map θ 7→ Iθ in a neighborhood of θ0.

We will now use the following result: Suppose that fn and f are arbitrary measurable

functions such that fn → f µ-a.e. (for some measure µ) and lim sup
∫
|fn|2dµ ≤

∫
|f |2dµ <

∞. Then
∫
|fn − f |2dµ → 0 (see van der Vaart [15, Proposition 2.29]). This is known as

Vitali’s theorem.

Now consider a sequence {hn}n≥1 ⊂ R such that hn → 0. Let fn := (sθ0+hn − sθ0)/hn and

f := ṡθ0 = ˙̀
θ0
√
pθ0 . By the differentiability of the map θ 7→ sθ at θ = θ0, fn(x)→ f(x) for

µ-a.e. x. Thus, by an application of Vitali’s theorem yields,∫ [
sθ0+hn(x)− sθ0(x)

hn
− ˙̀

θ0(x)
√
pθ0(x)

]2

dµ(x)→ 0,

thereby completing the proof.

2.1.3 Local asymptotic normality

Theorem 2.10. Suppose that P = {Pθ : θ ∈ Θ ⊂ Rk}, where Θ is an open set, satisfies

QMD at θ0 ∈ Θ with score function ˙̀
θ0 and Fisher information matrix Iθ0 . Then for every

fixed h ∈ Rk, we have∣∣∣∣∣
n∑
i=1

log
pθ0+hn−1/2(Xi)

pθ0(Xi)
− h>√

n

n∑
i=1

˙̀
θ0(Xi) +

1

2
h>Iθ0h

∣∣∣∣∣ Pθ0−→ 0 as n→∞.

Equivalently, the conclusion of the above theorem can be written

n∑
i=1

log
pθ0+hn−1/2(Xi)

pθ0(Xi)
=
h>√
n

n∑
i=1

˙̀
θ0(Xi)−

1

2
h>Iθ0h+ oPθ0 (1) as n→∞. (39)

We say that P satisfies the local asymptotic normality (LAN) property at θ0 if the above

holds for every h ∈ Rk. To see this, note first that, by the CLT, we have

1√
n

n∑
i=1

˙̀
θ0(Xi)

d→ Z

where Z ∼ N(0, Iθ0). Therefore, as a consequence of (39), we obtain that for every h ∈ Rk,

n∑
i=1

log
pθ0+hn−1/2(Xi)

pθ0(Xi)

d→ h>Z − 1

2
h>Iθ0h

d
= N

(
−1

2
h>Iθ0h, h

>Iθ0h

)
.

Remark 2.2 (Why is this called local asymptotic normality?). Now consider the estimation

problem where we have one observation Y whose density belongs to the family {Qh : h ∈ Rk}
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were Qh has the density qh which is the density of the normal distribution with mean h and

variance I−1
θ0

(which we assume exist here). It is easy to see then that

log
qh(Y )

q0(Y )
∼ h>Iθ0Y −

1

2
h>Iθ0h under Y ∼ N(0, I−1

θ0
).

Therefore (39) effectively says that the likelihood ratios of {Pθ, θ ∈ Θ} (which can be arbi-

trary as long as P satisfies QMD) behave like the likelihood ratios of a normal experiment

{Qh : h ∈ Rk} where Qh = N(h, I−1
θ0

). Hence asymptotically around θ0 at the scale n−1/2,

the original statistical problem P becomes a normal mean estimation problem. This is why

(39) is referred to as LAN.

We shall now prove Theorem 2.10.

Proof of Theorem 2.10. All expectations and probabilities in this proof are w.r.t. the prob-

ability measure Pθ0 . Write

Ln :=
n∑
i=1

log
pθ0+hn−1/2(Xi)

pθ0(Xi)
= 2

n∑
i=1

log

√
pθ0+hn−1/2(Xi)

pθ0(Xi)
= 2

n∑
i=1

log (1 +Wni)

where

Wni :=

√
pθ0+hn−1/2(Xi)

pθ0(Xi)
− 1.

We will use the fact that

log(1 + y) = y − y2

2
+

1

2
y2β(y) where lim

y→0
β(y) = 0

or equivalently, β(y) = o(1) as y → 0. This gives

Ln = 2

n∑
i=1

Wni −
n∑
i=1

W 2
ni +

n∑
i=1

W 2
niβ(Wni).

Using the QMD representation (34), we can write

Wni =

√
pθ0+hn−1/2(Xi)−

√
pθ0(Xi)√

pθ0(Xi)
=
h> ˙̀

θ0(Xi)

2
√
n

+
rθ0+hn−1/2(Xi)√

pθ0(Xi)
=
h> ˙̀

θ0(Xi)

2
√
n

+Rni

(40)

where

Rni =
rθ0+hn−1/2(Xi)√

pθ0(Xi)
.
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We thus get

Ln =
h>
∑n

i=1
˙̀
θ0(Xi)√

n
+ 2

n∑
i=1

Rni −
n∑
i=1

(
h> ˙̀

θ0(Xi)

2
√
n

+Rni

)2

+

n∑
i=1

W 2
niβ (Wni)

=
h>
∑n

i=1
˙̀
θ0(Xi)√

n
+ 2

n∑
i=1

Rni − h>
1

4n

[
n∑
i=1

˙̀
θ0(Xi) ˙̀

θ0(Xi)
>

]
h

−
h>
∑n

i=1
˙̀
θ0(Xi)Rni√
n

−
n∑
i=1

R2
ni +

n∑
i=1

W 2
niβ (Wni) . (41)

Observe now that by QMD, we know the following about the random variables Rni:

Eθ0 [R2
ni] = Eθ0

[
r2
θ0+hn−1/2(Xi)

pθ0(Xi)

]
=
∥∥rθ0+hn−1/2(·)

∥∥2

L2(µ)
= o

(
|h|2

n

)
= o(n−1). (42)

This gives that Eθ0
[∑n

i=1R
2
ni

]
= o(1) and hence

∑n
i=1R

2
ni

p→ 0 (by Markov’s inequality).

Also, by the Cauchy-Schwarz inequality, we have∣∣∣∣∣h>
∑n

i=1
˙̀
θ0(Xi)Rni√
n

∣∣∣∣∣ ≤
√√√√ 1

n

n∑
i=1

(h> ˙̀
θ0(Xi))2

√√√√ n∑
i=1

R2
ni

p→
√
h>Iθ0h

√
0 = 0 (43)

where we have used the weak law of large numbers. We thus have

Ln =
h>
∑n

i=1
˙̀
θ0(Xi)√

n
+ 2

n∑
i=1

Rni − h>
1

4n

[
n∑
i=1

˙̀
θ0(Xi) ˙̀

θ0(Xi)
>

]
h+

n∑
i=1

W 2
niβ (Wni) + oPθ0 (1).

We shall prove later that

n∑
i=1

W 2
niβ (Wni) = oPθ0 (1), (44)

so that we have

Ln =
h>
∑n

i=1
˙̀
θ0(Xi)√

n
+ 2

n∑
i=1

Rni − h>
1

4n

[
n∑
i=1

˙̀
θ0(Xi) ˙̀

θ0(Xi)
>

]
h+ oPθ0 (1).

The third term in the right hand side above clearly converges to −h>Iθ0h/4 in probability

(by the WLLN) so to complete the proof of Theorem 2.10, we only need to show that

2

n∑
i=1

Rni
p→ −1

4
h>I(θ0)h. (45)

For this, write

2
n∑
i=1

Rni = 2
n∑
i=1

Eθ0 [Rni] + 2
n∑
i=1

(Rni − Eθ0 [Rni]).
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As, by (42),

E

(
2

n∑
i=1

(Rni − Eθ0 [Rni])

)2

= 4

n∑
i=1

Var(Rni) ≤ 4

n∑
i=1

Eθ0 [R2
ni] = o(1),

we get

2

n∑
i=1

Rni = 2

n∑
i=1

Eθ0 [Rni] + oPθ0 (1) as n→∞. (46)

Note that

2
n∑
i=1

Eθ0 [Rni] = 2nEθ0 [Rn1] = 2nEθ0

[
rθ0+hn−1/2(X1)√

pθ0(X1)

]
= 2n

∫
rθ0+hn−1/2

√
pθ0dµ.

We shall now use the fact (38) which gives

2

∫
rθ0+hn−1/2

√
pθ0dµ = − 1

4n
h>Iθ0h+ o(n−1)

so that

2
n∑
i=1

Eθ0 [Rni] = −1

4
h>Iθ0h+ o(1).

Combining with (46), we obtain (45). To finish the proof of Theorem 2.10, we only need to

verify (44). This is mainly a consequence of β(y) = o(1) as y → 0. Indeed,∣∣∣∣∣
n∑
i=1

W 2
niβ(Wni)

∣∣∣∣∣ = max
1≤i≤n

|β(Wni)|
n∑
i=1

W 2
ni.

From the definition of Wni in (40) (coupled with the expansion in (41) and (43) and the

fact that
∑n

i=1R
2
ni

p→ 0), it follows that
∑n

i=1W
2
ni

p→ 1
4h
>Iθ0h. So, it suffices to show that

max
1≤i≤n

|β(Wni)|
p→ 0 (under Pθ0), which follows if we can show that (as limy→0 β(y) = 0)

max
1≤i≤n

|Wni|
p→ 0.

Using (40) it turns out that it is enough to show that

max
1≤i≤n

∣∣∣∣∣h> ˙̀
θ0(Xi)√
n

∣∣∣∣∣ = oPθ0 (1) and max
1≤i≤n

|Rni| = oPθ0 (1). (47)

We shall complete the proof now by proving the assertions in (47). For the first assertion

in (47), write (for a fixed ε > 0),

Pθ0

(
max

1≤i≤n

∣∣∣∣∣h> ˙̀
θ0(Xi)√
n

∣∣∣∣∣ > ε

)
≤

n∑
i=1

Pθ0

(∣∣∣∣∣h> ˙̀
θ0(Xi)√
n

∣∣∣∣∣ > ε

)
= nPθ0

(∣∣∣∣∣h> ˙̀
θ0(X1)√
n

∣∣∣∣∣ > ε

)

≤ 1

ε2
Eθ0

[
(h> ˙̀

θ0(X1))2I
{∣∣∣h> ˙̀

θ0(X1)√
n

∣∣∣ > ε
}]
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which converges to zero as n→∞ by the dominated convergence theorem. For the second

assertion in (47), write

P
(

max
1≤i≤n

|Rni| > ε

)
≤ nP (|Rn1| > ε) ≤ n

ε2
Eθ0 [R2

n1]→ 0,

by (42). This completes the proof.

2.2 Contiguity

The notion of contiguity is developed primarily as a technique for calculating the limiting

distribution of a test statistic or power of a test function under an alternative sequence,

especially when the limiting distribution under the null hypothesis is easy to obtain.

Contiguity is an “asymptotic” form of a probability measure Q being absolutely continuous

w.r.t. another probability measure P . In order to motivate the concept, suppose P and Q

are two probability measures on some measurable space (X , C). Assume that Q is absolutely

continuous w.r.t. P . This means that E ∈ C and P (E) = 0 implies Q(E) = 0.

Suppose T ≡ T (X) is a random vector from X to Rk, such as an estimator, test statistic,

or test function. How can one compute the distribution of T under Q if you know how

to compute probabilities or expectations under P? Specifically, suppose it is required to

compute EQ[f(T )], where f is some measurable function from Rk to R. Let p and q denote

the densities of P and Q w.r.t. a common dominating measure µ. Then, assuming Q is

absolutely continuous w.r.t. P , for any measurable f ,

EQ[f(T (X))] =

∫
X
f(T (x))dQ(x) =

∫
X
f(T (x))

q(x)

p(x)
p(x)dµ(x) = EP [f(T (X))L(X)],

where L(X) is the usual likelihood ratio statistic, i.e., L(x) = q(x)
p(x) . Hence, the distribution

of T (X) under Q can be computed if the joint distribution of (T (X), L(X)) under P is

known.

Contiguity is an asymptotic version of absolute continuity that permits an analogous asymp-

totic statement. Consider sequences of pairs of probabilities {Pn, Qn}, where Pn and Qn are

probabilities on some measurable space (Xn, Cn). Let Tn : Xn → Rk be some random vector.

Suppose the asymptotic distribution of Tn under Pn is easily obtained, but the behavior of

Tn under Qn is also required. For example, if Tn represents a test function for testing Pn

versus Qn, the power of Tn is the expectation of Tn under Qn. Contiguity provides a means

of performing the required calculation. An example may help fix ideas.

Example 2.11 (Wilcoxon signed-rank statistic). Let X1, . . . , Xn be i.i.d. real-valued ran-

dom variables with unknown common density f(· − θ), where f(·) is assumed symmetric

about zero and θ ∈ R in unknown. The problem is to test the null hypothesis H0 : θ = 0
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against the alternative hypothesis H1 : θ > 0. Consider the Wilcoxon signed rank statistic

defined by:

Wn = Wn(X1, . . . , Xn) = n−3/2
n∑
i=1

R+
i,nsign(Xi), (48)

where sign(Xi) is 1 if Xi ≥ 0 and is −1 otherwise, and R+
i,n is the rank of |Xi| among

|X1|, . . . , |Xn|. We would reject H0 when Wn is “large”. Under the null hypothesis, the

behavior of Wn is fairly easy to obtain. If θ = 0, the variables sign(Xi) are i.i.d., each

1 or −1 with probability 1/2, and are independent of the variables R+
i,n

28. In fact, the

exact distribution of Wn is the same for all distributions with densities symmetric about 0.

Thus, Wn is finite sample distribution-free. Thus, for finite n, critical values for Wn can be

obtained exactly.

We can also study the asymptotic distribution of Wn under H0, if we want to avoid sim-

ulations to find the critical value of the test. It is easy to see that Eθ=0(Wn) = 0. Define

Ĩk to be 1 if the k’th largest |Xi| corresponds to a positive observation and −1 otherwise.

Then, we have

Varθ=0(Wn) =
1

n3
Var

(
n∑
k=1

kĨk

)
=

1

n3

n∑
k=1

k2 =
1

n3

n(n+ 1)(2n+ 1)

6
→ 1

3
,

as n→∞. Not surprisingly, Wn
d→ N(0, 1/3)29.

Thus, Wn is asymptotically normal with mean 0 and variance 1/3, and this is true whenever

the underlying distribution has a symmetric density about 0. Hence, the test that rejects

the null hypothesis if Wn exceeds z1−α√
3

has limiting level 1 − α (here z1−α is the 1 − α

quantile of the standard normal distribution).

Suppose now that we want to approximate the power of this test. The above argument does

not generalize to even close alternatives since it heavily uses the fact that the variables are

symmetric about zero. Contiguity provides a fairly simple means of attacking this problem,

and we will reconsider this example later.

Definition 2.12 (Contiguity). Let Pn and Qn be probability distributions on (Xn, Cn), for

n = 1, 2, . . .. We say that {Qn} is contiguous w.r.t. {Pn}, written Qn C Pn, if Pn(An) → 0

28Exercise 3 (HW2): Find the joint distribution of (sign(X1), . . . , sign(Xn), R+
1,n, . . . , R

+
n,n) and deduce

the independence between (sign(X1), . . . , sign(Xn)) and (R+
1,n, . . . , R

+
n,n) (when θ = 0).

29To see why, note that we can show that (Exercise 4 (HW2): Show this.)

Wn −
1√
n

n∑
i=1

Uisign(Xi) = op(1),

where Ui = G(|Xi|) and G is the c.d.f. of |Xi|. Under the null hypothesis, Ui and sign(Xi) are independent.

Moreover, the random variables Uisign(Xi) are i.i.d., and so the CLT is applicable (see Lehmann and Romano

[8, Problem 12.19]).
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implies Qn(An)→ 0 (as n→∞) for every sequence of sets {An}n≥1 with An ∈ Cn30.

If {Qn} is contiguous to {Pn}, and {Pn} is contiguous to {Qn}, then we say the sequences

{Pn} and {Qn} are mutually contiguous, or just contiguous (and write Qn CBPn).

Example 2.13 (Normal location families). Suppose that Pn = N(0, 1) and Qn = N(θn, 1)

with θn → θ ∈ R. Then, by using Theorem 2.15 (see below), we can show that Qn CBPn.

Suppose now we assume that θn → ∞. Then taking An = [θn − 1, θn + 1] shows that we

do not have Qn C Pn. But notice that, regardless of the values of θn, Qn is absolutely

continuous w.r.t. Pn (i.e., Qn � Pn) for all n.

Example 2.14 (Uniform location families). Suppose that Pn = Uniform([0, 1]), and Pn =

Uniform([0, θn]) where θn > 1, and θn → 1 as n → ∞. Then, using Theorem 2.15, we can

show that Qn C Pn. But notice that Qn is not absolutely continuous w.r.t. Pn.

We now would like a useful means of determining whether or not Qn is contiguous to Pn.

Suppose Pn and Qn have densities pn and qn w.r.t. a dominating measure µn. For x ∈ Xn,

define the likelihood ratio of Qn w.r.t. Pn by

Ln(x) =


qn(x)
pn(x) if pn(x) > 0

+∞ if pn(x) = 0 < qn(x)

1 if pn(x) = qn(x) = 0.

(49)

Note that Ln is regarded as an extended random variable, which means it is allowed to take

on the value +∞, at least under Qn. Of course, under Pn, Ln is finite with probability one.

Observe that

EPn [Ln] =

∫
Xn
Ln(x)pn(x) dµn(x) =

∫
{x∈Xn:pn(x)>0}

qn(x) dµn(x) = Qn({x : pn(x) > 0}) ≤ 1

with equality if and only if Qn is absolutely continuous with respect to Pn
31. Thus, the

sequence of likelihood ratios Ln is uniformly tight32 under Pn (this follows immediately

from an application of Markov’s inequality). By Prohorov’s theorem33, every subsequence

has a further weakly converging subsequence. The next lemma (also known as Le Cam’s

first lemma) shows that the limit characterize contiguity34.

30Compare this with absolute continuity of Q w.r.t. P (for probability distributions P and Q on (X , C))
which means that E ∈ C and P (E) = 0 implies Q(E) = 0.

31Exercise 5 (HW2): Show this.
32Recall that a sequence of random variables {Yn}n≥1 is uniformly tight or just tight (i.e., Yn = Op(1)) if

given any ε > 0, ∃M > 0 such that P(|Yn| ≥M) ≤ ε for all n ≥ 1.
33Prohorov’s theorem Lehmann and Romano [8, Theorem 11.2.15]: Suppose that {Yn}n≥1 is uniformly

tight. Then ∃ a subsequence {nj}j≥1 and a distribution G such that Xnj
d→ G.

34These are analogous to the characterizations we have for absolute continuity; see e.g., van der Vaart [15,

Lemma 6.2].
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Theorem 2.15 (Le Cam’s first lemma). Suppose that {Pn}n≥1 and {Qn}n≥1 are sequences

of probability distributions on {(Xn, Cn)}n≥1 and let Ln be defined as in (49). Suppose

Ln
Pn V (i.e., the distribution of Ln under Pn converges weakly to V ). If E[V ] = 1 then Qn

is contiguous w.r.t. Pn.

Proof. Let Gn be the c.d.f. of Ln (under Pn) and G be the c.d.f. of V . Suppose that

Pn(En) = αn → 0. Let φn be a most powerful level αn test of Pn versus Qn. By the

Neyman-Pearson Lemma, the test is of the form

φn =

1 if Ln > kn,

0 if Ln < kn,

for some kn chosen so the test is level αn. Since φn is at least as powerful as the test that

has rejection region En,

Qn(En) ≤
∫
φndQn, (50)

so it suffices to show the right side tends to zero. Now, for any y <∞,∫
φndQn =

∫
Ln≤y

φndQn +

∫
Ln>y

φndQn

≤
∫
Ln≤y

φnLndPn +

∫
Ln>y

dQn ≤ y

∫
φndPn + 1−

∫
Ln≤y

dQn

= yαn + 1−
∫
Ln≤y

LndPn = yαn + 1−
∫ y

0
xdGn(x).

Fix any ε > 0 and take y to be a continuity point of G with
∫ y

0 xdG(x) > 1 − ε/2, which

is possible since G has mean 1. As Gn converges weakly to G,
∫ y

0 xdGn(x)→
∫ y

0 xdG(x)35.

Thus, for sufficiently large n, 1 −
∫ y

0 xdGn(x) < ε/2, and yαn < ε/2. Now, it follows that,

for sufficiently large n,
∫
φndQn < ε, which by (50) yields the desired result.

The following result summarizes some equivalent characterizations of contiguity. The nota-

tion L(T |P ) refers to the distribution (or law) of a random variable T under P .

Theorem 2.16. The following are equivalent characterizations of {Qn} being contiguous

to {Pn}.

(i) For every sequence of real-valued random variables Tn such that Tn → 0 in Pn-

probability, it also follows that Tn → 0 in Qn-probability.

35To see why, construct L̃n ∼ Gn and L̃ ∼ G such that L̃n
a.s→ L̃ (by the almost sure representation

theorem) and then apply the DCT to L̃n1[0,y](L̃n) to conclude that

EPn [Ln1[0,y](Ln)] = E[L̃n1[0,y](L̃n)]→ E[L̃1[0,y](L̃)] =

∫ y

0

xdGn(x).
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(ii) For every sequence Tn such that L(Tn|Pn) is tight, it also follows that L(Tn|Qn) is

tight.

(iii) If G is any limit point36 of L(Ln|Pn), then G has mean 1.

Proof. See Lehmann and Romano [8, Theorem 12.3.2].

As will be seen in many important examples, loglikelihood ratios are typically asymptotically

normally distributed, and the following corollary is useful.

Corollary 2.17 (Implication in LAN37). Suppose that Pn and Qn are probability measures

on arbitrary measurable spaces such that logLn
Pn N(µ, σ2). Then Qn and Pn are mutually

contiguous if and only if µ = −σ2/2.

Proof. To show Qn C Pn let us apply Theorem 2.16-(iii). Let eZ ∼ G where Z ∼ N(µ, σ2).

Note that ∫
xdG(x) = E[eZ ] = eµ+σ2/2 = 1 ⇔ µ = −σ2/2.

Thus, Qn C Pn if and only if µ = −σ2/2.

Exercise 6 (HW2): Now show that Pn CQn.

The following theorem solves the problem of obtaining a Qn-limit law from a Pn-limit law

that we posed at the start of this subsection.

Corollary 2.18 (Le Cam’s third lemma). Assume that, (Tn, logLn)
Pn (T,Z), where (T,Z)

is bivariate normal with E(T ) = µ1, Var(T ) = σ2
1, E(Z) = µ2, Var(Z) = σ2

2 and Cov(T,Z) =

σ1,2. Assume that µ2 = −σ2
2/2, so that Qn is contiguous to Pn. Then,

Tn
Qn N(µ1 + σ1,2, σ

2
1).

Proof. See Lehmann and Romano [8, Corollary 12.3.2].

Example 2.19 (Asymptotically linear statistic). Let {Pθ : θ ∈ Θ}, with Θ ⊂ Rk an

open set, be QMD with corresponding densities pθ(·). By Corollary 2.17, in conjunction

with Theorem 2.10, shows that Pn
θ0+hn−1/2 and Pnθ0 are mutually contiguous. In fact, the

expansion (39) shows a lot more. For example, suppose an estimator (sequence) θ̂n is

asymptotically linear in the following sense: under θ0,

√
n(θ̂n − θ0) =

1√
n

n∑
i=1

ψθ0(Xi) + oPnθ0
(1), (51)

36G is a limit point of a sequence Gn of distributions if Gnj converges in distribution to G for some

subsequence nj .
37Recall that LAN for smooth parametric models implies that the loglikelihood ratio of local alternative

to true parameter is asymptotically normal.
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where Eθ0 [ψθ0(X1)] = 0 and τ2 := Varθ0(ψθ0(X1)) <∞. Thus, under θ0,

√
n(θ̂n − θ0)

d→ N(0, τ2). (52)

Then, the joint behavior of θ̂n with the loglikelihood ratio satisfies[√
n(θ̂n − θ0)

logLn

]
=

[
n−1/2

∑n
i=1 ψθ0(Xi)

n−1/2h>
∑n

i=1
˙̀
θ0(Xi)

]
+

[
0

−1
2h
>Iθ0h

]
+ oPnθ0

(1), (53)

where Ln =
Πni=1pθ0+hn−1/2 (Xi)

Πni=1pθ0 (Xi)
. By the bivariate CLT, this converges under θ0 to a bivariate

normal distribution with covariance

σ1,2 = Covθ0(ψθ0(X1), h> ˙̀
θ0(X1)). (54)

Hence, under Pn
θ0+hn−1/2 ,

√
n(θ̂n − θ0) converges in distribution to N(σ1,2, τ

2), by Corol-

lary 2.18. It follows that, under Pn
θ0+hn−1/2 ,

√
n[θ̂n − (θ0 + hn−1/2)]

d→ N(σ1,2 − h, τ2).

Example 2.20 (Back to Example 2.11). Recall the Wilcoxon signed-rank statistic Wn

given by (48). Assume the underlying model is a location model f(· − θ), where f(·) is

assumed symmetric and unimodal38 about zero. Assume f ′(x) exists for Lebesgue almost

all x and

0 < I ≡
∫

[f ′(x)]2

f(x)
dx <∞.

This model is QMD39 and (39) holds with ˙̀
0(x) = −f ′(x)

f(x) . Under the null hypothesis θ = 0,

Wn
d→ N(0, 1/3). Under the sequence of alternatives θn = hn−1/2, Wn

d→ N(σ1,2, 1/3),

where σ1,2 is given by (54) with θ0 = 0. In this case,

σ1,2 = Cov0

(
Usign(X),−hf

′(X)

f(X)

)
,

where U = G(|X|) and G is the c.d.f. of |X| when X has density f(·). So, G(x) = 2F (x)−1,

where F is the c.d.f. of X. By an integration by parts40,

σ1,2 = −hE0

[
G(|X|)sign(X)

f ′(X)

f(X)

]
= 2h

∫ ∞
−∞

f2(x)dx.

Thus, under θn = hn−1/2,

Wn
d→ N

(
2h

∫ ∞
−∞

f2(x)dx,
1

3

)
.

38In statistics, a unimodal probability density is a probability density which has a single peak. Thus, here

f is nonincreasing on either side of 0, as f is symmetric about 0.
39Exercise 7 (HW2): Show this.
40Exercise 8 (HW2): Show this.
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Example 2.21 (Power of the Neyman-Pearson test). Assume {Pθ : θ ∈ Θ} is QMD at

θ0, where Θ is an open subset of Rk and Iθ0 is nonsingular. Let pθ be the corresponding

density of Pθ. Consider testing H0 : θ = θ0 versus H1 : θ = θ0 +hn−1/2 using the likelihood

ratio statistic Ln(h) ≡
Πni=1pθ0+hn−1/2 (Xi)

Πni=1pθ0 (Xi)
based on n i.i.d. observations X1, . . . , Xn. Then,

by Theorem 2.10, under Pnθ0 ,

logLn(h)
d→ N

(
−
σ2
h

2
, σ2

h

)
,

where σ2
h = h>Iθ0h.

Then, under Pn
θ0+hn−1/2 , logLn(h) is asymptotically N(σ2

h/2, σ
2
h), by applying Corollary 2.18

with Tn = logLn(h). Hence, the test that rejects when logLn(h) exceeds (−1/2)σ2
h + zασh

is asymptotically level α for testing H0 : θ = θ0 versus H1 : θ = θ0 + hn−1/2, where zα

denotes the 1 − α quantile of N(0, 1). Then, the limiting power of this test sequence is

1− Φ(zα − σh).

2.3 Likelihood methods in parametric models

The above techniques will now be applied to classes of tests based on the likelihood function,

namely the Wald, Rao, and likelihood ratio tests. This subsection is based on Lehmann and

Romano [8, Chapter 12.4]; please read this book chapter carefully. I will only summarize

some of main points below. Suppose that X1, . . . , Xn are i.i.d. Pθ, taking values in X where

{Pθ : θ ∈ Θ ⊂ Rk} is a parametric family.

Theorem 2.22 (Asymptotic normality of the MLE). Suppose that:

(i) {Pθ : θ ∈ Θ ⊂ Rk} is QMD at θ0 with nonsingular Fisher information matrix Iθ0 .

(ii) Let X1, . . . , Xn are i.i.d. Pθ0 , taking values in X .

(iii) Suppose further that there exists a measurable functionM : X → R with Eθ0 [M2(X1)] <

∞ such that, for ever θ1 and θ2 in a neighborhood of θ0, we have∣∣ log pθ1(x)− log pθ2(x)
∣∣ ≤M(x)|θ1 − θ2|.

(iv) Moreover, suppose that the MLE θ̂n is consistent for estimating θ0.

Then,
√
n(θ̂n − θ0) = I−1

θ0

1√
n

n∑
i=1

˙̀
θ0(Xi) + op(1). (55)

As a consequence, we have
√
n(θ̂n − θ0)

d→ Nk(0, I
−1
θ0

).

Proof. We will give a complete proof of this after we study the theory of M -estimation.
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2.3.1 Wald test

Given data X1, . . . , Xn are i.i.d. Pθ suppose that we wish to test the hypothesis

H0 : g(θ) = 0 versus H1 : g(θ) > 0,

where g : Θ → R is assumed differentiable with gradient vector ġ(·) (of dimension k × 1).

It is natural to test the above hypothesis with the test that rejects H0 when

√
ng(θ̂n) > cn,α, (56)

where cn,α is the critical value such that the test has (approximate) level α ∈ (0, 1).

Question: How do we find cn,α? The following result helps us in that direction.

Theorem 2.23. Assume the setting of Theorem 2.22 with conditions (i)-(ii) holding. Sup-

pose that θ̂n is an estimator of θ for which the expansion (55) holds when θ = θ0. Let

θn := θ0 + hn−1/2. Then (under Pnθn),

√
n(θ̂n − θn)

Pnθn Nk(0, I
−1
θ0

) ⇔
√
n(θ̂n − θ0)

Pnθn Nk(h, I
−1
θ0

).

Furthermore, if g : Θ → R is a differentiable with nonzero gradient ġ(θ0) (of dimension

k × 1), then under Pnθn ,
√
n(g(θ̂n)− g(θn))

Pnθn N(0, σ2
θ0),

where

σ2
θ0 = ġ(θ0)>I−1

θ0
ġ(θ0).

Proof. A complete proof was given in class; see Lehmann and Romano [8, Theorem 12.4.1]

and its proof.

Now, coming back to the test in (56), and assuming that ġ(θ) and Iθ are continuous around

θ = θ0, the asymptotic variance of g(θ̂n) can be consistently estimated by

σ̂2
n := ġ(θ̂n)>I−1

θ̂n
ġ(θ̂n).

Hence, we can take cn,α in (56) to be σ̂nzα, where zα is the upper α quantile of the standard

normal distribution.

Exercise 9 (HW2): Find the power of the test in under the alternative θn = θ0 + hn−1/2.

Also, how do we use the above strategy to construct a 1− α confidence set for g(θ).

Consider now the general problem of testing

H0 : θ = θ0 versus H1 : θ 6= θ0, (57)
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where θ ∈ Θ ⊂ Rk, under the assumptions of Theorem 2.23. We can show that, under H0,

n(θ̂n − θ0)>Iθ0(θ̂n − θ0)
d→ χ2

k, (58)

the chi-squared distribution with k degrees of freedom. Thus, for testing (139) the Wald’s

test rejects H0 if

n(θ̂n − θ0)>Iθ0(θ̂n − θ0) > ck,1−α, (59)

where ck,1−α is the 1− α quantile of χ2
k. In the above, Iθ0 is often replaced by a consistent

estimator, such as Iθ̂n (assuming Iθ is continuous). Under θn = θ0 +hn−1/2, the limiting dis-

tribution of the Wald statistic is χ2
k(|I1/2(θ0)h|2)41, the noncentral chi squared distribution

with k degrees of freedom and noncentrality parameter |I1/2(θ0)h|2.

A above ideas leads to an asymptotic level 1− α confidence region for θ as

{θ ∈ Θ : n(θ̂n − θ)>Iθ(θ̂n − θ) ≤ ck,1−α}.

When Iθ is replaced by Iθ̂n (assuming Iθ is continuous) the resulting confidence region is

known as Wald’s confidence ellipsoid. More generally, we can consider inference for g(θ),

where g = (g1, . . . , gq) : Θ→ Rq for q ≥ 1; see Lehmann and Romano [8, Equation (12.72)]

and the related discussion.

2.3.2 Rao’s score test

Instead of the Wald test, it is possible to construct tests based directly on the score function

that have the advantage of not requiring computation of the MLE. Suppose that we are

interested in testing (139). Letting

Zn :=
1√
n

n∑
i=1

˙̀
θ0(Xi),

Rao’s score test rejects when

Z>n I
−1
θ0
Zn > ck,1−α

and is asymptotically level α. In this case, the Wald test (59) and the score test are

asymptotically equivalent, in the sense that the probability that the two tests yield the

same decision tends to one, both under the null hypothesis θ = θ0 and under a sequence of

alternatives θ0 + hn−1/2. The equivalence follows from contiguity, the expansion (55), and

the fact that Iθ̂n → Iθ0 in probability under θ0 and under θ0 + hn−1/2. Note that the two

tests may differ greatly for alternatives far from θ0.

41Exercise 10 (HW2). Show this.
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2.4 Likelihood ratio test

Let {Pθ : θ ∈ Θ ⊂ Rk} be a parametric family of distributions where Pθ has density pθ

w.r.t. a dominating measure µ. Suppose we observe X1, . . . , Xn i.i.d. Pθ, and wish to test

the hypothesis

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1. (60)

If both the null and the alternative hypotheses consist of single points, then a MP test can

be based on the loglikelihood ratio, by the Neyman-Pearson theory. Thus, if the two points

are θ0 and θ1, respectively, then the optimal test statistic is given by

log
Πn
i=1pθ1(Xi)

Πn
i=1pθ0(Xi)

.

When Θ0 and Θ1 are composite, a sensible extension of the idea behind the Neyman-Pearson

theory is to base a test on the loglikelihood ratio

Λ̃n := log
supθ∈Θ1

Πn
i=1pθ(Xi)

supθ∈Θ0
Πn
i=1pθ(Xi)

.

Here the single points are replaced by maxima over the hypotheses. As before, the null

hypothesis is rejected for large values of the statistic Λ̃n. As the distributional properties

of Λ̃n can be somewhat complicated, one usually replaces the supremum in the numerator

by a supremum over the whole parameter set Θ := Θ0 ∪ Θ1
42. This leads to the following

statistic which is known as the (log) likelihood ratio statistic (LRS) for testing (60):

Λn := 2 log
supθ∈Θ0∪Θ1

Πn
i=1pθ(Xi)

supθ∈Θ0
Πn
i=1pθ(Xi)

. (61)

The corresponding test for (60), which rejects for large values of Λn, is called the likelihood

ratio test (LRT). Of course, the main question then becomes: “How do we find the critical

value of the LRT?”. This naturally leads to the study of the distribution of the LRS.

In this section we study the asymptotic properties of the LRS. The most important conclu-

sion of this section is that, under H0, the sequence Λn is asymptotically chi-squared. The

main conditions needed for this conclusion are that the model is QMD at θ0 ∈ Θ0, and that

Θ0 and Θ are locally43 equal to linear spaces. Then the test that rejects the null hypothesis

if Λn exceeds the upper α-quantile of the chi-square distribution is asymptotically level α.

42This changes the test statistic only if Λ̃n ≤ 0, which is inessential, because in most cases the critical

value will be positive (as Θ1 is usually are “larger” set compared to Θ0).
43The “local linearity” of the hypotheses is essential for the chi-square approximation (in which case

the limiting distribution is χ2
m where m = dim(Θ) − dim(Θ0)), which fails already in a number of simple

examples. An open set is certainly locally linear at each of its points, and so is a relatively open subset of

an affine subspace. On the other hand, a half line or space, which arises, for instance, if testing a one-sided

hypothesis H0 : θ ≤ 0, is not locally linear at the boundary point θ = 0. In that case the asymptotic null

distribution of the LRS is not chi-square, but the distribution of a certain functional of a Gaussian vector.
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Besides for testing, the LRS is often used for constructing confidence regions for a parameter

ψ(θ). These can be constructed, as usual, as the values τ for which a null hypothesis

H0 : ψ(θ) = τ is not rejected. Asymptotic confidence sets obtained by using the chi-square

approximation are thought to have better coverage accuracy than those obtained by other

asymptotic methods.

2.4.1 Deriving the asymptotic distribution of the LRS using LAN

An insightful derivation of the asymptotic distribution of the LRS is based on LAN. The

approach applies also in the case that the (local) parameter spaces are not linear. Let us

give a sketch of the argument below. Let X1, . . . , Xn be i.i.d. Pθ0 , where θ0 ∈ Θ0. We can

write Λn, as defined in (61), in terms of local likelihood ratios as:

Λn = 2 sup
h∈Hn

log
Πn
i=1pθ0+hn−1/2(Xi)

Πn
i=1pθ0(Xi)

− 2 sup
h∈Hn,0

log
Πn
i=1pθ0+hn−1/2(Xi)

Πn
i=1pθ0(Xi)

(62)

where

Hn :=
√
n(Θ− θ0) and Hn,0 :=

√
n(Θ0 − θ0)

are the local parameter spaces. By LAN of {Pθ} at θ = θ0, we have

2 sup
h∈Hn

log
Πn
i=1pθ0+hn−1/2(Xi)

Πn
i=1pθ0(Xi)

= 2 sup
h∈Hn

[
h>√
n

n∑
i=1

˙̀
θ0(Xi)−

1

2
h>Iθ0h+ oPnθ0

(1)

]
= sup

h∈Hn

[
2h>Iθ0Wn − h>Iθ0h+ oPnθ0

(1)
]

where

Wn := I−1
θ0

1√
n

n∑
i=1

˙̀
θ0(Xi)

Pnθ0 W ∼ Nk(0, I
−1
θ0

). (63)

Using a similar expansion for the second term in (62), we get,

Λn = sup
h∈Hn

[
2h>Iθ0Wn − h>Iθ0h+ oPnθ0

(1)
]
− sup
h∈Hn,0

[
2h>Iθ0Wn − h>Iθ0h+ oPnθ0

(1)
]

≈ − inf
h∈Hn

[
W>n Iθ0Wn − 2h>Iθ0Wn + h>Iθ0h

]
+ inf
h∈Hn,0

[
W>n Iθ0Wn − 2h>Iθ0Wn + h>Iθ0h

]
.

This suggests that, if the sets Hn and Hn,0 converge in a suitable sense44 to sets H and H0

respectively, the sequence Λn converges in distribution to the random variable Λ defined by

Λ := inf
h∈H0

(W − h)>Iθ0(W − h)− inf
h∈H

(W − h)>Iθ0(W − h)

= inf
h∈H0

|I1/2
θ0
W − I1/2

θ0
h|2 − inf

h∈H
|I1/2
θ0
W − I1/2

θ0
h|2 (64)

44We use the following notion of convergence of sets. Write Hn → H where H :=
{
h ∈ Rk : h =

limj→∞ hnj for converging sequences {hnj}j≥1 with hnj ∈ Hnj for every nj
}

.

43



where W is defined in (63).

It can also be seen that the above argument also generalizes under contiguous alternatives,

i.e., when the data is generated from θn := θ0 + gn−1/2 ∈ Θ, for g ∈ Rk. Note that then

Wn

Pnθn Nk(g, I
−1
θ0

), but the limiting distribution of the LRS is still Λ, as defined in (64).

2.4.2 Asymptotic distribution of the LRS

The following result, known as Wilk’s theorem, gives the asymptotic distribution of the

LRS (both under fixed and continuous alternatives).

Theorem 2.24 (Wilks’ theorem). Suppose that conditions (i)-(iv) hold in Theorem 2.22.

Let θ̂n,0 := argmaxθ∈Θ0
Πn
i=1pθ(Xi) be the constrained MLE. Assume that the sets Hn,0 and

Hn converge to the sets H0 and H respectively. Let θn := θ0 + gn−1/2 for g ∈ Rk. Then,

the asymptotic distribution of the LRS Λn (defined in (61)) is given by

Λn
Pnθn Λ

where the distribution of Λ is given in (64) with W ∼ Nk(g, I
−1
θ0

).

Proof. We will give a complete proof of this after we study the theory of M-estimation.

Although (64) gives an explicit characterization of the limiting distribution of the LRS in

a very general setting, it is not immediately clear if it is very useful. Observe that if θ0 is

an interior point of Θ ⊂ Rk, then H (the limit of the sequence of sets Hn) is the whole of

Rk, and thus, Λ reduces to infh∈H0 |I
1/2
θ0
W − I1/2

θ0
h|2.

The following lemma shows that the distribution of the first term of Λ (in (61)), i.e.,

infh∈H0 |I
1/2
θ0
W − I1/2

θ0
h|2, indeed simplifies when H0 is an l-dimensional linear subspace of

Rk. First observe that, under H0, I
1/2
θ0
W ∼ Nk(0, Iθ0).

Lemma 2.25. Let Z ∼ Nk(0, Ik) and let S be an l-dimensional linear subspace of Rk.
Then infh∈S ‖Z − h‖2 has a chi-square distribution with k − l degrees of freedom.

Proof. For z ∈ Rk, let ProjS(z) denote the orthogonal projection of z onto the linear

subspace S. Note that ProjS(z) = PSz for a k×k matrix PS with rank l such that P 2
S = PS =

P>S . By Pythagoras’ theorem, z = ProjS(z) + ProjS⊥(z) where 〈ProjS(z),ProjS⊥(z)〉 = 0.

In fact, Q := Ik − PS is the orthogonal projection matrix onto the linear space S⊥, the

orthogonal complement of S. Then,

inf
h∈S
‖Z − h‖2 = inf

h∈S
‖PSZ − h‖2 + ‖QZ‖2 = Z>Q>QZ = Z>QZ

where we have used the facts: (i) infh∈S ‖PSZ − h‖2 = 0, and (ii) Q2 = Q = Q>. By

eigendecomposition of the matrix Q, we have Q = V >DV where V is a k × k orthogonal
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matrix and D is a diagonal matrix with diagonal entries 0 or 1 (as the eigenvalues of a

projection matrix are either 0 or 1). As Q has rank k − l, rank(D) is also k − l. Thus,

without loss of generality, we can assume thatD1,1 = · · · = Dk−l,k−l = 1 andDk−l+1,k−l+1 =

· · · = Dk,k = 0, where D := (Di,j)k×k. As the standard normal distribution is invariant

under orthogonal transformations, Z̃ = (Z̃1, . . . , Z̃k) := V Z ∼ Nk(0, Ik). Thus,

Z>QZ = ZV >DV Z = Z̃DZ̃ =
∑
i>l

Z̃2
i ∼ χ2

k−l.

Thus infh∈S ‖Z−h‖2 =
∑

i>l Z̃
2
i has a chi-square distribution with k− l degrees of freedom.

Corollary 2.26. Consider the setting of Theorem 2.24. Let θn := θ0 + gn−1/2 ∈ Θ for

g ∈ Rk. When θ0 ∈ Θ0 is an interior point of Θ, then

Λn
Pnθn inf

h∈H0

‖I1/2
θ0
W − I1/2

θ0
h‖2

where W ∼ Nk(g, I
−1
θ ). Further, if H0 is a linear subspace of dimension l, then under the

null (i.e., g = 0), Λn
d→ χ2

k−l.

Example 2.27 (Location-scale family). Suppose we observe a random sample from the

density f((·−µ)/σ)/σ for a given probability density f , where the location-scale parameter

θ = (µ, σ) ranges over the set Θ = R× R+. We consider two testing problems.

(i) Consider testing H0 : µ = 0 versus H1 : µ 6= 0 which corresponds to the setting

Θ0 = {0}×R+. For a given point θ0 = (0, σ) ∈ Θ0, Hn,0 :=
√
n(Θ0−θ0) = {0}×(−

√
nσ,∞)

and converges to the linear space H0 := {0} × R. Also, note that here H = R2. Under

regularity conditions on f (e.g., QMD at 0), the sequence of LRSs is asymptotically chi-

squared with 1 degree of freedom as, under H0, Λ (defined in (64)) reduces to

inf
h∈H′0

‖Z − h‖2 − inf
h∈H
‖Z − I1/2

θ0
h‖2 = inf

h∈H′0
‖Z − h‖2 ∼ χ2

1

where Z ∼ N2(0, I2) and H′0 := {I1/2
θ0
h : h ∈ H0} is a linear subspace of dimension 1.

(ii) Consider testing H0 : µ ≤ 0 versus H1 : µ > 0 which corresponds to the setting

Θ0 = (−∞, 0]× R+. For a given point θ0 = (0, σ) on the boundary of the null hypothesis,

Hn,0 :=
√
n(Θ0 − θ0) converges to H0 = (−∞, 0]×R. In this case, the limit distribution of

the LRS is not chi-square but equals the distribution of the squared distance of a standard

normal vector to the set I
1/2
θ0
H0. The latter is a half-space with boundary line through the

origin. Because a standard normal vector is rotationally symmetric, the distribution of its

distance to a half-space of this type does not depend on the orientation of the half-space.

Thus the limit distribution is equal to the distribution of the squared distance of a standard

normal vector to the half-space {h = (h1, h2) ∈ R2 : h2 ≤ 0}, i.e., the distribution of (Z∨0)2

for a standard normal variable Z. As P((Z ∨ 0)2 > c) = 1
2P(Z2 > c) for every c > 0, we
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must choose the critical value of the test equal to the upper 2α-quantile of the chi-square

distribution with 1 degree of freedom. Then the asymptotic level of the test is α for every

θ0 on the boundary of the null hypothesis (provided α < 1/2).

For a point θ0 in the interior of the null hypothesis H0 : µ ≤ 0 the sets
√
n(Θ0−θ0) converge

to R×R and the LRS converges in distribution to the squared distance to the whole space,

which is zero.

Example 2.28 (Power of the LRT). We assume that the parameter θ0 is an interior point of

Θ and denote the true parameter by θn := θ0+g/
√
n. Under the conditions of Theorem 2.24,

the LRS is asymptotically distributed as

Λ = inf
h∈H0

|Z + I
1/2
θ0
g − I1/2

θ0
h|

for Z ∼ Nk(0, Ik). Suppose that the limiting local parameter set H0 is a linear subspace of

dimension l, and that the null hypothesis is rejected for values of Λn exceeding the critical

value χ2
k−l,α. hen the local power functions of the resulting tests satisfy

πn(θn) = Pθn(Λn > χ2
k−l,α) =: π(g).

The variable Λ is the squared distance of the vector Z to the affine subspace −I1/2
θ0
g+I

1/2
θ0
H0.

By the rotational invariance of the normal distribution, the distribution of Λ does not depend

on the orientation of the affine subspace, but only on its codimension and its distance

δ2 := infh∈H0 |I
1/2
θ0
g − I1/2

θ0
h|2 to the origin. This distribution is known as the noncentral

chi-square distribution45 with noncentrality parameter δ. Thus

π(g) = P(χ2
k−l(δ

2) > χ2
k−l,α).

The noncentral chi-square distributions are stochastically increasing in the noncentrality

parameter. It follows that the likelihood ratio test has good (local) power at g that yield a

large value of the noncentrality parameter. ThenH0 = {0}, and the noncentrality parameter

reduces to the square root of g>Iθ0g.

2.5 Comparison of test functions

The aim of this section is to compare tests based on their power functions. Suppose that φn

and φ̃n are two asymptotically level α tests46 with power functions πn and π̃n respectively,

for the testing problem:

H0 : θ ∈ Θ0 versus H1 : θ ∈ Θ1

45Let Y1, . . . , Yr be independently normally distributed random variables with unit variance and means

η1, . . . , ηr. Then U =
∑r
i=1 Y

2
i is distributed according to the noncentral χ2-distribution with r degrees of

freedom and noncentrality parameter δ2 =
∑r
i=1 η

2
i .

46We say that a sequence of tests φn is asymptotically level α if lim sup
n→∞

πn(θ) ≤ α for every θ ∈ Θ.
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when we have i.i.d. data X1, . . . , Xn from a model {Pθ : θ ∈ Θ}. We would say that φn is

better than φ̃n if

πn(θ) ≥ π̃n(θ), for all θ ∈ Θ1.

However, quite often it is not possible to find out, for every fixed n, which test is better.

Hence, we may want to compare their asymptotic performance. A first idea is to consider

their limiting power functions of the form

π(θ) := lim
n→∞

πn(θ) and π̃(θ) = lim
n→∞

π̃n(θ),

for θ ∈ Θ1. If these limits exist for all θ, then the sequence φn
47 is better than the sequence

φ̃n if π(θ) ≥ π̃(θ), for all θ ∈ Θ1. However, it turns out that this approach is too naive. The

limiting power functions typically exist, but they are trivial and identical for all reasonable

sequences of tests. Let us consider a simple example to demonstrate this.

Example 2.29 (Sign test). Suppose that we have X1, . . . , Xn i.i.d. from a density f(·− θ),
where f(·) is assumed symmetric about 0 (and unknown). Here θ ∈ R is the unknown

location parameter of interest and we want to test

H0 : θ = 0 versus H1 : θ > 0. (65)

We assume further that f has a unique median (at 0). We can use the sign statistic

Sn :=
1

n

n∑
i=1

1{Xi > 0}

for the above testing problem, rejecting H0 when Sn is ‘large’. This is the sign test. Letting

F (·−θ) denote the c.d.f. of the underlying distribution, the mean and variance of Sn equals

µ(θ) := Pθ(X1 > 0) = 1− F (−θ) and
σ2(θ)

n
:=

1

n
[1− F (−θ)]F (−θ).

In fact, nSn ∼ Bin(n, 1−F (−θ)), and underH0 : θ = 0, nSn ∼ Bin(n, 1/2) for any such F , as

F (0) = 1/2 (as F has median 0). Thus, Sn is distribution-free under H0 (cf. Example 2.11).

Although the binomial critical values can be used to calibrate the test based on Sn, it is

more convenient to use the normal approximation, as described below.

By the normal approximation to the binomial distribution, the sequence
√
n(Sn − µ(θ)) is

asymptotically normal with mean 0 and variance σ2(θ). Under H0, the mean and variance

are equal to µ(0) = 1/2 and σ2(0) = 1/4 respectively, so that
√
n(Sn − µ(0))

d→ N(0, 1/4).

The test that rejects H0 if
√
n(Sn−µ(0)) exceeds the critical value zα/2 has power function

πn(θ) = Pθ
(√
n(Sn − µ(θ)) >

1

2
zα −

√
n(µ(θ)− µ(0))

)
= 1− Φ

(
1
2zα −

√
n(F (0)− F (−θ))
σ(θ)

)
+ o(1).

47Typically, the tests corresponding to a sequence φ1, φ2, . . . are of the same type. For instance, they are

all based on (i) sample averages or (ii) rank statistics, and only the number of observations changes with n.
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Because F (0) − F (−θ) > 0 for every θ > 0 (as F has unique median 0), it follows that

πn(θ)→ 1 if θ > 0. Thus, the power at every fixed alternative converges to 1.

Definition 2.30 (Consistent test). A sequence of tests with power functions θ 7→ πn(θ) is

asymptotically consistent at level α at (or against) the alternative θ if it is asymptotically

level α and πn(θ) → 1 as n → ∞. If a family of sequences of tests contains for every level

α ∈ (0, 1) a sequence that is consistent against every alternative, then the corresponding

tests are simply called consistent.

Consistency is an optimality criterion for tests, but because most sequences of tests are

consistent, it is too weak to be really useful. To make an informative comparison between

sequences of (consistent) tests, we shall study the performance of the tests in problems

that become harder as more observations become available. One way of making a testing

problem harder is to choose null and alternative hypotheses closer to each other. In this

section we fix the null hypothesis and consider the power at sequences of alternatives that

converge to the null hypothesis.

Example 2.31 (Sign test, continued). Consider the power of the sign test at sequences of

alternatives θn ↓ 0. Extension of the argument of the preceding example yields48

πn(θn) = 1− Φ

(
1
2zα −

√
n(F (0)− F (−θn))

σ(θn)

)
+ o(1).

The asymptotic power at θn depends on the rate at which θn → 0. If θn converges to zero

fast enough to ensure that
√
n(F (0)−F (−θn))→ 0, then the power πn(θn) converges to α:

The sign test is not able to discriminate these alternatives from the null hypothesis. If θn

converges to zero at a slow rate, then
√
n(F (0)− (−θn))→∞, and the asymptotic power is

equal to 1: These alternatives are too easy. The intermediate rates, which yield a nontrivial

asymptotic power, appear to be of most interest. Suppose that f(0) > 0. Then,

√
n(F (0)− F (−θn))→

√
nθnf(0) +

√
n o(θn).

This is bounded away from zero and infinity if θn converges to zero at rate θn = O(n−1/2).

For such rates the power πn(θn) is asymptotically strictly between α and 1. In particular,

for every h,

πn(hn−1/2)→ 1− Φ(zα − 2hf(0)). (66)

In the preceding example only alternatives θn that converge to the null hypothesis at rate

O(1/
√
n) lead to a nontrivial asymptotic power. This is typical for parameters that de-

pend “smoothly” on the underlying distribution. In this situation a reasonable method

48We can make this rigorous by using a Lindeberg-Feller CLT which allows the underlying data distribution

to change with n.
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for asymptotic comparison of two (or more) sequences of tests for (65) is to consider local

limiting power functions, defined as

π(h) := lim
n→∞

πn(hn−1/2), h ≥ 0.

These limits typically exist and can be derived by the same method as in the preceding

example. A general scheme is as follows.

Let θ ∈ Θ be a real parameter and let the test reject the null hypothesis H0 : θ = θ0 for

large values of a test statistic Tn. Assume that Tn is asymptotically normal in the sense

that, for all sequences of the form θn = θ0 + hn−1/2,49

√
n(Tn − µ(θn))

σ(θn)

Pnθn N(0, 1). (68)

Often µ(θ) and σ2(θ)/n can be taken to be the mean and the variance of Tn, but this is not

necessary. The convergence (68) is sometimes referred to as “locally uniform” asymptotic

normality. “Contiguity arguments” can reduce the derivation of asymptotic normality under

θn = θ0 + hn−1/2 to derivation under θ = θ0.

Assumption (68) includes that the sequence
√
n(Tn − µ(θ0)) converges in distribution to

N(0, σ2(θ0)) under θ = θ0. Thus, the tests that reject the null hypothesis H0 : θ = θ0 if
√
n(Tn−µ(θ0)) exceeds σ(θ0)zα are asymptotically of level α. The power functions of these

tests can be written

πn(θn) = Pθn
(√

n(Tn − µ(θn)) > σ(θ0)zα −
√
n(µ(θn)− µ(θ0))

)
.

For θn = θ0 + hn−1/2, the sequence
√
n(µ(θn)− µ(θ0)) converges to hµ′(θ0) if µ is differen-

tiable at θ0. If σ(θn)→ σ(θ0), then under (68),

πn(θ0 + hn−1/2)→ 1− Φ

(
zα −

hµ′(θ0)

σ(θ0)

)
. (69)

Thus, we have essentially proved the following result.

Theorem 2.32. Let µ and σ be functions of θ such that (68) holds for every sequence

θn = θ0 +hn−1/2. Suppose that µ is differentiable and that σ is continuous at θ = θ0. Then

the power functions πn of the tests that reject H0 : θ = θ0 for large values of Tn and are

asymptotically of level α satisfy (69) for every h.

The limiting power function depends on the test statistics only through the quantity

µ′(θ0)/σ(θ0). This is called the slope of the sequence of tests. Two sequences of tests

49As the convergence (68) is under a law indexed by θn that changes with n, the convergence is not implied

by √
n(Tn − µ(θ))

σ(θ)

Pnθ N(0, 1), for every θ. (67)

49



can be asymptotically compared by just comparing the sizes of their slopes50. The bigger

the slope, the better the test. The size of the slope depends on the rate µ′(θ0) of change of

the asymptotic mean of the test statistics relative to their asymptotic dispersion σ(θ0).

Let us now compare the sign test with the t-test.

Example 2.33 (One-sample t-test). The t-test for (65) rejects for large values of
√
nX̄n/sn

where X̄n and s2
n are the sample mean and (unbiased) sample variance. The sample variance

s2
n converges in probability to the variance σ2 of a single observation. By CLT and Slutsky’s

lemma we get, for θn = hn−1/2,

√
n

(
X̄n

sn
− hn−1/2

σ

)
=
X̄n − hn−1/2

sn
+ h

(
1

sn
− 1

σ

)
Pnθn N(0, 1).

Thus Theorem 2.32 applies with µ(θ) = θ/σ and σ(θ) = 1. Thus the slope of the t-test

equals 1/σ.

Example 2.34 (Sign test versus t-test). We can now compare the sign test with the t-test.

It suffices to compare the slopes of the two tests. By the preceding examples these are 2f(0)

and (
∫
x2f(x)dx)−1/2, respectively. Clearly the outcome of the comparison depends on the

shape f . It is interesting that the two slopes depend on the underlying shape in an almost

orthogonal manner. The slope of the sign test depends only on the height of f at zero; the

slope of the t-test depends mainly on the tails of f . For the standard normal distribution

the slopes are
√

2/π and 1. The superiority of the t-test in this case is not surprising,

because the t-test is uniformly most powerful for every n. For the Laplace distribution, the

ordering is reversed: The slopes are 1 and 1/
√

2. The superiority of the sign test has much

to do with the “unsmooth” character of the Laplace density at its mode.

The simplicity of comparing slopes is attractive on the one hand, but indicates the potential

weakness of asymptotics on the other. For instance, the slope of the sign test was seen to

be 2f(0), but it is clear that this value alone cannot always give an accurate indication of

the quality of the sign test. Consider a density that is basically a normal density, but a tiny

proportion of 10−10% of its total mass is located under an extremely thin but enormously

high peak at zero. The large value f(0) would strongly favor the sign test. However, at

moderate sample sizes the observations would not differ significantly from a sample from a

normal distribution, so that the t-test is preferable. In this situation the asymptotics are

only valid for unrealistically large sample sizes.

Even though asymptotic approximations should always be interpreted with care, in the

50If θ is the only unknown parameter in the problem, then the available tests can be ranked in asymptotic

quality simply by the value of their slopes. In many problems there are also nuisance parameters (for instance

the shape of a density), and the slope is a function of the nuisance parameter rather than a number. This

complicates the comparison considerably. For every value of the nuisance parameter a different test may be

best, and additional criteria are needed to choose a particular test.
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present situation there is actually little to worry about. Even for n = 20, the comparison of

slopes of the sign test and the t-test gives the right message for the standard distributions;

see van der Vaart [15, Table 14.1].

2.5.1 Asymptotic relative efficiency

In the previous examples, the slopes of the sequence of tests helped us compare the se-

quences. A more general measure of comparing two tests is given below. This quantity is

called the asymptotic relative efficiency (ARE). In the above problems this measure reduces

to comparing the square of the quotient of two slopes.

Definition 2.35 (Asymptotic relative efficiency). Consider a sequence of testing problems

consisting of testing a null hypothesis

H0 : θ = θ0 versus H1 : θ = θν .

We use the parameter ν to describe the asymptotics; thus ν → ∞. We require a priori

that our tests attain asymptotically level α and power γ ∈ (α, 1). Usually we can meet

this requirement by choosing an appropriate number of observations at “time” ν. A larger

number of observations allows smaller level and higher power. If πn is the power function

of a test if n observations are available, then we define nν to be the minimal number of

observations such that both

πnν (θ0) ≤ α, and πnν (θν) ≥ γ. (70)

If two sequences of tests are available, then we prefer the sequence for which the numbers

nν are smallest. Suppose that nν,1 and nν,2 observations are needed for two given sequences

of tests. Then, if it exists, the limit

lim
ν→∞

nν,2
nν,1

is called the asymptotic relative efficiency (ARE) or Pitman efficiency of the first with

respect to the second sequence of tests.

A relative efficiency larger than 1 indicates that fewer observations are needed with the first

sequence of tests, which may then be considered the better one.

In principle, the relative efficiency may depend on α, γ and the sequence of alternatives θν .

The concept is mostly of interest if the relative efficiency is the same for all possible choices

of these parameters. This is often the case. In particular, in the situations considered

previously, the relative efficiency turns out to be the square of the quotient of the slopes.

Suppose that in a given sequence of models (Xn, Cn, Pn,θ : θ ∈ Θ) it is desired to test the

null hypothesis H0 : θ = θ0 versus the alternatives H1 : θ = θn.
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Theorem 2.36. Consider statistical models (Xn, Cn, Pn,θ : θ ∈ Θ) such that ‖Pn,θ −
Pn,θ0‖ → 051 as θ → θ0, for every n. Let Tn,1 and Tn,2 be sequences of statistics that

satisfy (68) for every sequence θn ↓ θ0 and functions µi and σi such that µi is differentiable

at θ0 and σi is continuous at θ0, with µ′i(θ0) > 0 and σi(θ0) > 0. Then the ARE of the tests

that reject the null hypothesis H0 : θ = θ0 for large values of Tn,i is equal to(
µ′1(θ0)/σ1(θ0)

µ′2(θ0)/σ2(θ0)

)2

for every sequence of alternatives θn ↓ 0, irrespective of α > 0 and γ ∈ (α, 1). If the power

functions of the tests based on Tn,i are nondecreasing for every n, then the assumption of

asymptotic normality of Tn,i can be relaxed to asymptotic normality under every sequence

θn = O(n−1/2) only.

Proof. The condition that Pθ approaches Pθ0 in total variation distance as θ → θ0 implies

that the minimal numbers nν,i must go to infinity as ν → ∞52. Further, the convergence

to a continuous distribution implies that the asymptotic level and power attained for the

minimal numbers of observations (minimal for obtaining at most level α and at least power

γ) is exactly α and γ.

In order to obtain asymptotic level α the tests must reject H0 if
√
nν,i(Tnν,i,i − µi(θ0)) >

σi(θ0)zα. The powers of these tests are equal to

πnν,i(θν) = Pθν
(√

nν,i(Tnν,i,i − µi(θν)) > σ(θ0)zα −
√
nν,i(µi(θν)− µi(θ0))

)
= 1− Φ

(
zα + o(1)−√nν,iθν

µ′i(θ0)

σi(θ0)
(1 + o(1))

)
+ o(1).

This sequence of powers tends to γ < 1 if and only if the argument of Φ tends to zγ , i.e.,

zγ ≈ zα −
√
nν,i θν

µ′i(θ0)

σi(θ0)
⇔ √

nν,i θν ≈ (zα − zγ)
σi(θ0)

µ′i(θ0)
.

Thus the ARE of the two sequences of tests equals

lim
ν→∞

nν,2
nν,1

= lim
ν→∞

nν,2θ
2
ν

nν,1θ2
ν

=
µ′1(θ0)(zα − zγ)2σ2(θ0)

µ′2(θ0)(zα − zγ)2σ1(θ0)
=

(
µ′1(θ0)/σ1(θ0)

µ′2(θ0)/σ2(θ0)

)2

.

This proves the first assertion of the theorem.

The second assertion follows from the discussion in van der Vaart [15, Section 14.2].
51This refers to the L1 distance between Pn,θ and Pn,θ0 ; see Section 2.5.2.
52We show this using the concepts introduced in Section 2.5.2. The sum of the error probabilities of the

first and second kind of any test, using Lemma 2.39, is

1− πn(θν) + πn(θ0) ≥ 1− 1

2
‖Pn,θν − Pn,θ0‖.

By assumption, the right-hand side converges to 1 as ν → ∞ uniformly in every finite set of n. Thus, for

every bounded sequence n = nν and any sequence of tests, the sum of the error probabilities is asymptotically

bounded below by 1. But, from (70), we are given that the sum of the error probabilities is bounded above

by α+ 1− γ < 1, leading to a contradiction.
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Example 2.37 (ARE of sign test versus t-test). From the above result and Example 2.34

we can see that the ARE of the sign test versus the t-test is equal to

4f2(0)

∫
x2f(x)dx.

For the uniform distribution, the relative efficiency of the sign test with respect to the t-test

equals 1/353. It can be shown that this is the minimal possible value over all densities with

mode zero. On the other hand, it is possible to construct distributions for which this relative

efficiency is arbitrarily large, by shifting mass into the tails of the distribution. Thus, the

sign test is “robust” against heavy tails, the t-test is not.

2.5.2 L1-distance and power

Definition 2.38 (L1-distance). The L1-distance between two distributions P and Q with

densities p = dP/dµ and q = dQ/dµ is

‖P −Q‖ =

∫
|p− q| dµ. (71)

Lemma 2.39. For a sequence of models Pn, with null hypothesis H0 : θ = θ0 and alterna-

tives H1 : θ = θn, the power function of any test satisfies

πn(θn)− πn(θ0) ≤ 1

2
‖Pn,θn − Pn,θ0‖. (72)

Furthermore, there is a test for which equality holds.

Proof. If πn is the power function of the test φn, then the difference on the left side in (72)

can be written as
∫
φn(pn,θ − pn,θ0)dµn (here we assume that Pn,θ is dominated by µn for

all n). This expression is maximized for the test function φn = 1{pn,θ > pn,θ0}. Thus,

πn(θn)− πn(θ0) =

∫
φn(pn,θ − pn,θ0)dµn ≤

∫
pn,θ>pn,θ0

(pn,θ − pn,θ0)dµn =
1

2
‖Pn,θn − Pn,θ0‖,

where in the last equality we have used the fact that: For any pair of probability densities

p and q we have
∫
q>p(q − p)dµ = 1

2

∫
|p− q|dµ54, since

∫
(p− q)dµ = 0.

2.6 Exercises

11. Lehmann and Romano [8, Problem 12.6].

53Exercise 19 (HW2): Show that 4f2(0)
∫
x2f(x)dx ≥ 1/3 for every unimodal probability density f that

has its mode at 0. (Hint: Use the invariance to scaling to reduce the problem to that of finding the minimum

of 4
∫
y2f(y)dy over all probability densities f that are bounded by 1.)

54Note that
∫
|p−q|dµ =

∫
p≥q(p−q)dµ+

∫
q>p

(q−p)dµ =
[∫

(p− q)dµ−
∫
q>p

(p− q)dµ
]

+
∫
q>p

(q−p)dµ =

0 + 2
∫
q>p

(q − p)dµ.
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12. Lehmann and Romano [8, Problem 12.15].

13. Lehmann and Romano [8, Problem 12.46].

14. Lehmann and Romano [8, Problem 12.54].

15. Lehmann and Romano [8, Problem 12.64].

16. Lehmann and Romano [8, Problem 12.66].

17. Lehmann and Romano [8, Problem 13.20].

18. Lehmann and Romano [8, Problem 13.21].
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3 Kernel density estimation

Let X1, . . . , Xn be i.i.d. random variables having a probability density p (with respect to the

Lebesgue measure on R) and distribution function F (x) :=
∫ x
−∞ p(t)dt (for x ∈ R). Here F

and p are unknown.

Question: Can we estimate F and p nonparametrically, making minimal assumptions?

Definition 3.1 (Empirical distribution function). A natural estimator of F is the empirical

cumulative distribution function (ECDF):

Fn(x) =
1

n

n∑
i=1

I(Xi ≤ x) =
1

n

n∑
i=1

I(−∞,x](Xi), for x ∈ R, (73)

where I(·) denotes the indicator function.

The ECDF is the distribution function of the empirical distribution Pn, the probability

distribution that puts mass 1/n at each of the data points Xi, i.e., Pn = 1
n

∑n
i=1 δXi , where

δx denotes the Dirac measure (i.e., δx(A) = 1 if x ∈ A, and 0 otherwise). The following

figure shows the ECDF obtained from n = 10 samples from a standard normal distribution

overlaid with the true DF of N(0, 1) (in red).
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The Glivenko-Cantelli theorem shows that

sup
x∈R
|Fn(x)− F (x)| a.s.→ 0, as n→∞55.

Further we know that for every x ∈ R,

√
n(Fn(x)− F (x))

d→ N(0, F (x)(1− F (x))).

55Exercise 1 (HW3): Prove this.
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Exercise 2 (HW3): Consider testing H0 : F = F0 versus H1 : F 6= F0 where F0 is a known

continuous strictly increasing distribution function (e.g., standard normal) when we observe

i.i.d. data X1, . . . , Xn from F . The Kolmogorov-Smirnov (KS) test statistic is to consider

Dn := sup
x∈R
|Fn(x)− F0(x)|,

and reject H0 when Dn > cα, for a suitable cα > 0 (where α is the level of the test). Show

that, under H0, Dn is distribution-free, i.e., the distribution of Dn does not depend on F0

(as long as it is continuous and strictly increasing). How would you compute (approxi-

mate/simulate) the critical value cα, for every n.
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As Fn(x)
p→ F (x) for all x ∈ R, we can also say that

√
n(Fn(x)− F (x))√
Fn(x)(1− Fn(x))

d→ N(0, 1), for every x ∈ R.

Thus, an asymptotic (1− α) CI for F (x) is[
Fn(x)−

zα/2√
n

√
Fn(x)(1− Fn(x)), Fn(x) +

zα/2√
n

√
Fn(x)(1− Fn(x))

]
.

Likewise, we can also test the hypothesis H0 : F (x) = F0(x) versus H1 : F (x) 6= F0(x) for

some known fixed c.d.f F0, and x ∈ R.

Let us come back to the estimation of p. As p is the derivative of F , for small h > 0, we

can write the approximation

p(x) ≈ F (x+ h)− F (x− h)

2h
.

As Fn is a natural estimator of F , it is intuitive to define the following (Rosenblatt) estimator

of p:

p̂Rn (x) =
Fn(x+ h)− Fn(x− h)

2h
.
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We can rewrite p̂Rn as

p̂Rn (x) =
1

2nh

n∑
i=1

I(x− h < Xi ≤ x+ h) =
1

nh

n∑
i=1

K0

(
Xi − x
h

)
,

where K0(u) = 1
2I(−1,1](u). A simple generalization of the Rosenblatt estimator is given by

p̂n(x) :=
1

nh

n∑
i=1

K

(
Xi − x
h

)
, (74)

where K : R → R is an integrable function satisfying
∫
K(u)du = 1. Such a function K

is called a kernel and the parameter h is called the bandwidth of the estimator (74). The

function p̂n is called the kernel density estimator (KDE) or the Parzen-Rosenblatt estimator.

Some classical examples of kernels are the following:

K(u) = 1
2I(|u| ≤ 1) (the rectangular kernel)

K(u) =
1√
2π

exp(−u2/2) (the Gaussian kernel)

K(u) = 3
4(1− u2)I(|u| ≤ 1) (the Epanechnikov kernel).

Note that if the kernel K takes only nonnegative values and if X1, . . . , Xn are fixed, then

p̂n is a probability density.

The Parzen-Rosenblatt estimator can be generalized to the multidimensional case easily.

Suppose that (X1, Y1), . . . , (Xn, Yn) are i.i.d. with (joint) density p(·, ·). A kernel estimator

of p is then given by

p̂n(x, y) :=
1

nh2

n∑
i=1

K

(
Xi − x
h

)
K

(
Yi − y
h

)
, (75)

where K : R→ R is a kernel defined as above and h > 0 is the bandwidth.

3.1 The choice of the bandwidth and the kernel

It turns out that the choice of the bandwidth h is far more crucial for the quality of p̂n as

an estimator of p than the choice of the kernel K. We can view the KDE (for unimodal,

nonnegative kernels) as the sum of n small “mountains” given by the functions

x 7→ 1

nh
K

(
Xi − x
h

)
.

Every small mountain is centered around an observation Xi and has area 1/n under it,

for any bandwidth h. For a small bandwidth the mountain is very concentrated (peaked),

while for a large bandwidth the mountain is low and fat. If the bandwidth is small, then the

mountains remain separated and their sum is peaky. On the other hand, if the bandwidth
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Figure 1: KDE with different bandwidths of a random sample of 100 points from a standard normal

distribution. Grey: true density (standard normal). Red: KDE with h=0.05. Black:

KDE with h=0.337. Green: KDE with h=2.

is large, then the sum of the individual mountains is too flat. Intermediate values of the

bandwidth should give the best results.

For a fixed h, the KDE p̂n(x0) is not consistent in estimating p(x0), where x0 ∈ R. However,

if the bandwidth decreases with sample size at an appropriate rate, then it is, regardless of

which kernel is used.

Exercise 3 (HW3): Suppose that p is continuous at x0, that hn → 0, and that nhn → ∞
as n → ∞. Then, p̂n(x0) → p(x0) in probability under the following assumptions on

the kernel K: (i)
∫
K(u)du = 1, (ii) supu∈R |K(u)| < ∞, (iii)

∫
|K(u)|du < ∞, and (iv)

limu→∞ |uK(u)| = 0. (Hint: Study the bias and variance of the estimator separately;

see Parzen [9])].

3.2 Mean squared error of kernel density estimator (KDE)

A basic measure of the accuracy of p̂n is its mean squared risk (or mean squared error) at

an arbitrary fixed point x0 ∈ R:

MSE = MSE(x0) := Ep
[
(p̂n(x0)− p(x0))2

]
.

Here Ep denotes the expectation with respect to the distribution of (X1, . . . , Xn):

MSE(x0) :=

∫
· · ·
∫ (

p̂n(x0; z1, . . . , zn)− p(x0)
)2[ n∏

i=1

p(zi)
]
dz1 . . . dzn.

Of course,

MSE(x0) = b2(x0) + σ2(x0)

where

b(x0) := Ep[p̂n(x0)]− p(x0), (bias)

58



and

σ2(x0) := Ep
[(
p̂n(x0)− Ep[p̂n(x0)]

)2]
(variance).

To evaluate the mean squared risk of p̂n we will analyze separately its variance and bias.

3.2.1 Variance of KDE

Proposition 3.2 (Variance of p̂n). Suppose that the density p satisfies p(x) ≤ pmax < ∞
for all x ∈ R. Let K : R→ R be a kernel function such that∫

K2(u)du <∞.

Then for any x0 ∈ R, h > 0, and n ≥ 1 we have

σ2(x0) ≤ C1

nh
,

where C1 = pmax

∫
K2(u)du.

Proof. Observe that p̂n(x0) is an average of n i.i.d. random variables and so

σ2(x0) = Var(p̂n(x0)) =
1

n
Var

(
1

h
K

(
X1 − x0

h

))
≤ 1

nh2
Ep
[
K2

(
X1 − x0

h

)]

Now, observe that

Ep
[
K2

(
X1 − x0

h

)]
=

∫
K2

(
z − x0

h

)
p(z)dz ≤ pmax h

∫
K2(u)du.

Combining the above two displays we get the desired result.

Thus, we conclude that if the bandwidth h ≡ hn is such that nh→∞ as n→∞, then the

variance of σ2(x0) goes to 0 as n→∞.

3.2.2 Bias of KDE

To analyze the bias of the KDE (as a function of h) we need certain conditions on the

density p and on the kernel K. In what follows, for β > 0 we let bβc denote the greatest

integer strictly less than β.

Definition 3.3. Let T be an interval in R and let β and L be two positive numbers. The

Hölder class Σ(β, L) on T is defined as the set of ` = bβc times differentiable functions

f : T → R whose derivative f (`) satisfies

|f (`)(x)− f (`)(x′)| ≤ L|x− x′|β−`, for all x, x′ ∈ T.
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The special case β = 1 is sometimes called the Lipschitz space56. If β = 2 then we have

|f ′(x)− f ′(x′)| ≤ L|x− x′|, for all x, x′ ∈ T.

Roughly speaking, this means that the functions have bounded “second” derivative (f has

second derivative a.e.).

Definition 3.4. Let ` ≥ 1 be an integer. We say that K : R → R is a kernel of order ` if

the functions u 7→ ujK(u), j = 0, 1, . . . , `, are integrable and satisfy∫
K(u)du = 1,

∫
ujK(u)du = 0, j = 1, . . . , `.

Does bounded kernels of order ` exist? See Tsybakov [14, Section 1.2.2] for constructing

such kernels.

Observe that when ` ≥ 2 then the kernel has to take negative values which may lead to

negative values of p̂n. This is sometimes mentioned as a drawback of using higher order

kernels (` ≥ 2). However, observe that we can always define the estimator

p̂+
n (x) = max{0, p̂n(x)}

whose risk is smaller than or equal to the risk of p̂n(x):

Ep
[
(p̂+
n (x0)− p(x0))2

]
≤ Ep

[
(p̂n(x0)− p(x0))2

]
, ∀x ∈ R.

Suppose now that p belong to a class of densities P = P(β, L) defined as follows:

P(β, L) :=

{
p : p ≥ 0,

∫
p(x)dx = 1, and p ∈ Σ(β, L) on R

}
.

Proposition 3.5 (Bias of p̂n). Assume that p ∈ P(β, L) and let K be a kernel of order

` = bβc satisfying ∫
|u|β|K(u)|du <∞.

Then for any x0 ∈ R, h > 0, and n ≥ 1 we have

|b(x0)| ≤ C2h
β, (76)

where C2 = L
`!

∫
|u|β|K(u)|du.

56A Lipschitz function g : R → R is absolutely continuous and therefore is differentiable a.e., that is,

differentiable at every point outside a set of Lebesgue measure zero. Its derivative is essentially bounded in

magnitude by the Lipschitz constant, and for a < b, the difference g(b)?g(a) is equal to the integral of the

derivative g′ on the interval [a, b].
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Proof. We have

b(x0) =
1

h

∫
K

(
z − x
h

)
p(z)dz − p(x0)

=

∫
K(u)

[
p(x0 + uh)− p(x0)

]
du.

Next, using Taylor’s theorem57, we get

p(x0 + uh) = p(x0) + p′(x0)uh+ . . .+
(uh)`

`!
p(`)(x0 + τuh),

where 0 ≤ τ ≤ 1. Since K has order ` = bβc, we obtain

b(x0) =

∫
K(u)

(uh)`

`!
p(`)(x0 + τuh)du

=

∫
K(u)

(uh)`

`!
(p(`)(x0 + τuh)− p(`)(x0))du,

and

|b(x0)| ≤
∫
|K(u)| |uh|

`

`!

∣∣∣p(`)(x0 + τuh)− p(`)(x0)
∣∣∣du

≤ L

∫
|K(u)| |uh|

`

`!
|τuh|β−`du ≤ C2h

β.

From Propositions 3.2 and 3.5, we see that the upper bounds on the bias and variance

behave in opposite ways as the bandwidth h varies. The variance decreases as h grows,

whereas the bound on the bias increases. The choice of a small h corresponds to a large

variance and leads to undersmoothing. Alternatively, with a large h the bias cannot be

reasonably controlled, which leads to oversmoothing. An optimal value of h that balances

57Taylor’s theorem: Let k ≥ 1 be an integer and let the function f : R→ R be k times differentiable at

the point a ∈ R. Then there exists a function Rk : R→ R such that

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (k)(a)

k!
(x− a)k +Rk(x),

where Rk(x) = o(|x− a|k) as x→ a.

Mean-value forms of the remainder: Let f : R→ R be k+ 1 times differentiable on the open interval with

f (k) continuous on the closed interval between a and x. Then

Rk(x) =
f (k+1)(ξL)

(k + 1)!
(x− a)k+1

for some real number ξL between a and x. This is the Lagrange form of the remainder.

Integral form of the remainder: Let f (k) be absolutely continuous on the closed interval between a and x.

Then

Rk(x) =

∫ x

a

f (k+1)(t)

k!
(x− t)k dt. (77)

Due to absolute continuity of f (k), on the closed interval between a and x, f (k+1) exists a.e.
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bias and variance is located between these two extremes. To get an insight into the optimal

choice of h, we can minimize in h the upper bound on the MSE obtained from the above

results.

If p and K satisfy the assumptions of Propositions 3.2 and 3.5, we obtain

MSE ≤ C2
2h

2β +
C1

nh
. (78)

The minimum with respect to h of the right hand side of the above display is attained at

h∗n =

(
C1

2βC2
2

)1/(2β+1)

n−1/(2β+1).

Therefore, the choice h = h∗n gives

MSE(x0) = O
(
n
− 2β

2β+1

)
, as n→∞,

uniformly in x0. Thus, we have the following result.

Theorem 3.6. Assume that the conditions of Proposition 3.5 hold and that
∫
K2(u)du <

∞. Fix α > 0 and take h = αn−1/(2β+1). Then for n ≥ 1, the KDE p̂n satisfies

sup
x0∈R

sup
p∈P(β,L)

Ep
[
(p̂n(x0)− p(x0))2

]
≤ Cn−

2β
2β+1 ,

where C > 0 is a constant depending only on β, L, α and on the kernel K.

Proof. We apply (78) to derive the result. To justify the application of Proposition 3.2, it

remains to prove that there exists a constant pmax <∞ satisfying

sup
x∈R

sup
p∈P(β,L)

p(x) ≤ pmax. (79)

To show that (79) holds, consider K∗ which is a bounded kernel of order ` (not necessarily

equal to K). Applying Proposition 3.5 with h = 1 we get that, for any x ∈ R and any

p ∈ P(β, L), ∣∣∣ ∫ K (z − x) p(z)dz − p(x)
∣∣∣ ≤ C∗2 :=

L

`!

∫
|u|β|K∗(u)|du.

Therefore, for any x ∈ R and any p ∈ P(β, L),

p(x) ≤ C∗2 +

∫
|K∗(z − x)| p(z)dz ≤ C∗2 +K∗max,

where K∗max = supu∈R |K∗(u)|. Thus, we get (79) with pmax = C∗2 +K∗max.

Under the assumptions of Theorem 3.6, the rate of convergence of the estimator p̂n(x0) is

ψn = n
− β

2β+1 , which means that for a finite constant C and for all n ≥ 1 we have

sup
p∈P(β,L)

Ep
[
(p̂n(x0)− p(x0))2

]
≤ Cψ2

n.
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Now the following two questions arise. Can we improve the rate ψn by using other density

estimators? What is the best possible rate of convergence? To answer these questions it is

useful to consider the minimax risk R∗n associated to the class P(β, L):

R∗n(P(β, L)) = inf
Tn

sup
p∈P(β,L)

Ep
[
(Tn(x0)− p(x0))2

]
,

where the infimum is over all estimators. One can prove a lower bound on the minimax risk

of the form R∗n(P(β, L)) ≥ C ′ψ2
n = C ′n

− 2β
2β+1 with some constant C ′ > 0. This implies that

under the assumptions of Theorem 3.6 the KDE attains the optimal rate of convergence

n
− β

2β+1 associated with the class of densities P(β, L). Exact definitions and discussions of

the notion of optimal rate of convergence will be given later.

Remark 3.1. Quite often in practice it is assumed that β = 2 and that p′′ is continuous

at x0. Also, the kernel is taken to be of order one and symmetric around 0. Then it can be

shown that (Exercise 4 (HW3))

MSE(x0) =
1

nh

∫
K2(u)dup(x0) +

1

4
h4

(∫
u2K(u)du

)2

p′′(x0)2 + o((nh)−1 + h4).

You may assume that p is bounded from above.

Remark 3.2. Since 2β/(2β+1) approaches 1 as β becomes large, Theorem 3.6 implies that,

for sufficiently smooth densities, the convergence rate can be made arbitrarily close to the

parametric n−1 convergence rate. The fact that higher-order kernels can achieve improved

rates of convergence means that they will eventually dominate first-order kernel estimators

for large n. However, this does not mean that a higher-order kernel will necessarily improve

the error for sample sizes usually encountered in practice, and in many cases, unless the

sample size is very large there may actually be an increase in the error due to using a

higher-order kernel.

3.3 Pointwise asymptotic distribution

Whereas the results from the previous subsection have shown us that p̂n(x0) converges to

p(x0) in probability under certain assumptions, we cannot straightforwardly use this for

statistical inference. Ideally, if we want to estimate p(x0) at the point x0, we would like to

have exact confidence statements of the form

P (p(x0) ∈ [p̂n(x0)− c(n, α, x0,K), p̂n(x0)− c(n, α, x0,K)]) ≥ 1− α,

where α is the significance level and c(n, α, x0,K) sequence of constants that one would like

to be as small as possible (given α).
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Theorem 3.7. Assume that p ∈ P(β, L) and let K be a kernel of order ` = bβc satisfying∫
|u|β|K(u)|du <∞.

Suppose that p also satisfies p(x) ≤ pmax < ∞ for all x ∈ R. Let K further satisfy (a)

‖K‖22 :=
∫
K2(u)du < ∞, (b) ‖K‖∞ := supu∈RK(u) < ∞. Suppose that the sequence of

bandwidths {hn}∞n=1 satisfy hn → 0, nhn → ∞, and n1/2h
β+1/2
n → 0 as n → ∞. Then, as

n→∞, √
nhn

(
p̂n(x0)− p(x0)

)
d→ N

(
0, p(x0)‖K‖22

)
.

Proof. We first find the limit for the ‘variance term’. We use the Lindeberg-Feller central

limit theorem for triangular arrays of independent random variables58 with

Yni :=
√
nh

1

nh
K

(
Xi − x0

h

)
=

√
1

nh
K

(
Xi − x0

h

)
, i = 1, . . . , n,

so that Yn1, . . . , Ynn are i.i.d. and we have

√
nh
(
p̂n(x0)− Ep[p̂n(x0)]

)
=

n∑
i=1

(Yni − E(Yni)).

Thus, we only need to show that the two conditions in the Lindeberg-Feller CLT hold.

Clearly,

nE(Y 2
ni) =

1

h

∫
K2

(
z − x0

h

)
p(z)dz

=

∫
K2 (u) p(x0 + uh)du→ p(x0)

∫
K2(u)du, as n→∞,

by the dominated convergence theorem (DCT), since p(·) is continuous at x0 and bounded

on R. Now,

nE(Yni)
2 =

1

h

(∫
K

(
z − x0

h

)
p(z)dz

)2

= h

(∫
K(u)p(x0 + uh)du

)2

≤ h‖K‖22 pmax → 0, as n→∞,

which shows that
∑n

i=1 E[(Yni − E(Yni))
2]→ p(x0)

∫
K2(u)du. Furthermore,

|Yni| ≤
1√
nh
‖K‖∞ → 0, as n→∞,

58Lindeberg-Feller CLT (see e.g., van der Vaart [15, p.20]): For each n let Yn1, . . . , Ynn be indepen-

dent random variables with finite variances. If, as n→∞, (i)
∑n
i=1 E[Y 2

niI(|Yni| > ε)]→ 0, for every ε > 0,

and (ii)
∑n
i=1 E[(Yni − E(Yni))

2]→ σ2, then

n∑
i=1

(Yni − E(Yni))
d→ N(0, σ2), as n→∞.
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by the assumption on the sequence of bandwidths. Thus, I(|Yni| > ε)→ 0, for every ε > 0

and by the DCT

n∑
i=1

E[Y 2
niI(|Yni| > ε)] = E[nY 2

n1I(|Yn1| > ε)]→ 0.

By (76) we see that the bias term can be bounded above as

√
nh|b(x0)| ≤

√
nhhβ → 0, as n→∞.

Therefore, we have the desired result.

Exercise 5 (HW3): Suppose that you are given an i.i.d. sample from a bounded density

p with bounded derivatives at x0. Suppose that c(α, x0) is such that P(−c(α, x0) ≤ Z ≤
c(α, x0)) = 1 − α where Z ∼ N(0, p(x0)). Use a kernel density estimator (with a suitable

kernel) to obtain a 95 percent confidence interval (CI) for p(x0) in such a way that the size

of the interval shrinks at rate 1/
√
nhn as n → ∞, and that hn can be chosen so that this

rate is ‘almost’ (say, up to a log n term) of order n−1/3.

Exercise 6 (HW3): Under the setup of Remark 3.1 and the assumption that h = αn−1/5,

where α > 0, find the asymptotic distribution of
√
nh(p̂n(x0) − p(x0)). Can this be used

to construct a CI for p(x0)? What are the advantages/disadvantages of using this result

versus the setup of Theorem 6.16 with β = 2 to construct a CI for p(x0)?

3.4 Introduction to kernel regression

Regression models are used to study how a dependent or response variable depends on a

predictor variable. Let (X,Y ) be a pair of real-valued jointly distributed random variables

such that E|Y | <∞. The regression function f : R→ R of Y on X is defined as

f(x) := E[Y |X = x].

Suppose that we have a sample (X1, Y1), . . . , (Xn, Yn) of n i.i.d. pairs of random variables

having the same distribution as (X,Y ).

Question: How to estimate f nonparametrically from the data?

Classically, the regression function f is assumed to lie in a class of functions specified by

a finite number of parameters (e.g., linear regression). The nonparametric approach only

assumes that f ∈ F , where F is a given nonparametric class of functions. The set of values

{X1, . . . , Xn} is called the design. Here the design is random.

The conditional residual ξ := Y −E[Y |X] has mean zero, i.e., E(ξ) = 0 (by definition), and

we may write

Yi = f(Xi) + ξi, i = 1, . . . , n, (80)
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where ξi are i.i.d. random variables with the same distribution as ξ. In particular, E(ξi) = 0

for all i = 1, . . . , n. The variables ξi can therefore be interpreted as “errors”.

Idea: The key idea we use in estimating f nonparametrically in this section is called “local

averaging”. Given a kernel K and a bandwidth h, one can construct kernel estimators for

nonparametric regression. There exist different types of kernel estimators of the regression

function f . The most celebrated one is the Nadaraya-Watson estimator defined as follows:

fNWn (x) =

∑n
i=1 YiK

(
Xi−x
h

)
∑n

i=1K
(
Xi−x
h

) , if
n∑
i=1

K

(
Xi − x
h

)
6= 0,

and fNWn (x) = 0 otherwise. This estimator was proposed separately in two papers by

Nadaraya and Watson in the year 1964.

Example: If we choose K(u) = 1
2I(|u| ≤ 1), then fNWn (x) is the average of Yi such that

Xi ∈ [x − h, x + h]. Thus, for estimating f(x) we define the “local” neighborhood as

[x− h, x+ h] and consider the average of the observations in that neighborhood. For fixed

n, the two extreme cases for the bandwidth are:

(i) h → ∞. Then fNWn (x) tends to n−1
∑n

i=1 Yi which is a constant independent of x.

The systematic error (bias) can be too large. This is a situation of oversmoothing.

(ii) h→ 0. Then fNWn (Xi) = Yi whenever h < mini,j |Xi −Xj | and limh→0 f
NW
n (x) = 0,

if x 6= Xi. The estimator fNWn is therefore too oscillating: it reproduces the data Yi

at the points Xi and vanishes elsewhere. This makes the stochastic error (variance)

too large. In other words, undersmoothing occurs.

Thus, the bandwidth h defines the “width” of the local neighborhood and the kernel K

defines the “weights” used in averaging the response values in the local neighborhood. As

we saw in density estimation, an appropriate choice of the bandwidth h is more important

than the choice of the kernel K.

The Nadaraya-Watson estimator can be represented as a weighted sum of the Yi:

fNWn (x) =
n∑
i=1

YiW
NW
i (x)

where the weights are

WNW
i (x) :=

K
(
Xi−x
h

)
∑n

j=1K
(
Xj−x
h

) I
 n∑
j=1

K

(
Xj − x
h

)
6= 0

 .

Definition 3.8. An estimator f̂n(x) of f(x) is called a linear nonparametric regression

estimator if it can be written in the form

f̂n(x) =
n∑
i=1

YiWni(x)
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where the weights Wni(x) = Wni(x,X1, . . . , Xn) depend only on n, i, x and the values

X1, . . . , Xn.

Typically, the weightsWni(x) of linear regression estimators satisfy the equality
∑n

i=1Wni(x) =

1 for all x (or for almost all x with respect to the Lebesgue measure).

Another intuitive motivation of fNWn is given below. Suppose that the distribution of (X,Y )

has density p(x, y) with respect to the Lebesgue measure and pX(x) =
∫
p(x, y)dy > 0.

Then,

f(x) = E[Y |X = x] =

∫
yp(x, y)dy

pX(x)
.

If we replace here p(x, y) by the KDE p̂n(x, y) of the density of (X,Y ) and use the corre-

sponding KDE p̂Xn (x) to estimate pX(x), we obtain f̂NWn in view of the following result.

Exercise 7 (HW3): Let p̂Xn (x) and p̂n(x, y) be the KDEs of pX and p respectively (as defined

in the previous lecture) with a kernel K of order 1. Then

fNWn (x) =

∫
yp̂n(x, y)dy

p̂Xn (x)

if p̂Xn (x) 6= 0.
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4 U-statistics

Let X1, . . . , Xn be a random sample from an unknown distribution P on Rd. Given a known

function h : R→ R, consider estimation of the “parameter”

θ ≡ θ(P ) = EP [h(X1, . . . , Xr)] (81)

(here we assume that n ≥ r). We will assume that the function h is permutation symmet-

ric/invariant in its r arguments59, i.e., h(πx) = h(x) for every x ∈ Rr and π ∈ Πr, the set

of all permutations of {1, . . . , r}60 (here πx = (xπ(1), . . . , xπ(r)) for x = (x1, . . . , xr)).

Question: Why should we study estimation of θ as in (81)? The following examples show

that many interesting parameters arising in statistics can be expressed in the form (81). In

fact, a parameter θ(P ) admits an unbiased estimator if and only if for some r there is an h

such that (81) holds.

Example 4.1 (Population variance). If X1, . . . , Xn are i.i.d. random variables with mean

E(X1) = µ then the population variance is defined as

Var(X1) = E[(X1 − µ)2] =
1

2
E
[
(X1 − µ)2 + (X2 − µ)2

]
=

1

2
E
[
{(X1 − µ)− (X2 − µ)}2

]
= E

[
1

2
(X1 −X2)2

]
Thus, θ = Var(X1) can be expressed in the form (81) with θ = E[h(X1, X2)] where

h(x1, x2) := 1
2(x1 − x2)2.

Example 4.2 (Gini mean difference). When h(x1, x2) = |x1 − x2|, θ = E[|X1 −X2|] is the

mean pairwise deviation or Gini mean difference.

Question: What is a natural estimator of θ in (81)?

A natural unbiased estimator of θ in (81) is h(X1, . . . , Xr). Since n observations (with

n ≥ r) are available, this simple estimator can be improved: By Rao-Blackwell theorem, the

new unbiased estimator formed by computing the conditional expectation given a sufficient

statistic has smaller variance. Here, for Xi’s with values in R, the vector of order statistics

(X(1), . . . , X(n)) is sufficient; and for i.i.d. Xi’s more generally, the empirical measure Pn =
1
n

∑n
i=1 δXi is sufficient (see e.g., Dudley [2, Theorem 5.1.9, page 177]).

Definition 4.3 (U -statistics). A U -statistic of order r with kernel h is defined as

Un :=
1(
n
r

) ∑
(i1,...,ir)

h(Xi1 , . . . , Xir) (82)

59A given h could always be replaced by a symmetric one as θ = 1

(nr)

∑
(i1,...,ir)

E[h(Xi1 , . . . , Xir )].
60Thus, h is permutation invariant if the value of h(x) does not change if we permute the components

of x, i.e., for instance, when r = 3: h((x1, x2, x3)) = h((x2, x1, x3)) = h((x3, x1, x2)) = h((x1, x3, x1)) =

h((x2, x3, x1)) = h((x3, x2, x1)).
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where (i1, . . . , ir) denotes one of the
(
n
r

)
collections of unordered subsets of r distinct integers

chosen from {1, . . . , n}.

Here “U” stands for “unbiased”. The theory of U -statistics was introduced by Wassily

Hoeffding in the 1940s.

Exercise 8 (HW3): Show that if X(1), . . . , X(n) denote the values X1, . . . , Xn stripped

from their order (the order statistics in the case of real-valued variables), then Un =

E[h(X1, . . . , Xr)|X(1), . . . , X(n)]. Now, using the Rao-Blackwell theorem show that Un has

smaller variance than h(X1, . . . , Xr).

Example 4.4 (Sample variance). Let X1, . . . , Xn be i.i.d. random variables and consider

the (unbiased) sample variance:

s2
n =

1

n− 1

n∑
i=1

(Xi − X̄n)2.

Observe that

Un :=
1(
n
2

)∑
i<j

1

2
(Xi −Xj)

2 =
1

n(n− 1)

n∑
i=1

n∑
j=1

1

2
(Xi −Xj)

2 = s2
n.

by a simplification as in Example 4.161.

We will study many properties of U -statistics: Unbiasedness, lower variance, asymptotic

variance, asymptotic distribution, etc.

Example 4.5 (U -statistic of degree r = 1). U -statistic of degree r = 1 is a mean U =

n−1
∑n

i=1 h(Xi). The asymptotic normality of U is then just a consequence of the CLT.

4.1 Projection

Although the asymptotic distribution of a U -statistic of degree r = 1 can be easily obtained

by the CLT, i is not immediate how we can handle U -statistics of degree r ≥ 1. The idea

of a projection62 of a random variables becomes important in this regard.

More generally, a common method to derive the limit distribution of a sequence of statistics

Tn is to show that it is asymptotically equivalent to a sequence Sn of which the limit

61Note that U = 1
2n(n−1)

∑n
i=1

∑n
j=1

[
(Xi − X̄n)− (Xj − X̄n)

]2
= 1

n(n−1)
[n
∑n
i=1(Xi − X̄n)2

−
∑n
i=1

∑n
j=1(Xi − X̄n)(Xj − X̄n)] which yields the desired result.

62In mathematics, the Hilbert projection theorem is a famous result of convex analysis that says that

for every vector x in a Hilbert space H and every nonempty closed convex C ⊂ H, there exists a unique

vector y ∈ C for which ‖x − z‖ is minimized over the vectors z ∈ C. This is, in particular, true for any

closed subspace M of H. In that case, a necessary and sufficient condition for y is that the vector x− y be

orthogonal to M .
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behavior is known. The basis of this method is Slutsky’s lemma, which shows that the

sequence Tn = Tn−Sn+Sn converges in distribution to S if both Tn−Sn → 0 and Sn
d→ S.

Question: How do we find a suitable sequence Sn?

First, the variables Sn must be of a simple form, because the limit properties of the sequence

Sn must be known. Second, Sn must be close enough. One solution is to search for the

closest Sn of a certain predetermined form. In this chapter, “closest” is taken as closest in

square expectation.

Example 4.6 (Hájek projection). Suppose that X1, . . . , Xn are independent random vec-

tors on Rd, and let S denote the set of all variables of the form
∑n

i=1 gi(Xi), for for ar-

bitrary measurable functions gi : Rd → R with E[g2
i (Xi)] < ∞ for i ∈ {1, . . . , n}. Let

T ≡ T (X1, . . . , Xn) be a statistic with finite second moment. The projection of T onto S is

called the Hájek projection of T onto S. What is the form the Hájek projection? We will

answer this question below.

Definition 4.7 (Projection). Let T and {S : S ∈ S} be random variables (defined on

the same probability space) with finite second-moments. A random variable Ŝ is called a

projection of T onto S (or L2-projection) if Ŝ ∈ S and minimizes

S 7→ E[(T − S)2], over S ∈ S.

Often S is a linear space in the sense that α1S1 + α2S2 ∈ S for every α1, α2 ∈ R, whenever

S1, S2 ∈ S. In this case Ŝ is the projection of T if and only if T − Ŝ is orthogonal to S for

the inner product 〈S1, S2〉 = E[S1S2]. This is the content of the following theorem.

Theorem 4.8 (Projection onto a linear space). Let S be a linear space of random variables

with finite second moments. Then Ŝ is the projection of T onto S if and only if Ŝ ∈ S and

E[(T − Ŝ)S] = 0, for every S ∈ S. (83)

Every two projections of T onto S are almost surely (a.s.) equal. If the linear space S
contains the constant variables, then E[T ] = E[Ŝ] and Cov(T − Ŝ, S) = 0 for every S ∈ S.

Proof. For any S and Ŝ ∈ S,

E[(T − S)2] = E[(T − Ŝ)2] + 2E[(T − Ŝ)(Ŝ − S)] + E[(Ŝ − S)2].

If Ŝ satisfies the orthogonality condition, then the middle term is zero (by (83) as Ŝ−S ∈ S),

and we conclude that E[(T−S)2] ≥ E[(T−Ŝ)2], with strict inequality unless E[(Ŝ−S)2] = 0

(i.e., S = Ŝ a.s.). Thus, the orthogonality condition implies that Ŝ is a projection, and also

that it is unique a.s.

Conversely, for any number α ∈ R and S ∈ S,

E[(T − Ŝ − αS)2]− E[(T − Ŝ)2] = −2αE[(T − Ŝ)S] + α2E[S2].

70



If Ŝ is a projection, then this expression is nonnegative for every α. But the parabola

α 7→ −2αE[(T − Ŝ)S] + α2E[S2] is nonnegative if and only if the orthogonality condition

E[(T − Ŝ)S] = 0 is satisfied.

If the constants are in S, then the orthogonality condition implies E[(T − Ŝ)1] = 0, whence

the last assertions of the theorem follow.

The orthogonality of T − Ŝ and Ŝ yields the Pythagorean rule

E[T 2] = E[(T − Ŝ)2] + E[Ŝ2]. (84)

Now suppose a sequence of statistics Tn and linear spaces Sn is given. For each n, let

Ŝn be the projection of Tn on Sn. Then, as shown by the following result, the limiting

behavior of the sequence Tn follows from that of Ŝn and vice versa, provided the quotient

Var(Tn)/Var(Ŝn) converges to 1.

Theorem 4.9 (Asymptotic equivalence). Let Sn be linear spaces of random variables with

finite second moments that contain the constants. Let Tn be random variables with projec-

tions Ŝn onto Sn. If Var(Tn)/Var(Ŝn)→ 163, then

Rn :=
Tn − E[Tn]√

Var(Tn)
− Ŝn − E[Ŝn]√

Var(Ŝn)

p→ 0. (85)

Proof. First note that E(Rn) = 0. We will show that Var(Rn) → 0 as n → ∞, which will

complete the proof.

As Sn contain all constants, applying (83) with the constant random variable 1 we get

E[(Tn−Ŝn)1] = 0, which implies E[Tn−Ŝn] = 0. Thus, Cov(Tn−Ŝn, Ŝn) = E[(Tn−Ŝn)Ŝn] =

0 where the last equality follows from (83). Thus,

Cov(Tn, Ŝn) = Cov(Tn − Ŝn, Ŝn) + Var(Ŝn) = Var(Ŝn).

Therefore,

Var(Rn) = 2− 2Cov(Tn, Ŝn)√
Var(Tn)Var(Sn)

= 2− 2Var(Ŝn)√
Var(Tn)Var(Sn)

= 2

1−

√
Var(Ŝn)

Var(Tn)

→ 0,

as n→∞, which completes the proof.

In the preceding theorem it is essential that the Ŝn are the projections of the variables

Tn, because the condition Var(Tn)/Var(Ŝn)→ 1 for general sequences Ŝn and Tn, does not

imply anything.

63The condition Var(Tn)/Var(Ŝn)→ 1 in the theorem implies that the projections Ŝn are asymptotically

of the same size as the original Tn.
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4.1.1 The Hájek projection

Recall the setting of Example 4.6, in particular the definition of T and S. The following

result gives the form of the of T onto S.

Lemma 4.10. The projection of an arbitrary random variable T = T (X1, . . . , Xn) with

finite second moment onto Ŝ is given by

Ŝ :=

n∑
i=1

E[T |Xi]− (n− 1)E[T ]. (86)

Ŝ is called the Hájek projection of T onto S.

Proof. Note that Ŝ ∈ S. Thus it suffices to show that (83) holds. But,

E[(T − Ŝ)S] = E[(T − Ŝ)
n∑
i=1

gi(Xi)] =

n∑
i=1

E[(T − Ŝ)gi(Xi)]

=
n∑
i=1

E
[
E[(T − Ŝ)gi(Xi)|Xi]

]
=

n∑
i=1

E
[
gi(Xi)E[T − Ŝ|Xi]

]
=

n∑
i=1

E
[
gi(Xi)

(
E[T |Xi]− E[Ŝ|Xi]

)]
where for each i ∈ {1, . . . , n}, by (86),

E[Ŝ|Xi] =

n∑
j=1

E [E(T |Xj)|Xi]− (n− 1)E(T )

= (n− 1)E(T ) + E[T |Xi]− (n− 1)E(T ) = E[T |Xi]

This completes the proof.

Note that if X1, . . . , Xn are i.i.d. and T ≡ T (X1, . . . , Xn) is permutation symmetric, then

E[T |Xi = x] = E[T |X1 = x] = E[T (x,X2, . . . , Xn)] (87)

for all i ∈ {1, . . . , n} which does not depend on i (as T is permutation invariant).

Exercise 9 (HW3): Show that in this case Ŝ is also the projection of T onto the smaller set

S0 consisting of all variables of the form
∑n

i=1 g(Xi) for an arbitrary measurable function

g (with finite second moment).

4.2 U-statistics and Hájek’s projection

Recall the estimation problem (81) and our estimator (82) — the U -statistic Un. The Hájek

projection of Un is Ûn (see (86)) which leads to

Ûn − θ =
n∑
i=1

E[Un|Xi]− nθ =
r

n

n∑
i=1

h1(Xi) (88)
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where

h1(x) := E[h(x,X2, . . . , Xr)]− θ.

The first equality in (88) is the consequence of the Hájek projection principle. The second

equality is established in the proof below. The sequence
√
n(Ûn−θ) is asymptotically normal

by the CLT, provided E[h2
1(X1)] <∞. The difference between Un and Ûn is asymptotically

negligible.

Theorem 4.11 (Asymptotic normality of U -statistics). If E[h2(X1, . . . , Xr)] < ∞ and

ξ1 := Var(h1(X1)) > 0, then
√
n(Un − Ûn)

p→ 0. (89)

Hence

√
n(Un − θ) =

√
n(Ûn − θ) + op(1) =

r√
n

n∑
i=1

h1(Xi) + op(1)
d−→ N

(
0, r2Var(h1(X1))

)
where ξ1 = Var(h1(X1)) = Cov(h(X1, X2, . . . , Xr), h(X1, X

′
2, . . . , X

′
r)). Here X ′2, . . . , X

′
r are

i.i.d. having the same distribution of X1 and independent of X1, . . . , Xn.

Proof. The first task is to prove that the form of the Hájek projection Ûn is as claimed

in (88). Since the Xi’s are independent and h is permutation symmetric,

E [h(Xi1 , . . . , Xir)− θ|Xi = x] =

h1(x), if i ∈ {i1, . . . , ir}

0, if i /∈ {i1, . . . , ir}.

Thus,

E[Un − θ|Xi] =
1(
n
r

) ∑
(i1,...,ir)

h1(Xi)1{i1,...,ir}(i) =

(
n−1
r−1

)(
n
r

) h1(Xi) =
r

n
h1(Xi).

Now summing these over i yields (88). We can calculate Var(Ûn) easily as

Var(Ûn) =
r2

n2

n∑
i=1

Var(h1(Xi)) =
r2

n
ξ1. (90)

Since the random variables Yi := h1(Xi) are i.i.d. with mean zero and finite variance, by

the CLT, we have
√
n(Ûn − θ)

d→ N(0, r2ξ1).

To show (89) we will apply Theorem 4.9, and thus it is enough to show64

Var(Ûn)

Var(Un)
→ 1 (91)

64Exercise 10 (HW3): Show that (91) indeed yields (89).
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Calculating Var(Un) is a bit more involved which we do now. Note that

Var(Un) =
1(
n
r

)2 ∑
(i1,...,ir)

∑
(i′1,...,i

′
r)

Cov
(
h(Xi1 , Xi2 , . . . , Xir), h(Xi′1

, Xi′2
, . . . , Xi′r)

)
.

Let k be the number of indices in common between {i1, . . . , ir} and {i′1, . . . , i′r}. Then,

since there are
(
n
r

)
ways of choosing {i1, . . . , ir},

(
r
k

)
ways of choosing k common indices

from the choice of {i1, . . . , ir}, and then
(
n−r
r−k
)

ways of choosing the rest of the second block

{i′1, . . . , i′r}, we find that

Var(Un) =
1(
n
r

)2 r∑
k=1

(
n

r

)(
r

k

)(
n− r
r − k

)
ξk =

r∑
k=1

(
r
k

)(
n−r
r−k
)(

n
r

) ξk (92)

where65 for k ∈ {1, . . . , r},

ξk := Cov
(
h(X1, . . . , Xk, Xk+1, . . . , Xr), h(X1, . . . , Xk, X

′
k+1, . . . , X

′
r)
)
.

The expression of Var(Un) in (92) can be rewritten as

r∑
k=1

r!

k! (r − k)!
· (n− r)!

(r − k)! (n− 2r + k)!
· (n− r)! r!

n!
ξk

=
r∑

k=1

r!2

k! (r − k)!2
(n− r) · · · (n− 2r + k + 1)

n(n− 1) · · · (n− r + 1)
ξk ∼ r2ξ1

1

n
if ξ1 > 0,

as in the above sum the first term is O(1/n), the second term is O(1/n2), and so forth.

Putting this together with (92) yields (91) and completes the proof.

Example 4.12 (Asymptotic normality of sample variance). Recall the setting in Exam-

ple 4.4. Here the parameter of interest is θ = σ2 = Var(X1) and the U -statistic is the

(unbiased) sample variance Un ≡ s2
n. Let us find the asymptotic distribution of s2

n (where

r = 2). In this case h1(x) = E[1
2(x−X2)2]− σ2 = 1

2(x2 + E[X2
2 ])− xE[X2]− σ2. Thus,

22ξ1 = 4Var(h1(X1)) = Var(X2
1 − 2X1µ) = E[(X2

1 − 2X1µ)2]− (E[X2
1 ]− 2µ2)2

= E[X4
1 − 4X3

1µ+ 4X2
1µ

2]− (E[X2
1 ])2 − 4µ4 + 4E[X2

1 ]µ2

= E[X4
1 ]− 4µE[X3

1 ] + 4E[X2
1 ]µ2 − (σ2 + µ2)2 − 4µ4 + 4(σ2 + µ2)µ2

= E[X4
1 ]− 4µE[X3

1 ]− σ4 + 3µ4 + 6σ2µ2 = µ4 − σ4.

where µ4 = E[(X1 − µ)4] is the 4th central moment. So nVar(Un) → µ4 − σ4. Thus,
√
n(Un − σ2)

d→ N(0, µ4 − σ4).

65Note that from the right hand term in (92) can be expressed as E[ξK ] where ξ0 = 0 and K ∼
Hypergeometric(n, r) (sampling without replacement from an urn containing n balls, r of which are red

and n− r of which are blue), i.e.,

P(K = k) =

(
r
k

)(
n−r
r−k

)(
n
r

) for k ∈ {1, . . . , r}.
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If ξ1 = 0, we say that Un is degenerate66.

4.3 Exercises

12. Suppose we have bivariate data (X1, Y1), . . . , (Xn, Yn). The Kendall’s τ -statistic is

τ :=
4

n(n− 1)

∑
i<j

1 {(Yj − Yi)(Xj −Xi) > 0} − 1.

This statistic is a measure of dependence between X and Y and counts the number of

concordant pairs (Xi, Yi) and (Xj , Yj) in the observations. Two pairs are concordant

if the indicator in the definition of τ is equal to 1. Large values of τ indicate posi-

tive dependence (or concordance), whereas small values indicate negative dependence.

Under independence of X and Y and continuity of their distributions, the distribution

of τ is centered about zero, and in the extreme cases that all or none of the pairs are

concordant τ is identically 1 or -1, respectively.

Show that τ + 1 is a U -statistic of order 2, and find it’s asymptotic distribution.

Use this to develop an asymptotic level α test for “independence” (describe the test

explicitly).

66Exercise 11 (HW3): Suppose that X1, . . . , Xn are i.i.d. P , an unknown distribution on R, with mean

E(X1) = µ and variance σ2 = Var(X1) > 0. How would one estimate the square of the mean, θ(P ) = µ2?

Find the limiting distribution of the estimator. Suppose next that µ = E(X1) = 0. Find a nondegenerate

limiting distribution of the estimator in this case. [Hint: As E(X1X2) = µ2, it is an estimable parameter

with degree at most 2.]
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5 General linear model

The general linear model incorporates many of the most popular and useful models that arise

in applied statistics, including models for multiple regression and the analysis of variance.

The basic model can be written succinctly in matrix form as

Y = Xβ + ε (93)

where Y ∈ Rn is the observed response vector, X is an n×p matrix of known constants (also

known as the design matrix) consisting of the predictor variables, β ∈ Rp is an unknown

parameter, and ε is a random vector in Rn of unobserved errors. We will first assume (the

less stringent assumption) that the error vector ε = (ε1, . . . , εn) satisfies

E[εi] = 0, Var(εi) = σ2 (for all i) and Cov(εi, εj) = 0 for all i 6= j. (94)

Example 5.1 (Quadratic regression). In quadratic regression, the response variable is mod-

eled as a quadratic function of some explanatory variable plus a random error. Specifically,

we model the observed data {(xi, Yi)}ni=1 as

Yi = β1 + β2xi + β3x
2
i + εi, (95)

Here the explanatory variables x1, . . . , xn are taken to be known constants, β1, β2, and

β3 are the unknown parameters, and εi’s are unobserved errors satisfying (94). We can

succinctly express (95) in the form (93) with

Y =


y1

y2

...

yn

 , X =


1 x1 x2

1

1 x2 x2
2

...
...

...

1 xn x2
n

 , β =

β1

β2

β3

 , ε =


ε1

ε2
...

εn

 .

It is often more convenient to view the unknown mean of Y , namely,

µ := E[Y ] = Xβ (96)

in Rn as the unknown parameter. If c1, . . . , cp are the columns of X, then

µ = Xβ = β1c1 + . . .+ βpcp,

which shows that µ must be a linear combination of the columns of X. So µ must lie in the

vector (sub)-space

ω := span{c1, . . . , cp} = {Xβ : β ∈ Rp}. (97)

Using µ instead of β, the vector of unknown parameter is θ = (µ, σ) taking values in

Θ = ω × (0,∞).
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5.1 Estimation

To estimate β ∈ Rp it is natural to project the response vector Y ∈ Rn onto the column

space of X and define

β̂ := arg min
β∈Rp

‖Y −Xβ‖2 (98)

Here β̂ is called the least squares estimator (LSE) of β. Of course, when the rank r of X is

less than p, β̂ will not be unique67. The following fundamental result from convex analysis

can be used to characterize the LSE β̂.

Theorem 5.2 (Hilbert projection theorem). For every vector x in a Hilbert space (H, 〈·, ·〉)68

and every nonempty closed convex C ⊂ H, there exists a unique vector y ∈ C such that

y = argmin
z∈C

‖x− z‖2. (99)

This is, in particular, true for any closed subspace M ⊂ H. In that case, a necessary and

sufficient condition for y to satisfy (99) is that the vector x − y be orthogonal to M , i.e.,

〈x− y, z〉 = 0 for all z ∈M . This closest point y (to x) is called the projection of x onto C.

Applying Theorem 5.2 with H = Rn (with the usual inner product) and M = ω, we see

that

Ŷ := arg min
z∈ω
‖Y − z‖2 = arg min

z=Xβ:β∈Rp
‖Y − z‖2

is the projection of Y onto ω. The mapping Y 7→ Ŷ is linear and can be represented by an

n× n matrix P , i.e.,

Ŷ = PY,

with P called the (orthogonal) projection matrix69 onto ω. Since Ŷ ∈ ω, PŶ = Ŷ , and so

P 2Y = P (PY ) = PŶ = Ŷ = PY . Because Y can take arbitrary values in Rn, this shows

that P 2 = P (and thus the eigenvalues of P are either 0 or 1; why?). Matrices that satisfy

the equation P 2 = P are called idempotent.

Once we obtain Ŷ , we may find β̂ ∈ Rp such that Ŷ = Xβ̂. If X has full column rank p,

then β̂ is also unique.

67Since Y has mean µ, it is fairly intuitive that our data must provide some information distinguishing

between any two values for µ, since the distributions for Y under two different values for µ must be different.

Whether this also holds for β depends on the rank r of X. Since X has p columns, this rank r is at most p.

If the rank of X equals p then the mapping β 7→ Xβ is one-to-one, and each value µ ∈ ω is the image of a

unique value β ∈ Rp. But if the columns of X are linearly dependent, then a nontrivial linear combination

of the columns of X will equal zero, so Xv = 0 for some v 6= 0. But then X(β + v) = Xβ + Xv = Xβ,

and parameters β and β∗ := β + v both give the same mean µ. Here our data Y provides no information to

distinguish between parameter values β and β∗.
68See Appendix A.1 for a brief review and examples of Hilbert spaces.
69Tukey coined the term “hat matrix” for P because it puts the hat on Y .
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A convenient way to calculate β̂ and then Ŷ using calculus is to realize that all partial

derivatives of the least squares criterion ‖Y − Xβ‖2 must vanish at β = β̂70. Another

approach to characterizing β̂ and Ŷ proceeds via geometric considerations which we describe

below. Since the columns ci, for i = 1, . . . , p, of X lie in ω, the residual vector

e := Y − Ŷ (100)

must be orthogonal to every element in ω, i.e., we must have c>i e = 0, for all i = 1, . . . , p,

which implies

X>e = 0.

Since Y = Ŷ + e,

X>Y = X>(Ŷ + e) = X>Ŷ +X>e = X>Ŷ = X>Xβ̂.

If X>X is invertible71 then this gives

β̂ = (X>X)−1X>Y.

In this case

PY = Ŷ = Xβ̂ = X(X>X)−1X>Y,

and so the projection matrix P onto ω can be written as

P = X(X>X)−1X>.

Thus P is symmetric.

5.2 Gauss-Markov theorem

Recall the setting (93) where ε satisfies (94). One of the most famous results in statistics

asserts that the LSE of β have the smallest variance among all linear unbiased estimates.

We will make this precise here72. We focus on estimation of any linear combination of the

parameter β, e.g.,

ξ := b>β

70Exercise 13 (HW3): Using this approach find expressions for β̂ and then Ŷ .
71The matrix X>X is invertible iff X has full column rank, i.e., r = p (here rank(X) = r). In fact, X>X

is positive definite in this case. To see this, let v ∈ Rp be an eigenvector of X>X with ‖v‖ = 1 and eigenvalue

λ. Then

‖Xv‖2 = v>X>Xv = λv>v = λ,

which must be strictly positive since Xv = c1v1 + . . . + cpvp cannot be zero if X has full column rank (as

v 6= 0).
72We should also make clear that the restriction to unbiased estimates is not necessarily a wise one. This

observation will lead to considering biased estimates of β such as ridge regression.
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with b ∈ Rp being a fixed vector. For example, when b is the j’th unit vector (i.e., b =

(0, . . . , 0, 1, 0, . . . , 0) ∈ Rp with 1 being in the j’th place) we are interested in estimating βj ,

for j ∈ {1, . . . , p}.

It is natural to estimate ξ by an estimator of the form a>Y = a1Y1 + . . .+ anYn, for some

a ∈ Rn. Such an estimator is called a linear estimate (as the estimator is a linear function

of Y ).

Question: Among all linear unbiased estimators of ξ which one has the smallest variance?

The following result answers this questions.

Theorem 5.3 (Gauss-Markov theorem). Suppose that X>X is invertible, and

E[Y ] = Xβ and Var(Y ) = σ2In.

Then b>β̂ = b>(X>X)−1X>Y is unbiased and has uniformly minimum variance among all

linear unbiased estimators of η.

Proof. Let δ = a>Y be a competing linear unbiased estimator. Observe that if δ = a>Y is

an unbiased estimator of η, then we must have

b>β = η = E[a>Y ] = a>Xβ for all β ∈ Rp. (101)

Therefore, a>X = b. Note that

Var(a>Y ) = Var(b>β̂ + (a>Y − b>β̂))

= Var(b>β̂) + Var(a>Y − b>β̂) + 2Cov(b>β̂, a>Y − b>β̂).

Now,

Cov(b>β̂, a>Y − b>β̂) = Cov
(
b>(X>X)−1X>Y , [a> − b>(X>X)−1X>]Y

)
= [b>(X>X)−1X>] (σ2In) [a−X(X>X)−1b]

= σ2b>(X>X)−1
[
X>a−X>X(X>X)−1b

]
= σ2b>(X>X)−1

[
X>a− b

]
= 0

as a>X = b (from (101)). Therefore,

Var(a>Y ) = Var(b>β̂) + Var(a>Y − b>β̂) ≥ Var(b>β̂),

which completes the proof.

In fact, the above idea generalizes to estimating w>µ for any fixed w ∈ Rn (recall that

µ = E[Y ] = Xβ). A natural linear unbiased estimator of w>µ is w>Ŷ , as

E[w>Ŷ ] = w>E[PY ] = w>P (Xβ) = w>Xβ = w>µ.
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Exercise 14 (HW3): Consider estimating w>µ, where w ∈ Rn is a known vector. Show

that w>Ŷ has the smallest variance among all linear unbiased estimators of w>µ. As a

consequence of the above (re)-derive Theorem 5.3.

Although w>Ŷ is the “best” linear unbiased estimate (BLUE), in nonlinear estimates can

be more precise at times. The following exercise demonstrates this.

Exercise 15 (HW3): Suppose that Yi = β + εi for i = 1, . . . , n where ε1, . . . , εn are i.i.d.

with common density f(x) = e−
√
2|x|/σ

σ
√

2
, for x ∈ R. Shows that the conditions of the Gauss-

Markov theorem are satisfied. Further, show that the sample median has roughly (for large

n) half the variance of β̂.

5.3 Normal linear model

In the last subsection we saw that just assuming uncorrelatedness and homoscedasticity of

the errors (i.e., (94)) was enough to make β̂ the BLUE of β. However, for exact inference

(i.e., hypothesis testing and confidence intervals) we need to make distributional assump-

tions on ε. We usually assume that ε1, . . . , εn are i.i.d. N(0, σ2), with σ > 0 an unknown

parameter, so that

ε ∼ N(0, σ2In).

This leads to the normal linear model

Y ∼ N(Xβ, σ2In). (102)

5.3.1 Canonical form

Many results about testing (and estimation) in the general linear model follow easily once

the data are expressed in a canonical form. Let v1, . . . , vn be an orthonormal basis for

Rn, chosen so that v1, . . . , vr span ω (as defined in (97)). Then, the data vector Y can be

expressed as

Y = Z1v1 + . . .+ Znvn. (103)

Algebraically, Z = (Z1, . . . , Zn) can be found introducing an n × n orthogonal matrix A

with columns v1, . . . , vn. Then A is an orthogonal matrix, i.e., A>A = AA> = In, and Y

and Z are related by

Y = AZ or Z = A>Y.

Since Y = µ+ ε, Z = A>(µ+ ε) = A>µ+A>ε. If we define

η := A>µ and ε∗ := A>ε,
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then

Z = η + ε∗ ⇒ Z ∼ N(η, σ2In),

as ε∗ ∼ N(0, σ2In). Next, recalling that c1, . . . , cp are the columns of the design matrix X,

we have µ = Xβ =
∑p

i=1 βici and

η = A>µ =


v>1
...

v>n

 p∑
i=1

βici =


∑p

i=1 βiv
>
1 ci

...∑p
i=1 βiv

>
n ci

 .

Since c1, . . . , cp all lie in ω, and vr+1, . . . , vn all lie in ω⊥, we have v>k ci = 0 for k > r and

i = 1, . . . , p, and thus

ηr+1 = · · · = ηn = 0.

Now, using η = A>µ,

µ = Aη = [v1 · · · vn][η1, . . . , ηr, 0 . . . 0]> =

r∑
i=1

ηivi. (104)

This establishes a one-to-one relation between points µ ∈ ω and (η1, . . . , ηr) ∈ Rr. Since

Z ∼ N(η, σ2In), the variables Z1, . . . , Zn are independent with Zi ∼ N(ηi, σ
2). The density

of Z, taking advantage of the fact that ηr+1 = . . . = ηn = 0, is

fZ(z1, . . . , zn) =
1

(2πσ2)2
exp

[
− 1

2σ2

r∑
i=1

(zi − ηi)2 − 1

2σ2

n∑
i=r+1

z2
i

]
(105)

= exp

[
− 1

2σ2

n∑
i=1

z2
i +

1

σ2

r∑
i=1

ziηi −
1

2σ2

r∑
i=1

η2
i −

n

2
log(2πσ2)

]
. (106)

These densities form a full rank (r+1)-parameter exponential family with complete sufficient

statistic (
Z1, . . . , Zr,

n∑
i=r+1

Z2
i

)
.

Exploiting the canonical form, many parameters are easy to estimate. Because E[Zi] =

ηi, i = 1, . . . , r, Zi is the UMVU estimator of ηi, for i = 1, . . . , r.

Exercise 16 (HW3): Find the UMVU estimator of w>µ, where w ∈ Rn is a fixed vector. In

particular, find the UMVU estimator of b>β, where b ∈ Rp is a fixed vector (assuming X

has full column rank).

5.3.2 Estimating σ2

From the above discussion, Zr+1, . . . , Zn are i.i.d. from N(0, σ2). Thus E[Z2
i ] = σ2, for

i = r + 1, . . . , n, and the average of these variables,

S2 :=
1

n− r

n∑
i=r+1

Z2
i (107)
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is an unbiased estimator of σ2. But S2 is a function of the complete sufficient statistic

(Z1, . . . , Zr,
∑n

i=1 Z
2
i ), and so S2 is the UMVU estimator of σ2. The estimator S2 can be

computed from the length of the residual vector e = Y − Ŷ in (100). To see this, first

observe that, from (103)

Ŷ = PY = PAZ = [Pv1
... · · ·

...Pvn]Z = [v1
... · · ·

...vr
...0

... · · ·
...0]Z =

r∑
i=1

Zivi (108)

and from (104), we have

‖e‖2 = e>e =

(
n∑

i=r+1

Ziv
>
i

)(
n∑

i=r+1

Zivi

)
=

n∑
i=r+1

n∑
i=r+1

ZiZjv
>
i vj =

n∑
i=r+1

Z2
i (109)

as v1, . . . , vn is an orthonormal basis, v>i vj = δij (where δij equals 0if i 6= j and equals 1

when i = j).

As µ̂ ≡ Ŷ is a function of Z1, . . . , Zr, and the residual e is a function of Zr+1, . . . , Zn, S2 and

µ̂ are independent. Also, using the above, and the definition of the chi-square distribution,

(n− r)S2

σ2
=

n∑
i=r+1

(Zi/σ)2 ∼ χ2
n−r,

since Zi/σ ∼ N(0, 1), for i = r + 1, . . . , n.

The distribution theory just presented can be used to set confidence intervals for linear

estimators. If a is a constant vector in Rn, then the variance of (unbiased) LSE a>µ̂ of a>µ

is σ2‖Pa‖2, which is naturally estimated as σ̂a>µ̂ := S‖Pa‖.

Exercise 17 (HW3): Show that in the general linear model with Y ∼ N(µ, σ2In), µ ∈ ω,

and σ2 > 0, (
a>µ̂− σ̂a>µ̂tα/2,n−r, a>µ̂+ σ̂a>µ̂tα/2,n−r

)
is a 1 − α confidence interval for a>µ. In particular, when X has full column rank, find a

1− α confidence interval for βi, for i = 1, . . . , p.

5.3.3 Noncentral F and chi-square distributions

Distribution theory for testing in the general linear model relies on noncentral F and chi-

square distributions.

Definition 5.4 (Noncentral chi-square distribution). If Z1, . . . , Zk are independent and

δ ≥ 0 with

Z1 ∼ N(δ, 1) and Zj ∼ N(0, 1), j = 2, . . . , k,

then W :=
∑k

i=1 Z
2
i has the noncentral chi-square distribution with noncentrality parameter

δ2 and k degrees of freedom, denoted by

W ∼ χ2
k(δ

2).
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Lemma 5.5. If Z ∼ N(γ, Ik), then Z>Z ∼ χ2
k(‖γ‖2).

Proof. Let B be an k × k orthogonal matrix where the first row is γ>/‖γ‖, so that γ̃ :=

Bγ = (‖γ‖, 0, . . . , 0) ∈ Rk. Then, Z̃ := BZ ∼ N(γ̃, Ik). As Z̃>Z̃ =
∑k

i=1 Z̃
2
i ∼ χ2

k(‖γ‖2),

the lemma follows as Z̃>Z̃ = Z>B>BZ = Z>Z.

The next lemma shows that certain quadratic forms for multivariate normal vectors have

noncentral chi-square distributions.

Lemma 5.6. If Σ is a k × k positive definite matrix and if Z ∼ N(γ,Σ), then

Z>Σ−1Z ∼ χ2
k(γ
>Σ−1γ).

Proof. Let A := Σ−1/2, the symmetric square root of Σ−1 [This can be found by writing

Σ = V DV > where V is an orthogonal matrix (so that V V > = I) and D is diagonal, and

defining Σ1/2 = V D1/2V >, where D1/2 is diagonal with entries the square roots of the

diagonal entries of D. Then Σ1/2 is symmetric and Σ1/2Σ1/2 = Σ.].

Then AZ ∼ N(Aγ, Ik), and so

Z>Σ−1Z = (AZ)>(AZ) ∼ χ2
k(‖Aγ‖2).

The lemma now follows as ‖Aγ‖2 = (Aγ)>(Aγ) = γ>AAγ = γ>Σ−1γ.

Definition 5.7 (Noncentral F -distribution). If V and W are independent variables with

V ∼ χ2
k(δ

2) and W ∼ χ2
m, then

V/k

W/m
∼ Fk,m(δ2),

the noncentral F -distribution with degrees of freedom k and m and noncentrality parameter

δ2. When δ2 = 0 this distribution is simply called the F -distribution, Fk,m.

5.4 Testing in the general linear model

In the general linear model, Y ∼ N(µ, σ2In) with the mean µ = Xβ =
∑p

i=1 βici in a linear

subspace ω with dimension r. In this subsection we consider testing

H0 : µ ∈ ω0 versus H1 : µ ∈ ω \ ω0

with ω0 being a q-dimensional linear subspace of ω, with 0 ≤ q < r. Null hypotheses

of this form arise when β satisfies linear constraints. For instance we might want to test

H0 : β1 = β2 or H0 : β1 = 0. Note that H0 : β1 = β2 is equivalent to µ ∈ span{c1 +

c2, c3, . . . , cp} =: ω0 ⊂ ω and H0 : β1 = 0 is equivalent to µ ∈ span{c2, c3, . . . , cp}.
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Let µ̂ and µ̂0 denote LSEs for µ under the full model and under H0. Specifically,

µ̂ ≡ Ŷ = PY and µ̂0 = P0Y,

where P and P0 are the projection matrices onto ω and ω0. The test statistic of interest

is based on ‖Y − µ̂‖, the distance between Y and ω, and ‖Y − µ̂0‖, the distance between

Y and ω0. Because ω0 ⊂ ω, the former distance must be smaller, but if the distances are

comparable, then at least qualitatively H0 may seem adequate. The test statistic is

T =
n− r
r − q

‖Y − µ̂0‖2 − ‖Y − µ̂‖2

‖Y − µ̂‖2
, (110)

and H0 will be rejected if T exceeds a suitable constant. Noting that Y − µ̂ ∈ ω⊥ and

µ̂ − µ̂0 ∈ ω, the vectors Y − µ̂ and µ̂ − µ̂0 are orthogonal, and the squared length of their

sum, by the Pythagorean theorem, is

‖Y − µ̂0‖2 = ‖Y − µ̂‖2 + ‖µ̂− µ̂0‖2.

Using this, the formula for T can be rewritten as

T =
n− r
r − q

‖µ̂− µ̂0‖2

‖Y − µ̂‖2
=
‖µ̂− µ̂0‖2

(r − q)S2
,

where we have used (107) and (109)73. For level and power calculations we need the distri-

bution of T which is given in the next result.

Theorem 5.8. Under the normal linear model,

T ∼ Fr−q,n−r(δ2),

where

δ2 := ‖µ− P0µ‖2/σ2. (111)

Proof. Write Y =
∑n

i=1 Zivi, where v1, . . . , vn is an orthonormal basis chosen so that

v1, . . . , vq span ω0 and v1, . . . , vr span ω. Then, as in (108),

µ̂0 =

q∑
i=1

Zivi and µ̂ =
r∑
i=1

Zivi.

We know that Z ∼ N(η, σ2In) with ηr+1 = · · · = ηn = 0. Since v>i vj is zero when i 6= j and

one when i = j,

‖Y − µ̂‖2 =
∥∥∥ n∑
i=r+1

Zivi

∥∥∥2
=

n∑
i=r+1

Z2
i .

73Exercise 18 (HW3): Show that this test statistic is equivalent to the generalized likelihood ratio test

statistic. Show that when r − q = 1 the test is UMPU.
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Similarly,

‖Y − µ̂0‖2 =
∥∥∥ n∑
i=q+1

Zivi

∥∥∥2
=

n∑
i=q+1

Z2
i ,

and so,

T =

1
r−q

∑r
i=q+1(Zi/σ)2

1
n−r

∑n
i=r+1(Zi/σ)2

.

The variables Zi are independent, and so the numerator and denominator in this formula for

T are independent. Because Zi/σ ∼ N(ηi/σ, 1), by Lemma 5.5,
∑r

i=q+1(Zi/σ)2 ∼ χ2
r−q(δ

2)

where

δ2 :=

r∑
i=q+1

η2
i /σ

2. (112)

Also, since ηi = 0 for i = r+1, . . . , n, Zi/σ ∼ N(0, 1), i = r+1, . . . , n, and so
∑n

i=r+1(Zi/σ)2 ∼
χ2
n−r. So by Definition 5.7 for the noncentral F -distribution, T ∼ Fr−q,n−r(δ

2). To com-

plete the proof we must show that (111) and (112) agree, or that
∑r

i=q+1 η
2
i = ‖µ− P0µ‖2.

Since µ = E[Ŷ ] =
∑r

i=1 ηivi, and P0µ = E[P0Y ] = E[µ̂0] =
∑q

i=1 ηivi, we have

µ− P0µ =
r∑

i=q+1

ηivi.

The result now follows as ‖µ− P0µ‖2 =
∑r

i=q+1 η
2
i .

5.5 Exercises

19. Consider a general linear model Y ∼ N(µ, σ2In), µ ∈ ω, σ2 > 0 with dim(ω) = r.

Define ψ = Aµ ∈ Rq where q < r, and assume A = AP where P is the projection

onto ω, so that ψ̂ := Aµ̂ = AY , and that A has full rank q. The F -test derived in

Section 5.4 allows us to test ψ = 0 versus ψ 6= 0. Modify that theory and give a

level α test of H0 : ψ = ψ0 versus H1 : ψ 6= ψ0 with ψ0 some constant vector in Rq.
[Hint: Let Y ∗ := Y − µ0 with µ0 ∈ ω and Aµ0 = ψ0. Then the null hypothesis will

be H0 : Aµ∗ = 0 where µ∗ = µ− µ0.]
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6 M-estimation (or empirical risk minimization)

Suppose that we are interested in a parameter (or “functional”) θ attached to the distribu-

tion of the observations X1, . . . , Xn i.i.d. P taking values in some space X (e.g., a metric

space). A popular method (in statistics and machine learning) for finding an estimator

θ̂n ≡ θ̂(X1, . . . , Xn) is to maximize a criterion function of the type

θ̂n := arg max
θ∈Θ

Mn(θ) where Mn(θ) = Pn[mθ] =
1

n

n∑
i=1

mθ(Xi). (113)

where Pn denotes the empirical measure74. Here Θ denotes the parameter space and, for

each θ ∈ Θ, mθ denotes the a real-valued function on X (usually −mθ is thought of as a

“loss” function). Such a quantity θ̂n is called an M -estimator as it is obtained by maximizing

(or minimizing) an objective function. The map

θ 7→ Pn[−mθ] =
1

n

n∑
i=1

[−mθ(Xi)]

can be thought of as the “empirical risk” and θ̂n denotes the empirical risk minimizer over

θ ∈ Θ. Here are some examples:

1. Maximum likelihood estimators: These correspond to mθ(x) = log pθ(x).

2. Location estimators:

(a) Median: corresponds to mθ(x) = |x− θ|.

(b) Mode: may correspond to mθ(x) = 1{|x− θ| ≤ 1}.

3. Nonparametric maximum likelihood: Suppose X1, . . . , Xn are i.i.d. from a den-

sity θ(·) on [0,∞) that is known to be nonincreasing. Then take Θ to be the collection

of all nonincreasing densities on [0,∞) and mθ(x) = log θ(x). The corresponding M -

estimator is the MLE over all non-increasing densities. It can be shown that θ̂n exists

and is unique; θ̂n is usually known as the Grenander estimator.

4. Regression estimators: Let {Xi = (Zi, Yi)}ni=1 denote i.i.d. from a regression model

and let

mθ(x) = mθ(z, y) := −(y − θ(z))2,

74Suppose now that X1, . . . , Xn are i.i.d. P on X . Then the empirical measure Pn is defined by Pn :=
1
n

∑n
i=1 δXi , where δx denotes the Dirac measure at x. For each n ≥ 1, Pn denotes the random discrete

probability measure which puts mass 1/n at each of the n data points X1, . . . , Xn. Thus, for any Borel set

A ⊂ X , Pn(A) := 1
n

∑n
i=1 1A(Xi) = #{i≤n:Xi∈A}

n
. For a real-valued function f on X , we write

Pn(f) :=

∫
fdPn =

1

n

n∑
i=1

f(Xi).
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for a class θ ∈ Θ of real-valued functions from the domain of Z75. This gives the usual

least squares estimator over the class Θ. The choice mθ(z, y) = −|y − θ(z)| gives the

least absolute deviation estimator over Θ.

In these problems, the (true value of the) parameter of interest is

θ0 := arg max
θ∈Θ

M(θ) where M(θ) := P [mθ] = EX∼P [mθ(X)]. (114)

Perhaps the simplest general way to see that θ̂n (in (113)) is a reasonable estimator of θ0 is

to reason as follows. By the law of large numbers, we can approximate the ‘risk’ for a fixed

parameter θ by the empirical risk which depends only on the data, i.e.,

Pn[mθ] ≈ P [mθ], i.e., Mn(θ) ≈M(θ).

However, the pointwise convergence Mn(θ)
p→ M(θ), for all θ ∈ Θ, is too weak to ensure

the convergence of their maximizers (see e.g., Figure 2).

If Mn(θ) and Mn(θ) are uniformly close, then maybe their argmax’s θ̂n and θ0 are close.

This naturally leads to the investigation of quantities such as the uniform deviation

sup
θ∈Θ
|Mn(θ)−M(θ)| = sup

θ∈Θ
|(Pn − P )[mθ]|. (115)

The study of such deviations, uniformly over finite/infinite dimensional parameter spaces Θ,

is the main topic of the subject empirical process theory, a full study of which is beyond the

scope of the current course. However, in this chapter we will develop some basic tools and

work under (slightly) restrictive assumptions (on the functions Mn,M) to try to provide

some intuition for the main ideas. Here is the motivation example.

Example 6.1 (Sample median). Suppose X1, . . . , Xn are i.i.d. observations from a contin-

uous density f with median θ0 and variance 1 (such that f(θ0) > 0). Let θ̂n be a sample

median based on X1, . . . , Xn that is defined as any minimizer of

Mn(θ) :=
1

n

n∑
i=1

|Xi − θ| = Pn[| · −θ|] (116)

over θ ∈ R. Here are a few questions about θ̂n that we would like to answer in this chapter:

(i) Is θ̂n consistent for estimating θ0? (ii) What is the asymptotic distribution of θ̂n? (iii)

Can we develop a theory to study such M -estimators where the objective function Mn(·) is

not differentiable everywhere?

Remark 6.1 (Z-estimators). Often the maximizing value of Mn is sought by setting a

derivative (or the set of partial derivatives in the multidimensional case) equal to zero, i.e.,

Ψn(θ) := Pn[ψθ] = 0, (117)

75In the simplest setting we could parametrize θ(·) as θβ(z) := β>z, for β ∈ Rd, in which case Θ = {θβ(·) :

β ∈ Rd}.
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where ψθ(x) := ∇θmθ(x). These are estimating equations (and need not correspond to a

maximization problem) and the corresponding estimator is called a Z-estimator (as it solves

the ‘zero’ of an equation). We can also develop a theory of Z-estimators, although we will

be more concerned with M -estimators in this chapter.

6.1 Consistency of M-estimators

If θ̂n (as defined in (113)) is used to estimate the parameter θ0 (in (139)), then it is certainly

desirable that the sequence θ̂n converges in probability to θ0, i.e., θ̂n be consistent.

Here we assume that Θ is a metric space with the metric d(·, ·). We want to show that

d(θ̂n, θ0)
p→ 0 (118)

As we have seen in (115), to study the consistency of θ̂n we have to deal will the uniform

convergence of the empirical measure for the class of functions F := {mθ(·) : θ ∈ Θ}, or a

subset thereof.

6.1.1 Glivenko-Cantelli (GC) classes of functions

Suppose that X1, . . . , Xn are i.i.d. random variables taking values in the space X with

probability measure P . Let F be a class of measurable functions from X to R. The main

object of study in this section is to obtain probability estimates of the random quantity

‖Pn − P‖F := sup
f∈F
|Pnf − Pf |.

The law of large numbers says that Pnf → Pf almost surely, as soon as the expectation

Pf exists. A class of functions is called Glivenko-Cantelli if this convergence is uniform in

the functions belonging to the class.

Definition 6.2. A class F of measurable functions f : X → R with P |f | < ∞ for every

f ∈ F is called Glivenko-Cantelli76 (GC) if

‖Pn − P‖F := sup
f∈F
|Pnf − Pf | → 0, in probability.

However, uniform convergence of Mn to M is not enough to guarantee (118). We will

further need to assume that θ0 is a well separated maximizer77 of M(·) (see Figure 2), i.e.,

76As the Glivenko-Cantelli property depends on the distribution P of the observations, we also say, more

precisely, P -Glivenko-Cantelli.
77This is an identifiability condition which says that approximately maximizing M(θ) unambiguously

specifies θ0. This condition holds if M(·) has a unique maximizer, Θ is compact, and M(·) is continuous.
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Figure 2: An example of a function whose point of maximum is not well separated.

for every δ > 0, M(θ0) > supθ∈Θ:d(θ,θ0)≥δM(θ). Fix δ > 0 and let

ψ(δ) := M(θ0)− sup
θ∈Θ:d(θ,θ0)≥δ

M(θ) > 0.

Observe that,

{d(θ̂n, θ0) ≥ δ} ⇒ M(θ̂n) ≤ sup
θ∈Θ:d(θ,θ0)≥δ

M(θ)

⇔ M(θ̂n)−M(θ0) ≤ −ψ(δ)

⇒ M(θ̂n)−M(θ0) + (Mn(θ0)−Mn(θ̂n)) ≤ −ψ(δ)

⇒ 2 sup
θ∈Θ
|Mn(θ)−M(θ)| ≥ ψ(δ). (119)

Therefore,

P
(
d(θ̂n, θ0) ≥ δ

)
≤ P

(
sup
θ∈Θ
|Mn(θ)−M(θ)| ≥ ψ(δ)/2

)
→ 0

if F is P -Glivenko Cantelli.

However, as we will see later, showing that F is GC is not always easy when Θ is not a

compact set78. When Θ is not a compact set, the following lemma may be used to reduce

the problem to showing GC property only over a compact subset of Θ, by using a concavity

assumption.

Lemma 6.3 (When mθ is concave). Suppose that Θ is a convex subset of Rk, and that

θ 7→ mθ(x), is concave79, for all x ∈ X . We assume that θ0 (as defined in (139)) exists and

is unique. Suppose that for some ε > 0,

sup
θ∈Θ:‖θ−θ0‖≤ε

|Mn(θ)−M(θ)| p→ 0. (120)

Then θ̂n
p→ θ0.

78We can get around the problem by restricting to a compact set where most of the mass of P lies, and

showing that this does not affect the asymptotics. However, this needs techniques that are problem specific.
79A function g : Θ→ R is concave if for any u, v ∈ Θ and α ∈ [0, 1],

g(αu+ (1− α)v) ≥ αg(u) + (1− α)g(v).
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Proof. Let us define

α :=
ε

ε+ ‖θ̂n − θ0‖
∈ (0, 1] and θ̃n := αθ̂n + (1− α)θ0. (121)

The idea of the proof is to compare Mn(θ̃n) (instead of Mn(θ̂n)) with Mn(θ0).

Note that by (121), θ̃n − θ0 = α(θ̂n − θ0), and thus, for any δ > 0, using arguments similar

to in (119), we have

{‖θ̃n − θ0‖ ≥ δ} ⇒ M(θ̃n) ≤ sup
θ∈Θ:‖θ−θ0‖≥δ

M(θ)

⇔ M(θ̃n)−M(θ0) ≤ −ψ(δ)

⇒ M(θ̃n)−M(θ0) + (Mn(θ0)−Mn(θ̃n)) ≤ −ψ(δ)

⇒ 2 sup
θ∈Θ:‖θ−θ0‖≤ε

|Mn(θ)−M(θ)| ≥ ψ(δ)

where we have used the facts: (i) Mn(θ0)−Mn(θ̃n) ≤ 0 and (ii) ‖θ̃n− θ0‖ ≤ ε. Note that (i)

follows from the observation that Mn(·) is a concave function (as a sum of concave functions

is also concave), and thus,

Mn(θ̃n) = Mn

(
αθ̂n + (1− α)θ0

)
≥ αMn(θ̂n) + (1− α)Mn(θ0)

which implies that

Mn(θ̃n)−Mn(θ0) ≥ α
(
Mn(θ̂n)−Mn(θ0)

)
≥ 0,

as θ̂n maximizes Mn(·).

To show (ii), observe that, if ‖θ̂n − θ0‖ 6= 0, then

‖θ̃n − θ0‖ = α‖θ̂n − θ0‖ ≤
ε

‖θ̂n − θ0‖
‖θ̂n − θ0‖ ≤ ε.

Therefore,

P
(
‖θ̃n − θ0‖ ≥ δ

)
≤ P

(
sup

θ∈Θ:‖θ−θ0‖≤ε
|Mn(θ)−M(θ)| ≥ ψ(δ)

2

)
→ 0

by the assumption in the lemma. Thus, θ̃n
p→ θ0. But then also,

‖θ̂n − θ0‖ =
ε‖θ̃n − θ0‖
ε− ‖θ̃n − θ0‖

p→ 0.
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6.1.2 Bracketing numbers

Let (F , ‖ · ‖) be a subset of a normed space of real functions f : X → R on some set X .

We are mostly thinking of Lr(Q)-spaces for probability measures Q, i.e., the Lr(Q)-norm

is ‖f‖Q,r =
(∫
|f |rdQ

)1/r
.

Recall that a cover of a set F is a collection of sets whose union includes F as a subset.

Formally, if C = {Uα : α ∈ A} is an indexed family of sets Uα, then C is a cover of F if

F ⊆
⋃
α∈A Uα.

Definition 6.4 (ε-bracket). Given two functions l(·) and u(·), the bracket [l, u] is the set

of all functions f ∈ F with l(x) ≤ f(x) ≤ u(x), for all x ∈ X . An ε-bracket is a bracket

[l, u] with ‖u− l‖ < ε.

Definition 6.5 (Bracketing numbers). The bracketing number N[ ](ε,F , ‖ · ‖) is the mini-

mum number of ε-brackets needed to cover F .

In the definition of the bracketing number, the upper and lower bounds u and l of the

brackets need not belong to F themselves but are assumed to have finite norms.

Example 6.6. (Distribution function). Suppose that X1, . . . , Xn are i.i.d. P on R with

c.d.f. F . When F is equal to the collection of all indicator functions of the form ft(·) =

1(−∞,t](·), with t ranging over R, then

‖Pn − P‖F := sup
f∈F
|Pnf − Pf | = sup

t∈R
|Fn(t)− F (t)|

where Fn is the empirical distribution function.

Consider brackets of the form [1(−∞,ti−1],1(−∞,ti)] for grid points −∞ = t0 < t1 < · · · <
tk =∞ with the property F (ti−)− F (ti−1) < ε for each i (points at which F jumps more

than ε are points of the partition). These brackets have L1(P )-size ε. Their total number

k can be chosen smaller than 3/ε (for ε small)80.

6.1.3 GC by bracketing

Theorem 6.7. Let F be a class of measurable functions such that N[ ](ε,F , L1(P )) < ∞
for every ε > 0. Then F is Glivenko-Cantelli.

Proof. Fix ε > 0. Choose finitely many ε-brackets [li, ui] whose union contains F and such

that P (ui − li) < ε, for every i. Then, for every f ∈ F , there is a bracket such that

(Pn − P )f ≤ (Pn − P )ui + P (ui − f) ≤ (Pn − P )ui + ε.

80Exercise 1 (HW4): Show this.
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Consequently,

sup
f∈F

(Pn − P )f ≤ max
i

(Pn − P )ui + ε.

The right side converges almost surely (a.s.) to ε by the strong law of large numbers for

real variables. Thus, lim supn→∞ supf∈F (Pn − P )f ≤ ε a.s. A similar argument also yields

(Pn − P )f ≥ (Pn − P )li + P (li − f) ≥ (Pn − P )li − ε

⇒ inf
f∈F

(Pn − P )f ≥ min
i

(Pn − P )li − ε.

Thus, by SLLN we can show that lim supn→∞[− inff∈F (Pn − P )f ] ≤ ε a.s. As,

sup
f∈F
|(Pn − P )f | = max

{
sup
f∈F

(Pn − P )f,− inf
f∈F

(Pn − P )f

}
,

we see that lim sup ‖Pn − P‖F ≤ ε a.s., for every ε > 0. This is true for every ε and hence

the limit superior is zero, yielding the desired result.

Example 6.8. (Distribution function). The previous proof generalizes a well-known proof

of the classical GC theorem for the empirical distribution function on the real line. Indeed,

the set of indicator functions of cells (−∞, c] possesses finite bracketing numbers for any

underlying distribution; simply use the brackets
[
1(−∞,ti−1],1(−∞,ti)

]
for a grid of points

−∞ = t0 < t1 < . . . < tk = +∞ with the property P (ti−1, ti) < ε for each i = 1, . . . , k.

Example 6.9 (Pointwise compact class). Let F = {mθ(·) : θ ∈ Θ} be a collection of

measurable functions with integrable envelope81 function F indexed by a compact metric

space Θ such that the map θ 7→ mθ(x) is continuous for every x. Then the bracketing

numbers of F are finite and hence F is Glivenko-Cantelli.

We can construct the brackets in the obvious way in the form [mB,m
B], where B ⊂ Θ is

an open ball and mB and mB are the infimum and supremum of mθ for θ ∈ B, respectively

(i.e., mB(x) = infθ∈Bmθ(x), and mB(x) = supθ∈Bmθ(x)).

Given a sequence of balls Bk with common center a given θ ∈ Θ and radii decreasing to 0,

we have mBk −mBk ↓ mθ −mθ = 0 by the continuity, pointwise in x, and hence also in L1

by the dominated convergence theorem and the integrability of the envelope. Thus, given

ε > 0, for every θ ∈ Θ there exists a ball B around θ such that the bracket [mB,m
B] has

size at most ε. By the compactness of Θ82, the collection of balls constructed in this way

has a finite subcover. The corresponding brackets cover F . This construction shows that

the bracketing numbers are finite, but it gives no control on their sizes.

An example of such a class would be the log-likelihood function of a parametric model

{pθ(x) : θ ∈ Θ}, where Θ ⊂ Rk is assumed to be compact and θ 7→ pθ(x) is assumed to be

continuous in θ, for every x.
81An envelope function of a class F is any function x 7→ F (x) such that |f(x)| ≤ F (x), ∀ x ∈ X , f ∈ F .
82A topological space Θ is said to be compact if every open cover has a finite subcover.
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Example 6.10 (Back to Example 6.1). We can now use Lemma 6.3, coupled with Exam-

ple 6.9 and Theorem 6.7, to show that the sample median θ̂n, defined as the minimizer

of (116), converges in probability to the population median θ0 := argminθ∈R E[|X − θ|]
(which is assumed to be unique).

To use Lemma 6.3 to show θ̂n
p→ θ0 we only need to verify (120). Here, we can take

mθ(x) := −(|x − θ| − |x|), for θ ∈ [θ0 − 1, θ0 + 1]. Note that θ̂n = argmaxθ∈R Pn[mθ]

and θ0 = argmaxθ∈R P [mθ]. As F = {mθ : |θ − θ0| ≤ 1} is a collection of functions with

integrable envelope G(x) := sup|θ−θ0|≤1 |mθ(x)| ≤ θ0 + 1 such that θ 7→ mθ(x) is continuous

for every x, by Example 6.9, N[ ](ε,F , L1(P )) <∞, and thus Theorem 6.7 yields (120).

6.2 Asymptotic normality of Z-estimators

Suppose that θ̂n is consistent for θ0. The next question of interest concerns the order

at which the discrepancy θ̂n − θ0 converges to zero. The answer depends on the specific

situation, but for estimators based on n replications of an experiment the order is often

n−1/2. Then multiplication with the inverse of this rate creates a proper balance, and the

sequence n1/2(θ̂n−θ0) converges in distribution, most often to a normal distribution. This is

interesting from a theoretical point of view. It also makes it possible to obtain approximate

confidence sets.

In this section we derive the asymptotic normality of Z-estimators. We can use a charac-

terization of M -estimators either by maximization or by solving estimating equations (as

in Remark 6.1). Consider the second possibility first. For θ ∈ Θ, let

Ψn(θ) :=
1

n

n∑
i=1

ψθ(Xi) = Pn[ψθ], and Ψ(θ) := P [ψθ],

where ψθ(x) := ∇θmθ(x).

6.2.1 Heuristic proof of asymptotic normality of Z-estimators

Assume that θ̂n is a zero of Ψn and converges in probability to θ0, a zero of Ψ. As θ̂n
p→ θ0,

it makes sense to expand Ψn(θ̂n) in a Taylor series around θ0. Assume for simplicity that

Θ ⊂ R, i.e., θ is one-dimensional. Then,

0 = Ψn(θ̂n) = Ψn(θ0) + (θ̂n − θ0)Ψ̇n(θ0) +
1

2
(θ̂n − θ0)2Ψ̈n(θ̃n),

where θ̃n is a point between θ̂n and θ0. This can be rewritten as

√
n(θ̂n − θ0) =

−
√
nΨn(θ0)

Ψ̇n(θ0) + 1
2(θ̂n − θ0)Ψ̈n(θ̃n)

.
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If P [ψ2
θ0

] is finite, then the numerator

−
√
nΨn(θ0) = −n−1/2

n∑
i=1

ψθ0(Xi)
d−→ N(0, P [ψ2

θ0 ])

by the CLT (as P [ψθ0 ] = Ψ(θ0) = 0). Next consider the denominator. The first term Ψ̇n(θ0)

is an average and can be analyzed by the law of large numbers: Ψ̇n(θ0)
p→ P [ψ̇θ0 ], provided

the expectation exists. The second term in the denominator is a product of θ̂n− θ0 = op(1)

and Ψ̈n(θ̃n) and converges in probability to zero under the reasonable condition that Ψ̈n(θ̃n)

(which is also an average) is Op(1). Together with Slutsky’s lemma, these observations yield

√
n(θ̂n − θ0)

d→ N
(

0, P [ψ2
θ0 ](P [ψ̇θ0 ])−2

)
. (122)

The preceding derivation can be made rigorous by imposing appropriate conditions; one

challenge is to show that Ψ̈n(θ̃n) = Op(1).

The derivation can be extended to higher-dimensional parameters. For a k-dimensional

parameter, we use k estimating equations. Then the criterion functions are maps Ψn :

Rk → Rk and the derivatives Ψ̇n(θ0) are k × k-matrices that converge to the k × k matrix

P [ψ̇θ0 ] with entries P [(∂/∂θj)ψθ0,i]. The final statement becomes

√
n(θ̂n − θ0)

d→ Nk

(
0, (P [ψ̇θ0 ])−1P [ψθ0ψ

>
θ0 ](P [ψ̇θ0 ])−1

)
. (123)

See van der Vaart [15, Theorem 5.41] for a formal statement and a proof of the above result.

In the preceding derivation it is implicitly understood that the function θ 7→ ψθ(x) possesses

two continuous derivatives with respect to θ, for every x. This is true in many examples

but fails, for instance in Example 6.1, where ψθ(x) = sign(x− θ), which yields the median.

Nevertheless, the median is asymptotically normal. That such a simple, but important,

example cannot be treated by the preceding approach has motivated much effort to derive

the asymptotic normality of Z/M -estimators by more refined methods.

The following result (which we state without proof), taken from van der Vaart [15, Chapter

5], gives some sufficient (less stringent) conditions for a Z-estimator to be asymptotically

normal. Compare this with Theorem 2.22 where we gave a similar result for the asymptotic

normality of MLEs.

Theorem 6.11 (Asymptotic normality of Z-estimators). For each θ in an open subset of

Euclidean space, let x 7→ ψθ(x) be a measurable vector-valued function such that, for every

θ1 and θ2 in a neighborhood of θ0 and a measurable function M(·) with P [M2] <∞,

‖ψθ1(x)− ψθ2(x)‖ ≤M(x)‖θ1 − θ2‖.

Assume that P‖ψθ0‖2 <∞ and that the map θ 7→ P [ψθ] is differentiable at a zero θ0, with

nonsingular derivative matrix Vθ0 . lf Pn[ψθ̂n ] = op(n
−1/2), and θ̂n

p→ θ0, then

√
n(θ̂n − θ0) = −V −1

θ0

1√
n

n∑
i=1

ψθ0(Xi) + op(1).
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In particular, the sequence
√
n(θ̂n − θ0) is asymptotically normal with mean zero and co-

variance matrix V −1
θ0
P [ψθ0ψ

>
θ0

](V −1
θ0

)>.

Example 6.12 (Location estimators). Let X1, . . . , Xn be a random sample of real-valued

observations and suppose we want to estimate the location of their distribution. “Location”

is a vague term; it could be made precise by defining it as the mean or median, or the center

of symmetry of the distribution if this happens to be symmetric. Two examples of location

estimators are the sample mean and the sample median. Both can be thought of as Z-

estimators, because they solve the equations

n∑
i=1

(Xi − θ) = 0, and

n∑
i=1

sign(Xi − θ) = 0,

respectively83. It seems reasonable to study estimators that solve a general equation of the

type
n∑
i=1

ψ(Xi − θ) = 0.

Popular examples are the Huber estimators corresponding to the functions

ψk(x) ≡ ψ(x) =


−k if x ≤ −k

x if |x| ≤ k

k if x ≥ k.

Exercise 2 (HW4): Find the asymptotic distribution of the Huber’s location estimator θ̂n,

using ψk, when we have i.i.d. data X1, . . . , Xn from P on R (state clearly the assumptions

you need on the model P ). Notice that θ̂n is asymptotically normal regardless of whether

P has a finite variance or not. This is an attractive property of θ̂n.

Example 6.13 (Robust regression). Suppose that (X,Y ) ∈ Rk × R satisfy the following

linear regression model:

Y = θ>0 X + ε (124)

where ε, the unobserved error, is assumed to be independent of X. Suppose that we

have i.i.d. data (X1, Y1), . . . , (Xn, Yn) from model (124). The classical estimator for the

regression parameter θ is the LSE, which minimizes
∑n

i=1(Yi − θ>Xi)
2. Outlying values of

Xi (“leverage points”) or extreme values of (Xi, Yi) jointly (“influence points”) can have an

arbitrarily large influence on the value of the LSE, which therefore is nonrobust.

As in the case of location estimators, a more robust estimator for θ can be obtained by

replacing the square by a function m(x) that grows less rapidly as x → ∞, for instance

83The sign-function is defined as sign(x) = −1, 0, 1 if x < 0, x = 0 or x > 0, respectively. For the median

we assume that there are no tied observations.
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m(x) = |x| or m(x) equal to the primitive function of Huber’s ψ. Usually, minimizing an

expression of the type
∑n

i=1m(Yi − θ>Xi) is equivalent to solving a system of equations

n∑
i=1

ψ(Yi − θ>Xi)Xi = 0. (125)

As E[ψ(Y − θ>0 X)X] = E[ψ(ε)]E[X], we can expect the resulting estimator to be consistent

provided E[ψ(ε)] = 0. Furthermore, we should expect that, for Vθ0 = E[ψ′(ε)XX>],

√
n(θ̂n − θ0) =

1√
n
V −1
θ0

n∑
i=1

ψ(Yi − θ>Xi)Xi + op(1).

6.3 Asymptotic normality of M-estimators

In this section we present one result that gives the asymptotic distribution of M -estimators

for the case of i.i.d. observations. To motivate our high-level approach to deriving the

asymptotic distribution of M -estimators, it is probably instructive to study MLEs in para-

metric models.

Example 6.14 (Parametric maximum likelihood estimators). Suppose X1, . . . , Xn are

i.i.d. from an unknown density pθ0 belonging to a known class {pθ : θ ∈ Θ ⊆ Rk}. Let

θ̂n denote the MLE of θ0. A classical result is that, under some smoothness assumptions,
√
n(θ̂n − θ0) converges in distribution to Nk(0, I

−1(θ0)) where I(θ0) denotes the Fisher

information matrix.

The first step is to observe that if θ 7→ pθ(x) is sufficiently smooth at θ0 (e.g., if Pθ is QMD

at θ = θ0; see (33)), then, for any h ∈ Rk,
n∑
i=1

log
pθ0+hn−1/2(Xi)

pθ0(Xi)
=

1√
n

n∑
i=1

h> ˙̀
θ0(Xi)−

1

2
h>I(θ0)h+ oPθ0 (1) (126)

where ˙̀
θ0(x) := ∇θ log pθ(x) denotes the score function. Condition (126) is known as the

LAN (local asymptotic normality) condition. Let us now define the “local” processes:

M̃n(h) :=

n∑
i=1

log
pθ0+hn−1/2(Xi)

pθ0(Xi)
for h ∈ Rk (127)

and

M̃(h) := h>∆− 1

2
h>I(θ0)h, for h ∈ Rk, (128)

where ∆ ∼ N(0, I(θ0)). By LAN we know that (see e.g., Theorem 2.10)

M̃n(h)
d→ M̃(h)

for every h ∈ Rk. Observe that

ĥn := argmax
h∈Rk

M̃n(h) =
√
n(θ̂n − θ0)
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is the maximizer of the process (127), and if ĥ is the maximizer of M(·), over Rk, then

ĥ = I−1(θ0)∆ ∼ Nk(0, I
−1(θ0)).

We shall prove the asymptotic normality of ĥn assuming the marginal convergence of (126)

(for every fixed h) can be suitably strengthened to a process level result, for every K ⊂ Rk

compact84.

The next big idea is: “As M̃n(·) ≈ M̃(·) it is reasonable to expect that their maximizers

are also close, i.e., ĥn ≈ ĥ, i.e., the argmax functional is “continuous”85. This is formalized

by the a class of results that go by the name of the argmax continuous mapping theorem86.

The argmax theorem (Theorem 6.15) will then imply

√
n(θ̂n − θ0) = ĥn

d−→ ĥ ∼ Nk(0, I
−1(θ0)),

provided the conditions of the argmax theorem hold. The main condition is tightness of

{ĥn} which means that the rate of convergence of θ̂n to θ0 is n−1/2.

The above idea can be easily extended to derive the asymptotic distributions of other
√
n-

consistent estimators, e.g., non-linear regression, robust regression, etc. (see van der Vaart

[15, Chapter 5] for more details).

Theorem 6.16 (Asymptotic normality of M -estimators). Suppose that x 7→ mθ(x) is a

measurable function for each θ ∈ Θ ⊂ Rk for an open set Θ, that θ 7→ mθ(x) is differentiable

at θ0 ∈ Θ for P -almost every x with derivative ṁθ0(x), and that

|mθ1(x)−mθ2(x)| ≤ F (x)‖θ1 − θ2‖ (130)

84Formalizing this is a bit technical and we will not get into this in the course.
85Note that here both ĥn and ĥ are random, as opposed to the situation when proving the consistency of

M -estimators.
86In the following result, by `∞(K) we mean the space of all bounded functions on K. Also, recall the

definition of upper semicontinuity: f is upper semicontinuous (u.s.c.) at x0 if lim supn→∞ f(xn) ≤ f(x0)

whenever xn → x0 as n→∞.

Theorem 6.15 (Argmax continuous mapping theorem). Let {Mn(h) : h ∈ Rk} and {M(h) : h ∈ Rk} be

stochastic processes indexed by Rk. Suppose that the following conditions hold:

1. Mn
d−→M in `∞(K) for every compact subset K ⊂ Rk (think of this assumption as being a strength-

ening of pointwise weak convergence Mn(h)
d−→M(h) for every h ∈ Rk).

2. Almost all sample paths h 7→M(h) are u.s.c. and possess a unique maximum at a random point ĥ.

3. For each n, let ĥn be a random element of Rk such that Mn(ĥn) ≥ suph∈Rk Mn(h)− op(1).

4. The following tightness condition holds: For every ε > 0, there exists a compact set Kε ⊆ Rk such

that

lim sup
n→∞

P
(
ĥn /∈ Kε

)
≤ ε and P

(
ĥ /∈ Kε

)
≤ ε. (129)

Then ĥn
d−→ ĥ in Rk.
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holds for all θ1, θ2 in a neighborhood of θ0, where F ∈ L2(P ). Also suppose that M(θ) =

P [mθ] has a second order Taylor expansion

P [mθ]− P [mθ0 ] =
1

2
(θ − θ0)>V (θ − θ0) + o(‖θ − θ0‖2)

where θ0 is a point of maximum of M and V is symmetric and nonsingular (negative definite

since M is a maximum at θ0). If Mn(θ̂n) ≥ supθMn(θ)− op(n−1) and θ̂n
p→ θ0, then

√
n(θ̂n − θ0) = −V −1 1√

n

n∑
i=1

ṁθ0(Xi) + op(1)
d−→ N(0, V −1P [ṁθ0ṁ

>
θ0 ]V −1).

Proof. (Sketch) We can show that, for ∆ ∼ Nk(0, P [ṁθ0ṁ
>
θ0

]),

M̃n(h) := n[Mn(θ0 − hn−1/2)−Mn(θ0)] = nPn[mθ0+hn−1/2 −mθ0 ]

d→ h>∆ +
1

2
h>V h =: M̃(h) (131)

as a stochastic “process”87. Here M̃n(·) is called the localized, centered and rescaled stochas-

tic process. Then the conclusion will follow from the argmax continuous mapping theorem

(see Theorem 6.15) upon noticing that

ĥn := argmax
h∈Rk

M̃n(h) =
√
n(θ̂n − θ0),

and

ĥ := argmax
h∈Rk

M̃(h) = −V −1∆ ∼ Nk(0, V
−1P [ṁθ0ṁ

>
θ0 ]V −1).

One may wonder how does (131) follow. Observe that

nPn[mθ0+hn−1/2 −mθ0 ] =
√
n(Pn − P )[

√
n(mθ0+hn−1/2 −mθ0)] + nP [mθ0+hn−1/2 −mθ0 ].

By the second order Taylor expansion of M(θ) := P [mθ] about θ0, the second term of

the right side of the last display converges to (1/2)h>V h (uniformly on compacta, i.e., for

‖h‖ ≤ K, for any K > 0). To handle the first term in the above display we need the notion

of weak convergence of stochastic processes which we will avoid. We will just show that for

every fixed h ∈ Rk,
M̃n(h)

d→ M̃(h),

which can be strengthened to show weak convergence of the stochastic processes on com-

pacta. Define fn,h : X → R as

fn,h(x) :=
√
n(mθ0+hn−1/2 −mθ0)(x).

Then

M̃n(h) :=
√
n(Pn−P )[

√
n(mθ0+hn−1/2−mθ0)] =

√
n(Pn−P )[fn,h]

d→ N
(

0, h>P [ṁθ0ṁ
>
θ0 ]h

)
.

by the Lindeberg-Feller CLT (see the next subsections for an complete illustration of these

ideas). We conclude that M̃n(h) converges weakly to h>∆, and the desired result holds

(here we have also assumed that the tightness condition in Theorem 6.15 holds).
87Note the connection with LAN given in Example 6.14 when mθ(x) = log pθ(x).

98



6.4 Limiting distribution of the sample median

Suppose X1, . . . , Xn are i.i.d. observations from a distribution P on R. Assume that P has

distribution function F which is differentiable at its median θ0 (i.e., F (θ0) = 1/2) with

positive derivative f(θ0). Let θ̂n denote a sample median based on X1, . . . , Xn defined as

any maximizer of

Mn(θ) := − 1

n

n∑
i=1

|Xi − θ|

over θ ∈ R. Also let M(θ) := −E|X1− θ| and note that θ0 uniquely maximizes88 M(θ) over

θ ∈ R. As seen in Example 6.10 we can also work with M(θ) = −E[|X − θ| − |X|] which

avoids moment assumptions.

We have already shown that θ̂n converges to θ0 in probability, i.e., θ̂n is a consistent estimator

of θ0. Here we will assume that θ̂n − θ0 = OP (n−1/2), i.e., the rate of convergence of θ̂n to

θ0 is n−1/2.

We shall now address the question of finding the asymptotic distribution of
√
n(θ̂n − θ0).

There are many approaches for finding this limiting distribution but we shall follow the

standard empirical processes approach which easily generalizes to other M -estimators. This

approach also highlights the need to study convergence of stochastic processes.

Our approach for finding the limiting distribution of
√
n(θ̂n − θ0) is based on the following

localized, centered and rescaled stochastic process:

M̃n(h) := n
(
Mn(θ0 + n−1/2h)−Mn(θ0)

)
for h ∈ R.

This is a stochastic process that is indexed by h ∈ R. Its important property (easy to see)

is that ĥn :=
√
n(θ̂n − θ0) maximizes M̃n(h), h ∈ R, i.e.,

√
n(θ̂n − θ0) = ĥn := argmax

h∈R
M̃n(h).

This suggests the following approach to find the limiting distribution of
√
n(θ̂n − θ0). We

study the process M̃n(h), h ∈ R, and argue that it converges as n→∞ to some limit process

M̃(h), h ∈ R, in an appropriate sense. If this process convergence is ‘strong’ enough, then

88Indeed, first write

−M(θ) = E|X1 − θ| =
∫ θ

−∞
(θ − x)f(x)dx+

∫ ∞
θ

(x− θ)f(x)dx = θ (2F (θ)− 1) +

∫ ∞
θ

xf(x)dx−
∫ θ

−∞
xf(x)dx.

This gives

−M ′(θ) = 2θf(θ) + 2(F (θ)− 1)− 2θf(θ) = 2(F (θ)− 1)

and M ′′(θ) = −2f(θ). Note that M ′(θ) = 0 implies F (θ) = 1/2 which shows that θ0 is the unique maximizer

of M(·) (as M ′′(θ0) < 0 and M is concave on R).
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we can hopefully argue that

√
n(θ̂n − θ0) = argmax

h∈R
M̃n(h)

d−→ argmax
h∈R

M̃(h).

It is actually not too hard to understand the behavior of M̃n(h) as n → ∞ for each fixed

h ∈ R. For this, we can write

M̃n(h) = n
(
Mn(θ0 + n−1/2h)−Mn(θ0)

)
= n

(
(Mn −M)(θ0 + n−1/2h)− (Mn −M)(θ0)

)
+ n

(
M(θ0 + n−1/2h)−M(θ0)

)
=
√
n(Pn − P )[

√
n(mθ0+hn−1/2 −mθ0)] + nP [mθ0+hn−1/2 −mθ0 ] (132)

=: An(h) +Bn(h). (133)

where

mθ0+hn−1/2(x)−mθ0(x) = −
(
|x− θ0 − hn−1/2| − |x− θ0|

)
.

Let us now analyze An and Bn separately. Clearly, Bn(h) is a deterministic sequence (or

every h). To understand this, we shall use a second order Taylor expansion for M(θ0 +

n−1/2h) around θ0. Note that M(θ) := −E|X1 − θ| is a smooth function. Also note that

M ′(θ0) = 0 because θ0 maximizes M(θ), θ ∈ R. We thus get

Bn(h) = n
(
M(θ0 + n−1/2h)−M(θ0)

)
=

1

2
M ′′(θ0)h2 + o(1)

so that

Bn(h)→ 1

2
M ′′(θ0)h2 as n→∞.

Let us now come to the mean zero random variable An(h). To understand it, let us first

compute its variance:

Var(An(h)) = n2Var

(
1

n

n∑
i=1

{
|Xi − θ0 − n−1/2h| − |Xi − θ0|

})
= n Var

(
|X1 − θ0 − n−1/2h| − |X1 − θ0|

)
≈ n Var

(
I{X1 < θ0}n−1/2h− I{X1 > θ0}n−1/2h

)
where I have ignored the contribution from X1 lying between θ0 and θ0 + n−1/2h (should

not matter for large n; verify this). This gives

Var(An(h)) ≈ h2Var
(
I{X1 < θ0} − I{X1 > θ0}

)
.

Now because P(X1 < θ0) = P(X1 > θ0) = 1/2 (as θ0 is a population median), it is easy to

check that the variance of I{X1 < θ0} − I{X1 > θ0} appearing above equals 1. We have

therefore obtained

Var(An(h))→ h2 as n→∞.
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It is actually possible to prove that

An(h)
d−→ N(0, h2) = hN(0, 1) as n→∞. (134)

For this, we can use the Lindeberg-Feller CLT (stated next).

6.4.1 Lindeberg-Feller Central Limit Theorem

Theorem 6.17 (Lindeberg-Feller CLT). For each n, let Yn1, . . . , Ynkn be kn independent

random vectors with E ‖Yni‖2 < ∞ for each i = 1, . . . , kn. Suppose the following two

conditions hold:
kn∑
i=1

Var(Yni)→ Σ as n→∞ (135)

where Var(Yni) denotes the covariance matrix of the random vector Yni and

kn∑
i=1

E
(
‖Yni‖2 I{‖Yni‖ > ε}

)
→ 0 as n→∞ for every ε > 0. (136)

Then
kn∑
i=1

(Yni − EYni)
d−→ N(0,Σ) as n→∞. (137)

For a proof of this result, see, for example, van der Vaart [15, Proposition 2.27]. It is easy

to see that this result generalizes the usual CLT. Indeed, the usual CLT states that for i.i.d

random variables X1, X2, . . . with EXi = µ, E ‖Xi‖2 <∞ and Var(Xi) = Σ, we have

n∑
i=1

(
Xi√
n
− µ√

n

)
d−→ N(0,Σ) as n→∞.

Indeed this can be proved by applying Theorem 6.17 to

Yni =
Xi√
n
.

The condition (135) is obvious while for (136) note that

n∑
i=1

E
(
‖Yni‖2 I{‖Yni‖ > ε}

)
=

1

n

n∑
i=1

E
(
‖Xi‖2 I{‖Xi‖ >

√
nε}
)

= E
(
‖X1‖2 I{‖X1‖ >

√
nε}
)

which clearly converges to zero by the DCT (under the assumption E ‖X1‖2 <∞).
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6.4.2 Back to the limiting distribution of the sample median

Recall the random variables An from (133). The Lindeberg-Feller CLT can be used to

show (134). Note first that

An(h) =
n∑
i=1

(Yni − EYni) where Yni := |Xi − θ0 − n−1/2h| − |Xi − θ0| .

We have already checked that Var(An(h)) =
∑n

i=1 Var(Yni) → h2 as n → ∞. To check

(136), note that

n∑
i=1

E
[
‖Yni‖2 I{‖Yni‖ > ε}

]
=

n∑
i=1

E
[(
|Xi − θ0 − n−1/2h| − |Xi − θ0|

)2
I
{∣∣|Xi − θ0 − n−1/2h| − |Xi − θ0|

∣∣ > ε
}]

= nE
[(
|X1 − θ0 − n−1/2h| − |X1 − θ0|

)2
I
{∣∣|X1 − θ0 − n−1/2h| − |X1 − θ0|

∣∣ > ε
}]

Using the trivial inequality∣∣∣|X1 − θ0 − n−1/2h| − |X1 − θ0|
∣∣∣ ≤ n−1/2|h|,

and the fact that the function y 7→ y2I{y > ε} is nondecreasing, we obtain

n∑
i=1

E
(
‖Yni‖2 I{‖Yni‖ > ε}

)
≤ h2I{n−1/2|h| > ε} → 0 as n→∞.

The conditions of Theorem 6.17 therefore hold and we obtain (134). Thus if we define

M̃(h) := hZ +
1

2
h2M ′′(θ0), for h ∈ R

where Z ∼ N(0, 1), then we have shown that

M̃n(h)
d−→ M̃(h) for every h ∈ R.

It turns out that the process M̃n converges to M̃ in a stronger sense than convergence in

distribution for each fixed h ∈ R. We shall see this later. This stronger convergence allows

us to deduce that

√
n(θ̂n − θ0) = ĥn := argmax

h∈R
M̃n(h)

d−→ argmax
h∈R

M̃(h) =
−Z

M ′′(θ0)
∼ N

(
0,

1

(M ′′(θ0))2

)
.

We can simplify this slightly by writing M ′′(θ0) in terms of f(θ0). We thus have

√
n(θ̂n − θ0)

d−→ N

(
0,

1

4f2(θ0)

)
To make this argument rigorous, we have to prove that the stochastic process M̃n converges

to M̃ in a strong enough sense so that their argmaxs also converge.
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Example 6.18 (Asymptotic normality of the sample median using Theorem 6.16). Recall

that the sample median maximizes the criterion function θ 7→ −
∑n

i=1 |Xi − θ|. We take

mθ(x) := −(|x − θ| − |x|) (as in Example 6.10). We can apply Theorem 6.16 to find the

asymptotic distribution of
√
n(θ̂n − θ0). We can show that (130) holds with F (x) = 1.

Furthermore, the map θ 7→ mθ(x) is differentiable at θ0 except if x = θ0, with ṁθ0(x) =

−sign(x − θ0). Under the minimal condition that F is differentiable at θ0, P [mθ] has a

two-term Taylor expansion (around θ0) as P [mθ] = P [mθ0 ]− 1
2(θ−θ0)22f(θ0)+o((θ−θ0)2),

so that we can set Vθ0 = −2f(θ0). As P [ṁ2
θ0

] = E[1] = 1, the asymptotic variance of the

median is 1/(2f(θ0))2.

Example 6.19 (Nonlinear least squares). Suppose that we observe a random sample

(X1, Y1), . . . , (Xn, Yn) from the distribution of a vector (X,Y ) that follows the regression

model

Y = fθ0(X) + ε, E(ε|X) = 0.

Here fθ is a parametric family of regression functions, for instance fθ(x) = θ1 + θ2e
θ3x, and

we aim at estimating the unknown vector θ. The least squares estimator that minimizes

θ 7→
n∑
i=1

(Yi − fθ(Xi))
2

is an M -estimator for mθ(x, y) = (y − fθ(x))2. It should be expected to converge to the

minimizer of the limit criterion function

θ 7→ P [mθ] = P [(fθ0 − fθ)2] + E[ε2].

Thus the LSE should be consistent if θ0 is identifiable from the model, in the sense that

θ 6= θ0 implies that fθ(X) 6= fθ0(X) with positive probability. For sufficiently regular

regression models, we have

P [mθ] ≈ P
[
{(θ − θ0)>ḟθ0}2

]
+ E[ε2].

This suggests that the conditions of Theorem 6.16 are satisfied with Vθ0 = 2P [ḟθ0 ḟ
>
θ0

] and

ṁθ0(x, y) = −2(y − fθ0(x))fθ0(x). If ε and X are independent, then this leads to the

asymptotic covariance matrix V −1
θ0

2E[ε2].

Exercise 3 (HW4): Suppose that {(Xi, Yi)}ni=1 are i.i.d. from a joint distribution P on

[0, 1]× R. Suppose that we postulate a model of the form

Yi = α0(Xi − β0)+ + εi,

where εi’s are i.i.d. with mean 0 and unknown constant variance σ2 (here x+ = max(0, x)).

Let (α̂n, β̂n) be the least squares estimator of the unknown parameter (α0, β0). Under

appropriate conditions (state clearly the conditions you need on the distribution P ) and

assuming the consistency of (α̂n, β̂n), find its asymptotic distribution.
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6.5 Asymptotics for minimizers of convex processes

To study the asymptotic for M -estimators (here we consider minimizers instead of maxi-

mizers) it is more convenient to first consider minimizers of convex processes. In this case

the proofs are simpler and the main ideas become more transparent (also a comparison can

be drawn easily with the approach of QDM, as in Section 2.1.2)89.

6.5.1 Preliminaries

= Our main result will crucially use the fact that Mn(θ) (as in (113)) is a convex function of

θ and is reliant on the following convexity lemma (we will not be proving the lemma here;

you may see Pollard [11, Section 6] if you are interested in its proof).

Lemma 6.20 (Uniform convergence on compacta). Let {λn(h) : h ∈ S ⊂ Rk} be a sequence

of random convex functions defined on a convex, open subset S of Rk. Suppose λ(·) is a

real-valued function on S for which λn(h)
p→ λ(h) as n → ∞, for each h ∈ S. Then for

every compact subset K of S, we have

sup
h∈K
|λn(h)− λ(h)| p→ 0.

Qualitatively, the convexity lemma states that, under the assumption of convexity, pointwise

convergence can be turned into uniform convergence on compacta.

Lemma 6.21 (Nearness of argmins). Suppose λn(·) is convex as in Lemma 6.20 and is

approximated by λ̃n(·). Let αn be the argmin of λn(·)90 and let βn be the unique minimizer

of λ̃n(·) over S. Then, for each δ > 0,

P (|αn − βn| ≥ δ) ≤ P
(

∆n(δ) ≥ 1

2
vn(δ)

)
where

∆n(δ) := sup
h:|h−βn|≤δ

∣∣λn(h)− λ̃n(h)
∣∣ and vn(δ) := inf

h:|h−βn|=δ
λ̃n(h)− λ̃n(βn).

Proof. The lemma as stated has nothing to do with convergence or indeed with the ‘n’

subscript at all; but it is stated in that form so that it can be useful for later purposes. To

prove it, let h be an arbitrary point outside the ball around βn with radius δ, say h = βn+lu

for a unit vector u ∈ Rk, where l ≥ δ. Convexity of λn implies

λn(βn + δu) = λn ((1− δ/l)βn + (δ/l)h) ≤ (1− δ/l)λn(βn) + (δ/l)λn(h).

89Moreover, this approach avoids relying on weak convergence of processes and the argmin continuous

mapping theorems; see e.g. van der Vaart and Wellner [16, Chapter 3.2].
90A convex function is continuous and attains it minimum on compact sets, but it can be flat at its bottom

and have several minima. For simplicity we speak about ‘the argmin’ when referring to any of the possible

minimizers.
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Writing for convenience rn(h) := λn(h)− λ̃n(h) (for all h ∈ S), we deduce that

(δ/l)
{
λn(h)− λn(βn)

}
≥ λn(βn + δu)− λn(βn)

=
[
λ̃n(βn + δu)− λ̃n(βn)

]
+ rn(βn + δu)− rn(βn)

≥ vn(δ)− 2∆n(δ). (138)

Thus, if |αn − βn| ≥ δ, then by taking h = αn we have λn(h) − λn(βn) ≤ 0 (as αn is an

argmin of λn(·)), which implies that (by (138)) vn(δ) − 2∆n(δ) ≤ 0, thereby yielding the

desired result.

The above results gives a probabilistic bound on how far αn can be from βn.

We record a couple of useful implications of Lemma 6.21. If λn− λ̃n goes to zero uniformly

on bounded sets in probability and βn is stochastically bounded, then ∆n(δ)
p→ 0 by a

simple argument91. It follows that αn−βn
p→ 0 provided only that 1/vn(δ) is stochastically

bounded for each fixed δ. This last requirement says that λ̃n shouldn’t flatten out around

its minimum as n increases.

Corollary 6.22. Suppose Mn(·) is convex (random) function such that

Mn(h) =
1

2
h>V h+ U>n h+ Cn + rn(h), for h ∈ S,

where V is a symmetric and positive definite matrix, Un is stochastically bounded, Cn is

arbitrary, and rn(h) goes to zero in probability for each h ∈ S. Then αn, the argmin of λn,

is only op(1) away from βn = −V −1Un, the argmin of M̃n(·), where

M̃n(h) :=
1

2
h>V h+ U>n h+ Cn.

If also Un
d→ U then αn

d→ −V −1U.

Proof. The function λn(h) := Mn(h) − U>n h − Cn is convex and goes to (1/2)h>V h in

probability for each h. By Lemma 6.20 the convergence is uniform on bounded sets. Let

∆n(δ) be the supremum of |rn(h)| over {h ∈ S : |h− βn| ≤ δ}. Then, by Lemma 6.21,

αn = −V −1Un + εn, where P(|εn| ≥ δ) ≤ P
(

∆n(δ) ≥ 1

2
cmin δ

2

)
→ 0.

where cmin is the smallest eigenvalue of V , and ∆n(δ)
p→ 0, by the arguments used above.

A useful slight extension of this is when Mn(h) = (1/2)h>Vnh+U>n h+Cn+rn(h) is convex,

with a nonnegative definite symmetric matrix Vn that converges in probability to a positive

definite V . Writing Vn = V +ηn the remainder ηn can be absorbed into rn(h) and the result

above holds.
91Exercise 4 (HW4): Show this.
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6.5.2 Asymptotic normality of M-estimators for convex processes

Recall the M -estimation setup: Given X1, . . . , Xn i.i.d. P taking values in some space X
(e.g., a metric space) the M -estimator of interest is

θ̂n := arg min
θ∈Θ

Mn(θ) where Mn(θ) = Pn[mθ] =
1

n

n∑
i=1

mθ(Xi),

for Θ ⊂ Rk, and mθ : X → R is a “loss” function. Here we assume that mθ(x) is a convex

function in θ, for every x ∈ X . The (true value of the) parameter of interest is

θ0 := arg min
θ∈Θ

M(θ) where M(θ) := P [mθ] = EX∼P [mθ(X)]. (139)

We can obtain the consistency of θ̂n, the argmin of Mn(θ) (over θ ∈ Θ) by appealing to

Lemma 6.21 with λ̃(θ) = M(θ) and βn = θ0. Compare this with Lemma 6.3.

To study the asymptotic normality of θ̂n we need some ‘weak’ expansion of mθ(x) around

the value θ0 is needed, but we avoid explicitly requiring pointwise derivatives to exist. With

this in mind, write

mθ0+h(x)−mθ0(x) = ṁθ0(x)>h+Rh(x), (140)

for a function ṁθ0 : X → R with mean zero under P . If E[Rh(X)2] is of order o(|h|2) as

h → 0, as we will usually require, then ṁθ0(x) is nothing but the derivative in quadratic

mean of the function mθ0+h(x) at h = 0.

Theorem 6.23. Suppose that mθ(x) is convex in θ (for every x) and that (140) holds with

M(θ0 + h)−M(θ0) = E[Rh(X)] =
1

2
h>V h+ o(|h|2) (141)

where θ0 is a point of minimum of M and V is symmetric and nonsingular (positive definite

since M is a maximum at θ0). Suppose also that Var(Rh(X)) = o(|h|2), and that ṁθ0(X)

has a finite covariance matrix J := P [ṁθ0ṁ
>
θ0

]. Then

√
n(θ̂n − θ0) = −V −1Pn[ṁθ0 ] + op(1)

d−→ N
(
0, V −1JV −1

)
. (142)

Proof. Consider the convex function

λn(h) := n
[
Mn(θ0 + hn−1/2)−Mn(θ0)

]
=

n∑
i=1

[
mθ0+hn−1/2(Xi)−mθ0(Xi)

]
.

This random process is minimized at
√
n(θ̂n−θ0). Also, note that by taking θ = θ0 +hn−1/2

in (141), we get

n
[
M(θ0 + hn−1/2)−M(θ0)

]
= h>V h+ qn(h),
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where qn(h) = no(|h|2/n)→ 0, for fixed h. Accordingly, by (140),

λn(h) :=
n∑
i=1

[
ṁθ0(Xi)

>hn−1/2 +Rhn−1/2(Xi)
]

=
n∑
i=1

[
ṁθ0(Xi)

>hn−1/2 +Rhn−1/2(Xi)− E[Rhn−1/2(Xi)]
]

+ nE[Rhn−1/2(Xi)]

= U>n h+ rn(h) +
1

2
h>V h+ qn(h)

where

Un = n−1/2
n∑
i=1

ṁθ0(Xi), and rn(h) :=

n∑
i=1

{Rhn−1/2(Xi)− E[Rhn−1/2(Xi)]} .

Now rn(h) tends to zero in probability for each h, since its mean is zero and its variance is∑n
i=1 Var(Rhn−1/2(Xi)) = no(1/n). This, together with Corollary 6.22, proves (142) and the

limit distribution result, since Un goes to a N(0, J) by the CLT. Note that both consistency

and asymptotic normality followed from the same approximation argument.

This convexity based argument can be used to prove asymptotics of many otherM -estimators

that are based on convex optimization (see Hjort and Pollard [7]).

Exercise 5 (HW4): (Asymptotic distribution of sample median) Recall Example 6.1. The

goal of this problem is to find the asymptotic distribution of the sample median (properly

normalized). For h ∈ R, let

λn(h) := n
(
Mn(θ0 + n−1/2h)−Mn(θ0)

)
.

Also let

λ̃n(h) := h2f(θ0) +
h√
n

n∑
i=1

ṁθ0(Xi) where ṁθ0(Xi) := I{Xi ≤ θ0} − I{Xi > θ0}.

1. For every h ∈ R, prove that λn(h)− λ̃n(h) converges in probability to zero as n→∞.

2. Use Lemma 6.20 to prove that, for every L > 0, suph:|h|≤L

∣∣∣λn(h)− λ̃n(h)
∣∣∣ p→ 0.

3. Note that αn :=
√
n(θ̂n − θ0) minimizes λn(h) over h ∈ R. Combine the results of

the two parts above to argue that αn − βn converges to zero in probability, where βn

(uniquely) minimizes λ̃n(h) over h ∈ R.

4. Deduce the asymptotic distribution of αn =
√
n(θ̂n − θ0).
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7 Bootstrap methods

Suppose that we have data X ∼ P , and θ ≡ θ(P ) is a parameter of interest. Think of

X = (X1, . . . , Xn), where n is the sample size. Let θ̂ ≡ θ̂(X) be an estimator of θ. Suppose

that we would want to construct a level-(1− 2α) confidence interval (CI) for θ, i.e., find κα

and κ1−α such that

P(θ̂ − κα ≤ θ ≤ θ̂ + κ1−α) = 1− 2α. (143)

Question: How do we find (estimate) κα and κ1−α in such a general setting?

Problem: To solve the above problem we need to find (estimate) the distribution of θ̂− θ.
However, the distribution of θ̂−θ depends on P and might be unknown. Even if we know its

asymptotic distribution (e.g., θ̂ − θ is asymptotically normal), we may want more accurate

quantiles for a fixed sample size. In some situations, the asymptotic limiting distribution

can depend on nuisance parameters that can be hard to estimate.

Example 7.1. Let X1, . . . , Xn be a random sample from a univariate distribution with

distribution function F having a density f continuous and positive in a neighborhood of it

median θ0 := inf{t : F (t) ≥ 1/2}. The sample median may be defined as

θ̂n := inf{t : Fn(t) ≥ 1/2} (144)

or, using Example 6.1 it is any minimizer of (116) (Note that Fn(t) := 1
n

∑n
i=1 I(Xi ≤ t),

for t ∈ R is the empirical distribution function of the data). Suppose the goal is now to

construct a confidence interval for the population median θ0. Under the above conditions,

it can be shown that

√
n(θ̂n − θ0)

d→ N(0, τ2), as n→∞,

where τ2 = 1/(4f2(θ0)). Although, the above limit distribution can be used to construct a

CI for θ0, it would involve the estimation of f(θ0), which is tricky to estimate. A natural

question that arises now: Can we find a CI for θ0 that avoids the estimation of the nuisance

parameter f(θ0)?

Example 7.2. Let X1, . . . , Xn be a random sample from a univariate distribution with

finite first and second moments. Suppose that the goal is to construct a CI for µ = E(X1).

Of course, we can use the CLT directly to construct a CI for µ:[
X̄n − zα

s√
n
, X̄n + zα

s√
n

]
,

where zα is the upper α-th quantile of the standard normal distribution, X̄n = n−1
∑n

i=1Xi,

and s2 :=
∑n

i=1(Xi − X̄n)2/(n − 1) is the (unbiased) sample variance. However, we may

ask the following question: Can we get a more accurate CI?

We will see in the following that bootstrap can be a useful technique in these two problems

and beyond.
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7.1 Bootstrap: Introduction

To motivate the bootstrap method, let us consider the following simple scenario. Suppose

that we model our data X = (X1, . . . , Xn) as a random sample from some distribution

P ∈ P, where P is a class of probability distributions. Let η(X, P ) be a root, i.e., a random

variable that possibly depends on both the distribution P and the sample X drawn from

P (e.g., think of η(X, P ) as
√
n(X̄n− µ), where X̄n =

∑n
i=1Xi/n and µ = E(X1)). In fact,

θ̂ − θ (as described above) is a root.

In general, we may wish to estimate the mean or a quantile or some other probabilistic

feature or the entire distribution of η(X, P ). As mentioned above, the distribution of θ̂ − θ
depends on P and is thus unknown. Let Hn(x, P ) denote the c.d.f. of η(X, P ), i.e.,

Hn(x, P ) := PX∼P (η(X, P ) ≤ x). (145)

Of course, if we can estimate Hn(·, P ) then we can use this to construct CIs, test hypotheses;

e.g., if η(X, P ) = θ̂ − θ then being able to estimate Hn(·, P ) immediately yields estimates

of κα and κ1−α as defined in (143).

Question: What if we knew P and could draw unlimited samples from P?

In that case we could approximate Hn(x, P ) as follows: Draw repeated samples (of size n)

from P resulting in a series of values for the root η(X, P ), then we could form an estimate

of Hn(x, P ) by counting how many of the η(X, P )’s are ≤ x.

But, of course, we do not know P . However we can estimate P by P̂n and use the above

idea. This is the notion of bootstrap.

Definition 7.3 (Bootstrap). The bootstrap is a method of replacing (plugging in) the

unknown distribution P with P̂n (estimated from the data) in probability/expectation cal-

culations.

The bootstrap approximation of Hn(·, P ) is Hn(·, P̂n), where P̂n is an estimator of P ob-

tained from the observed data (that we think is close to P ), i.e.,

Ĥn(x) ≡ Hn(x, P̂n) := PX∗∼P̂n

(
η(X∗, P̂n) ≤ x|X

)
≡ P∗

(
η(X∗, P̂n) ≤ x|X

)
. (146)

where P∗
X∗∼P̂n

(·|X) is the conditional probability given the observed data X (under the

estimated P̂n). Thus, bootstrap estimates the distribution of η(X, P ) by that of η(X∗, P̂n),

where X∗ is a random sample drawn from the distribution P̂n (conditional on the data).

The idea is that

if P̂n ≈ P, then Hn(·, P̂n) ≈ Hn(·, P ).

Question: How do we find Hn(·, P̂n), the distribution of η(X∗, P̂n)?
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Answer: In most cases, the distribution of η(X∗, P̂n) is difficult to analytically compute,

but it can always be approximated easily by Monte Carlo simulations.

Thus, the bootstrap can thus be broken down in the following simple steps:

• Find a “good” estimator P̂n of P .

• Draw a large number (say, B) of random samples X∗(1), . . . ,X∗(B) from the distribu-

tion P̂n and then compute T ∗(j) := η(X∗(j), P̂n), for j = 1, . . . , B.

• Finally, compute the desired feature of η(X∗, P̂n) using the empirical c.d.f. H̃B
n (·, P̂n)

of the values T ∗(1), . . . , T ∗(B), i.e.,

H̃B
n (x, P̂n) :=

1

B

B∑
j=1

I(T ∗(j) ≤ x), for x ∈ R. (147)

Intuitively,

H̃B
n (·, P̂n) ≈ Hn(·, P̂n) ≈ Hn(·, P ),

where the first approximation is from Monte Carlo error (and can be as small as we would

like, by taking B as large as we want) and the second approximation is due to the bootstrap

method. If P̂n is a good approximation of P , then the bootstrap can yield a very useful

approximation of Hn(·, P ).

Example 7.4 (Bootstrapping the sample mean). Suppose X1, X2, . . . , Xn are i.i.d. F and

that σ2 := Var(X1) < ∞. Let η(X, F ) :=
√
n(X̄n − µ), where µ := E(X1) and X̄n :=∑n

i=1Xi/n. A natural estimator of F is Fn, the e.d.f. of the data. Thus, we approximate the

distribution of η(X, F ) by that of η(X∗,Fn) where X∗ = (X∗1 , . . . , X
∗
n) are drawn i.i.d. from

Fn. Note that

η(X∗,Fn) =
√
n(X̄∗n − X̄n), where X̄∗n :=

1

n

n∑
i=1

X∗i .

We may approximate the distribution of η(X∗,Fn) by drawing many Monte Carlo samples

from Fn and computing η(X∗,Fn) again and again, as in (147). Question: How does one

draw Monte Carlo samples from Fn?

7.2 Parametric bootstrap

In parametric models it is more natural to take P̂n as the fitted parametric model.

Example 7.5 (Estimating the standard deviation of a statistic). Suppose that X1, . . . , Xn

is random sample from N(µ, σ2). Suppose that we are interested in the parameter

θ = P(X ≤ c) = Φ

(
c− µ
σ

)
,
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where c is a given known constant. A natural estimator of θ is its MLE θ̂:

θ̂ = Φ

(
c− X̄n

σ̂

)
,

where σ̂2 = 1
n

∑n
i=1(Xi − X̄n)2 and X̄n = 1

n

∑n
i=1Xi.

Question: How do we estimate the standard deviation of θ̂? There is no easy closed form

expression for this.

Solution: We can bootstrap! Draw many (say B) bootstrap samples of size n from

N(X̄, σ̂2) ≡ P̂n.

For the j-th bootstrap sample we compute a sample average X̄∗(j), a sample standard devi-

ation σ̂∗(j). Finally, we compute

θ̂∗(j) = Φ

(
c− X̄∗(j)

σ̂∗(j)

)
.

We can estimate the mean of θ̂ by θ̄∗ = 1
B

∑B
j=1 θ̂

∗(j). The standard deviation of θ̂ can then

be estimated by the bootstrap standard deviation of the θ̂∗(j) values, i.e., 1

B

B∑
j=1

(θ̂∗(j) − θ̄∗)2

1/2

.

Example 7.6 (Comparing means when variances are unequal). Suppose that we have

two independent samples X1, . . . , Xm and Y1, . . . , Yn from two possibly different normal

populations. Suppose that

X1, . . . , Xm are i.i.d. N(µ1, σ
2
1) and Y1, . . . , Yn are i.i.d. N(µ2, σ

2
2).

Suppose that we want to test

H0 : µ1 = µ2 versus H1 : µ1 6= µ2.

We can use the test statistic

U =
(m+ n− 2)1/2(X̄m − Ȳn)(

1
m + 1

n

)1/2
(S2
X + S2

Y )1/2
,

where X̄m = 1
m

∑m
i=1Xi, Ȳn = 1

n

∑n
i=1 Yi, S

2
X =

∑m
i=1(Xi−X̄m)2 and S2

Y =
∑n

i=1(Yi−Ȳn)2.

Note that as σ2
1 6= σ2

2, U does not necessarily follow a t-distribution.

Question: How do we find the critical value of this test?

The parametric bootstrap can proceed as follows:

First choose a large number B, and for j = 1, . . . , B, simulate (X̄
∗(j)
m , Ȳ

∗(j)
n , S

2∗(j)
X , S

2∗(j)
Y ),

where all four random variables are independent with the following distributions:
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• X̄∗(j)m ∼ N(0, σ̂2
X/m),

• Ȳ ∗(j)n ∼ N(0, σ̂2
Y /n),

• S2∗(j)
X ∼ σ̂2

X χ2
m−1,

• S2∗(j)
Y ∼ σ̂2

Y χ2
n−1,

where σ̂2
X = S2

X/(m− 1) and σ̂2
Y = S2

Y /(n− 1). Then we compute

U∗(j) =
(m+ n− 2)1/2(X̄

∗(j)
m − Ȳ ∗(j)n )(

1
m + 1

n

)1/2
(S

2∗(j)
X + S

2∗(j)
Y )1/2

for each j. We approximate the null distribution of U by the empirical distribution of

the {U∗(j)}Bj=1. Let c∗n be the
(
1− α

2

)
-quantile of the empirical distribution of {U∗(j)}Bj=1.

Then, we can reject H0 if

|U | > c∗n.

7.3 The nonparametric bootstrap

In problems where the distribution P is not indexed by a parametric family, a natural

estimator of P is the empirical distribution P̂n given by the distribution that puts 1/n-mass

at each of the observed data points.

Example 7.7. Let X = (X1, . . . , Xn) be an i.i.d. sample from a distribution F on R.

Suppose that we want a CI for the median θ0 of F . We can base a CI on the sample median

θ̂n (see (144)).

We want to estimate the distribution of θ̂n − θ0. Let η(X, F ) := θ̂n − θ0. We may choose

F̂ = Fn, the empirical distribution function of the observed data. Thus, our method can be

broken in the following steps:

• Choose a large number B and simulate many samples X∗(j), for j = 1, . . . , B, (con-

ditionally i.i.d. given the data) from Fn. This reduces to drawing with replacement

sampling from X.

• For each bootstrap sample we compute the sample median θ̂
∗(j)
n and then find the

appropriate sample quantiles of {θ̂∗(j)n − θ̂n}Bi=1. Observe that η(X∗, P̂n) = θ̂∗n − θ̂n.

7.4 Consistency of the bootstrap

Suppose that F̂n and F are the corresponding c.d.f.’s for P̂n and P respectively. Suppose

that P̂n is a consistent estimator of P . This means that at each x in the support of X1
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where F (x) is continuous, F̂n(x)→ F (x) in probability or a.s. as n→∞92. If, in addition,

Hn(x, P ), considered as a functional of P , is continuous in an appropriate sense, it can be

expected that Hn(x, P̂n) will be close to Hn(x, P ), when n is large.

Observe that Ĥn(x) ≡ Hn(x, P̂n) is a random distribution function (as it depends on the

observed data). Let ρ be any notion of distance between two probability distributions that

metrizes weak convergence, i.e., for any sequence of c.d.f.’s {Gn}n≥1, we have

Gn
d→ G if and only if ρ(Gn, G)→ 0 as n→∞.

In particular, we can take ρ to be the Levy metric93. For simplicity, we can also use the

uniform distance (Kolmogorov metric) between Gn and G (which metrizes weak convergence

if G is a continuous c.d.f.).

Definition 7.8. We say that the bootstrap is weakly consistent under ρ for η(Xn, P ) if

ρ(Hn, Ĥn)
p→ 0 as n→∞,

where Hn and Ĥn are defined in (145) and (146) respectively. We say that the bootstrap is

strongly consistent under ρ for η(Xn, P ) if

ρ(Hn, Ĥn)
a.s.→ 0 as n→∞.

In many problems, it can be shown that Hn(·, P ) converges in distribution to a limit H(·, P ).

In such situations, it is much easier to prove that the bootstrap is consistent by showing

that

ρ(Ĥn, H)
a.s./p→ 0 as n→∞.

In applications, e.g., for construction of CIs, we are quite often interested in approximating

the quantiles of Hn by that of Ĥn (as opposed to the actual c.d.f.). The following simple

result shows that weak convergence, under some mild conditions, implies the convergence

of the quantiles.

Exercise 6 (HW4): Let {Gn}n≥1 be a sequence of distribution functions on the real line

converging weakly to a distribution function G, i.e., Gn(x)→ G(x) at all continuity points

x of G. Assume that G is continuous and strictly increasing at y = G−1(1− α). Then,

G−1
n (1− α) := inf{x ∈ R : Gn(x) ≥ 1− α} → y = G−1(1− α).

92If F is a continuous c.d.f., then it follows from Polya’s theorem that F̂n → F in probability or a.s. uni-

formly over x. Thus, F̂n and F are uniformly close to one another if n is large.
93Let F,G : R→ [0, 1] be two cumulative distribution functions. Define the Lévy distance between them

to be

L(F,G) := inf{ε > 0|F (x− ε)− ε ≤ G(x) ≤ F (x+ ε) + ε for allx ∈ R}.
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7.4.1 Bootstrapping the sample mean

Theorem 7.9 (Bootstrapping the sample mean). Suppose X1, X2, . . . , Xn are i.i.d. F and

that σ2 := Var(X1) < ∞. Let η(X, F ) :=
√
n(X̄n − µ), where µ := E(X1) and X̄n :=∑n

i=1Xi/n. Then,

ρ(Ĥn, Hn) := sup
x∈R
|Hn(x)− Ĥn(x)| a.s.→ 0 as n→∞,

where Ĥn(x) ≡ Hn(x,Fn) and Fn is the empirical c.d.f. of the sample X1, X2, . . . , Xn.

Proof. For a fixed sequence X1, X2, . . . , the variable X̄∗n is the average of n observations

X∗1 , . . . , X
∗
n sampled from the empirical distribution. The (conditional) mean and variance

of these observations are

E(X∗i |Fn) =
n∑
i=1

1

n
Xi = X̄n

Var(X∗i |Fn) =
n∑
i=1

1

n
(Xi − X̄n)2 =

1

n

n∑
i=1

X2
i − X̄2

n.

By the strong law of large numbers, the conditional variance converges to σ2 for almost

every sequence X1, X2, . . ..

The asymptotic distribution of X̄∗n can be established by the Lindeberg-Feller CLT (see

Theorem 6.17). Note that as the observations X∗1 , . . . , X
∗
n are sampled from a different

distribution Fn for every n, a CLT for a triangular array is necessary. In this setup we take

kn = n, Yn,i = X∗i /
√
n. It suffices to show that, for every ε > 0,

EFn [|X∗i |2I(|X∗i | > ε
√
n)] =

1

n

n∑
i=1

X2
i I(|Xi| > ε

√
n)

a.s.→ 0.

The left side is smaller than n−1
∑n

i=1X
2
i I(|Xi| > M) as soon as ε

√
n ≥M . By the strong

law of large numbers, the latter average converges to E[|Xi|2I(|Xi| > M)] for almost every

sequence X1, X2, . . .. For sufficiently large M , this expression is arbitrarily small. Conclude

that the limit superior of the left side of the preceding display is smaller than any number

δ > 0 almost surely and hence the left side converges to zero for almost every sequence

X1, X2, . . ..

Exercise 7 (HW4): Complete the proof now.

Remark 7.1. The proof of Theorem 7.10 shows that to prove the consistency of the boot-

strap it is enough to try to understand the limiting behavior of Hn(·, Pn), where Pn is any

sequence of distributions “converging” (in some appropriate sense) to P . Thus, quite often,

showing the consistency of the bootstrap boils down to showing the weak convergence of
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η(Xn, Pn) under a triangular array setup, as Xn is now an i.i.d. sample from Pn. For ex-

ample, if the CLT plays a crucial role in proving that Hn(·, P ) converges weakly to a limit

H(·, P ), the Lindeberg-Feller CLT theorem can be used to show that Hn(·, Pn) converges

weakly to H(·, P ).

Exercise 8 (HW4): What do you think would be the limiting behavior of
√
n(X̄∗n − µ),

conditional on the data X? [Hint: You may use the law of the iterated logarithm]

7.5 Second-order accuracy of the bootstrap

One philosophical question about the use of the bootstrap is whether the bootstrap has any

advantages at all when a CLT is already available. To be specific, suppose that η(X, F ) =
√
n(X̄n − µ). If σ2 := Var(X1) <∞, then

√
n(X̄n − µ)

d→ N(0, σ2) and ρ(Ĥn, Hn)
p→ 0 as n→∞.

So two competitive approximations to Hn(x) are Φ(x/σ̂n) (where σ̂2
n := 1

n

∑n
i=1(Xi− X̄n)2)

and Ĥn ≡ Hn(x,Fn). It turns out that, for certain types of statistics, the bootstrap ap-

proximation is (theoretically) more accurate than the approximation provided by the CLT.

Because any normal distribution is symmetric, the CLT cannot capture information about

the skewness in the finite sample distribution of η(X, F ). The bootstrap approximation

does so. So the bootstrap succeeds in correcting for skewness, just as an Edgeworth expan-

sion94 would do. This is called Edgeworth correction by the bootstrap, and the property is

called second-order accuracy of the bootstrap.

Theorem 7.10 (Second-order accuracy). Suppose X1, X2, . . . , Xn are i.i.d. F and that

σ2 := Var(X1) < ∞. Let η(X, F ) :=
√
n(X̄n − µ)/σ, where µ := E(X1) and X̄n :=∑n

i=1Xi/n. If E[|X1|3] <∞ and F is continuous, then,

ρ(Hn, Ĥn) = op(n
−1/2) as n→∞, (148)

where Ĥn(x) ≡ Hn(x;Fn) is the c.d.f. of η(X∗,Fn) :=
√
n(X̄∗n − X̄n)/σ̂ (σ̂2 = 1

n

∑n
i=1(Xi −

X̄n)2) and Fn is the empirical c.d.f. of the sample X1, X2, . . . , Xn.

Compare (148) with the usual CLT approximation of Hn which states that ρ(Hn,Φ) =

O(n−1/2), where Φ(·) is the standard normal c.d.f. Thus, the bootstrap approximation is

more accurate than that by the CLT. In fact, under certain assumptions it can be shown

that ρ(Hn, Ĥn) = Op(n
−1); see e.g., Hall [5].

94We note that T :=
√
n(X̄n − µ)/σ admits the following Edgeworth expansion:

P(T ≤ x) = Φ(x) +
p1(x|F )√

n
φ(x) +

p2(x|F )

n
φ(x) + smaller order terms,

where p1(x|F ) and p2(x|F ) are polynomials in x with coefficients depending on F (here φ(·) is the standard

normal density function).
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Remark 7.2 (Rule of thumb). Let X1, X2, . . . , Xn are i.i.d. F and η(X, F ) be a root. If

η(X, F )
d→ N(0, τ2), where τ does not dependent of F , then second-order accuracy is likely.

Proving it will depend on the availability of an Edgeworth expansion for η(X, F ). If τ

depends on F (i.e., τ = τ(F )), then the bootstrap should be just first-order accurate.

7.6 Bootstrapping regression models

Regression models are among the key ones that differ from the i.i.d. setup and are also

among the most widely used. Bootstrap for regression cannot be model-free; the particular

choice of the bootstrap scheme depends on whether the errors are i.i.d. or not. We will only

talk about the linear model with deterministic x’s and i.i.d. errors. Additional moment

conditions will be necessary depending on the specific problem to which the bootstrap will

be applied; see e.g., Freedman [4]. First let us introduce some notation.

We consider the model

yi = β>xi + εi,

where β is a p × 1 (p < n) vector and so is xi, and εi’s are i.i.d. F with mean 0 and

variance σ2 < ∞. Let X be the n × p design matrix with the i’th row equal to xi and let

Y := (y1, . . . , yn) ∈ Rn. The least squares estimator of β is defined as

β̂n := argmin
β∈Rp

n∑
i=1

(yi − x>i β)2 = (X>X)−1X>Y,

where we assume that (X>X)−1 is nonsingular. We may be interested in the sampling

distribution of

(X>X)−1(β̂n − β) ∼ Hn(·, F ).

First observe that Hn only depends on F . The residual bootstrap scheme is described below.

Compute the residual vector

ε̂ = (e1, . . . , en)> := Y −Xβ̂n.

We consider the centered residuals:

ε̃i = yi − x>i β̂n −
1

n

n∑
j=1

ej , for i = 1, . . . , n.

The bootstrap estimator of the distribution Hn(·, F ) is Hn(·, F̃n), where F̃n is the empirical

c.d.f. of ẽ1, . . . , ẽn.

We can show that, under appropriate conditions95, by an application of the Lindeberg-Feller

CLT, the above bootstrap scheme is consistent.

95We may assume that: (i) p is fixed (as n grows); (ii) 1
n
X>n Xn → Σ, where Σ is positive definite; (iii)

1√
n
|xij,n| → 0 as n→∞, where X ≡ Xn = (xij,n).
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7.7 Failure of the bootstrap

In spite of the many consistency theorems in the previous sections, there are instances where

the usual (nonparametric) bootstrap based on sampling with replacement from the original

data actually does not work. Typically, these are instances where the root η(X, F ) fails

to admit a CLT. Before seeing a few examples, we list a few situations where the ordinary

bootstrap fails to estimate the c.d.f. of η(X, F ) consistently:

(a) η(X, F ) =
√
n(X̄n − µ) when VarF (X1) =∞.

(b) η(X, F ) =
√
n(g(X̄n)− g(µ)) and ∇g(µ) = 0.

(c) η(X, F ) =
√
n(g(X̄n)− g(µ)) and g is not differentiable at µ.

(d) The underlying population Fθ is indexed by a parameter θ, and the support of Fθ

depends on the value of θ.

(e) The underlying population Fθ is indexed by a parameter θ, and the true value θ0

belongs to the boundary of the parameter space Θ.

Exercise 9 (HW4): Let X = (X1, X2, . . . , Xn) be an i.i.d. sample from F and σ2 =

VarF (X1) = 1. Let g(x) = |x| and let η(X, F ) =
√
n(g(X̄n) − g(µ)). If the true value

of µ is 0, then by the CLT for X̄n and the continuous mapping theorem, η(X, F )
d→ |Z|

with Z ∼ N(0, σ2). Simulate the distribution of η(X∗,Fn) and empirically compare it with

that of η(X, F ) (you may take F to be standard normal). Does the usual bootstrap work

in this case?

Exercise 10 (HW4): Let X = (X1, . . . , Xn) be a sample of size n from the uniform dis-

tribution on [0, θ], θ > 0 unknown. Let X(n) be the maximum of the observations, and

suppose that the goal is to estimate the distribution of n(X(n) − θ). Let X∗(n) be the

maximum of a sample of size n from the empirical distribution of the sample. Show that

P(X∗(n) = X(n)|X)→ 1− e−1 as n→∞. What does this mean regarding the consistency of

the empirical bootstrap estimator of the distribution of the maximum?

Remark 7.3 (Subsampling). A remedy when the usual bootstrap fails is to use subsam-

pling. The basic idea of subsampling is to approximate the sampling distribution of a

statistic based on the values of the statistic computed over smaller subsets of the data. For

example, in the case where the data are n observations that are i.i.d., a statistic is com-

puted based on the entire data set and is recomputed over all
(
n
b

)
data sets of size b (b ≤ n).

These recomputed values of the statistic are suitably normalized to approximate the true

sampling distribution. Typically, if b/n → 0 and b → ∞ as n → ∞, and there exists a

limiting non-degenerate c.d.f. H(·, P ) such that Hn(·, P ) converges weakly to H(·, P ) (as

n → ∞) the resulting subsampling approximation is consistent; see Politis et al. [10] for a

detailed study of subsampling and its various applications in statistics.
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8 Multiple hypothesis testing

8.1 Motivation

In the multiple hypothesis testing96 problem we wish to test many hypotheses simultaneously.

The null hypotheses are denoted by H0,i, i = 1, . . . , n, where n denotes the total number of

hypotheses. Consider the following example.

Example 8.1 (Prostate cancer study). DNA microarrays measure expression levels of tens

of thousands of genes. The data consist of levels of mRNA, which are thought to measure

how much of a protein the gene produces. A larger number implies a more active gene.

Suppose that we have n genes and data on the expression levels for each gene among healthy

individuals and those with prostate cancer. In the example considered in [3], n = 6033

genes were measured on 50 control patients and 52 patients with prostate cancer. The data

obtained are (Xij) where

Xij = gene expression level on gene i for the j’th individual.

We want to test the effect of the i’th gene, i.e.,

H0,i : i’th gene has same expression level for both control and cancer patients,

whereas the alternative for the i’th hypothesis is that the gene expression for the cancer

patients is more than that of the control patients. For the i’th gene, we use the following

test statistic:
X̄P
i· − X̄C

i·
sd(. . .)

∼ t100, under H0,i,

where X̄P
i· denotes the average expression level for the i’th gene for the 52 cancer patients

and X̄C
i· denotes the corresponding value for the control patients and sd(. . .) denotes the

standard error of the difference. We reject the null H0,i for gene i if the test statistic exceeds

the critical value t−1
100(1− α), for α ∈ (0, 1).

Consider the above prototypical example where we test n ≈ 6000 null hypotheses at level

0.05 (say). In general, the task is how do we detect the true non-null effects (hypotheses

where the null is not true) when a majority of the null hypotheses are true? The problem

is that even when none of the genes have a significant effect (i.e., all the null hypotheses

are true), even then on an average we expect 6000× 0.05 = 300 rejections, which is a lot of

rejection for scientists to do follow-up studies.

96Much of the material here is taken from the lecture notes by Emmanuel Candes (Stanford U; see https://

statweb.stanford.edu/~candes/teaching/stats300c/) and Rina Foygel Barber’s (U Chicago) lectures on

‘Topics in Selective Inference’ (see https://sites.google.com/view/topics-in-selective-inference/).
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Thus, a natural first question is: “Are there any significant genes”? If we reject this

global testing problem, we may focus on each hypothesis and try to decide about accept-

ing/rejecting the i’th hypothesis. The two main questions that we will address here are:

• Global testing. Here our primary interest is not on the individual hypotheses H0,i,

but instead on the global hypothesis H0 : ∩ni=1H0,i, the intersection of H0,i’s.

• Multiple testing. In this scenario we are concerned with the individual hypotheses

H0,i and want to say something about each hypothesis.

8.2 Global testing

Consider the following prototypical (Gaussian sequence model) example:

yi = µi + εi, for i = 1, . . . , n, (149)

where εi’s are i.i.d. N(0, 1), the µi’s are unknown constants and we only observe the yi’s.

We want to test

H0,i : µi = 0 versus H1,i : µi 6= 0 (or µi > 0).

In global testing, the goal is to test the hypothesis:

H0 : µi = 0, for all i (no signal), versus H1 : at least one µi is non-zero.

The complication is that if we do each of these tests H0,i at level α, and then want to

combine them, the global null hypothesis H0 might not have level α. This is the first

hurdle.

Data: p1, p2, . . . , pn: p-values for the n hypotheses.

We will assume that under H0,i, pi ∼ Unif(0, 1). (we are not assuming independence among

the pi’s yet.)

8.2.1 Bonferroni procedure

Suppose that α ∈ (0, 1) is given. The Bonferroni procedure can be described as:

• Test H0,i at level α/n, for all i = 1, . . . , n.

• Reject the global null hypothesis H0 if we reject H0,i for some i.

This can be succinctly expressed as looking at the minimum of the p-values, i.e.,

Reject H0 if min
i=1,...,n

pi ≤
α

n
.
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Question: Is this a valid level-α test, i.e., is PH0(Type I error)
?
≤ α?

Answer: Yes. Observe that

PH0(Rejecting H0) = PH0

(
min

i=1,...,n
pi ≤ α/n

)
= PH0(∪ni=1{pi ≤ α/n})

≤
n∑
i=1

PH0,i(pi ≤ α/n), (crude upper bound)

= n · α/n, since pi ∼ Unif([0, 1]) under null

= α.

So this is a valid level-α test, whatever the pi’s are (the pi’s could be dependent).

Question: Are we being too conservative (the above is an upper bound)? As we are testing

each hypothesis using a very small level α/n most of the p-values would fail to be significant.

The feeling is that we need a very strong signal for some i to detect the global null using

the Bonferroni method.

Answer: We are not doing something very crude, if all the p-values are independent. This

can be seen by directly calculating the exact level of the test. If the pi’s are independent,

then observe that

PH0

(
min
i
pi ≤ α/n

)
= 1− PH0 (∩ni=1{pi > α/n})

= 1−
n∏
i=1

PH0,i(pi > α/n) (using independence)

= 1−
(

1− α

n

)n as n→∞−−−−−→ 1− e−α ≈ α (for α small).

Thus, the Bonferroni approach is not a bad thing to do, especially when we have independent

p-values97. Note that, under independence to obtain an exact level α test we can use the

Šidák correction, i.e., instead of α/n (in the above) we can take α̃ := [1− (1− α)1/n].

8.2.2 Power of the Bonferroni procedure

Let us now focus on the power of the Bonferroni method. To discuss power we need a model

for the alternative.

Question: Consider the example of the Gaussian sequence model mentioned previously.

Under what scenario for the µi’s do we expect the Bonferroni test to do well?

97On the other extreme, if the p-values are very dependent the Bonferroni method can be quite conserva-

tive. The Type I error of the Bonferroni method when p1 = . . . = pn is α/n.
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Answer: If we have (a few) strong signals, then the Bonferroni procedure is good. We will

try to formalize this now.

In the Gaussian sequence model the Bonferroni procedure reduces to: Reject H0,i (H0,i :

µi = 0 vs. H1,i : µi > 0) if

yi > zα/n,

where zα/n is the (1− α/n)’th quantile of the standard normal distribution.

Question: How does zα/n behave? Do we know its order (when α is fixed and n is large)?

Answer: As first approximation, zα/n is like
√

2 log n (an important number for Gaussian

random variables)98.

Fact 1. Here is a fact from extreme value theory about the order of the maximum of the

εi’s, i.e., maxi=1,...,n εi:
maxi=1,...,n εi√

2 log n

a.s.−−→ 1,

i.e., if we have a bunch of n independent standard normals, the maximum is like
√

2 log n.

The mean of maxi=1,...,n εi is like
√

2 log n and the fluctuations around the mean is of order

Op(1).

To study the power of the Bonferroni procedure, we consider the following stylistic regimes

(in the following the superscript (n) is to allow the variables to vary with n):

(i) µ
(n)
1 = (1 + η)

√
2 log n and µ2 = . . . = µn = 0,

(ii) µ
(n)
1 = (1− η)

√
2 log n and µ2 = . . . = µn = 0,

where η > 0. So, in both settings, we have one strong signal, and everything else is 0.

In case (i), the signal is slightly stronger than
√

2 log n; and in case (ii), the signal is slightly

weaker than
√

2 log n. We will show that Bonferroni actually works for case (i) (by that we

mean the power of the test actually goes to 1). Meanwhile, the Bonferroni procedure fails

for case (ii) — the power of the test converges to α.

98We can bound 1− Φ(t) as:

φ(t)

t

(
1− 1

t2

)
≤ 1− Φ(t) ≤ φ(t)

t
⇒ 1− Φ(t) ≈ φ(t)

t
for t large.

Here is a heuristics proof of the fact that zα/n ≈
√

2 logn:

1− Φ(t) ≈ φ(t)

t
=
α

n
⇔ e−t

2/2

√
2πt

=
α

n

⇔ − t
2

2
=���

��XXXXXlog(
√

2πt) + log(α/n) (as log(
√

2πt) is a smaller order term)

≈ t2 = −2 log(α/n) = 2 logn− 2 logα ≈
√

2 logn.
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This is not only a problem with the Bonferroni procedure — it can be shown that no test

can detect the signal in case (ii).

Case (i):

P(max yi > zα/n) = P
(
{y1 > zα/n} ∪

{
max
i=2,...,n

yi > zα/n

})
≥ P({y1 > zα/n})

≈ P
(
ε1 >

√
2 log n− (1 + η)

√
2 log n

)
→ 1.

In this regime, just by looking at y1, we will be able to detect that H0 is not true.

Case (ii):

P(max yi > zα/n) ≤ P(y1 > zα/n) + P
(

max
i=2,...,n

yi > zα/n

)
.

Note that the first term is equal to P(ε1 > η
√

2 log n) → 0 as n → ∞; whereas the second

term converges to 1− e−α. Hence, we have shown that in this case the power of the test is

less than or equal to the level of the test. So the test does as well as just plain guesswork.

This shows the dichotomy in the Bonferroni procedure; that by just changing the signal

strength you can always recover or you can fail (1− α) of the time.

Whenever we have a hypothesis testing procedure, there has to be an effort in trying to

understand the power of the procedure. And it is quite often the case that different tests

(using different test statistics) are usually geared towards detecting different kinds of de-

partures from the null. Here, the Bonferroni procedure is geared towards detecting sparse,

strong signals.

8.2.3 Chi-squared test

Consider the Gaussian sequence model described in (149) and suppose that we want to test

the global null hypothesis:

H0 : µi = 0, for all i, (no signal) versus H1 : at least one µi is non-zero.

Letting Y = (y1, . . . , yn), the chi-squared test can be expressed as:

Reject H0 if T := ‖Y ‖2 > χ2
n(1− α).

Note that under H0,

T ∼ χ2
n,

and under H1,

T ∼ χ2
n(‖µ‖2),
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where µ = (µ1, . . . , µn) ∈ Rn and χ2
n(‖µ‖2) denotes the non-central χ2

n distribution with

non-centrality parameter ‖µ‖2.

This test is going to have high power when ‖µ‖2 is large. So, this test would have high

power when there are many weak signals (even if each µi is slightly different from zero

as we square it and add these up we can get a substantially large ‖µ‖2). The Bonferroni

procedure may not be able to detect a scenario like this — given α/n to each hypothesis

if the signal strengths are weak all of the p-values (for the different hypotheses) might be

considerably large.

Remark 8.1 (Fisher’s combination test). Suppose that p1, . . . , pn are the n p-values ob-

tained from the n hypotheses tests. We assume that the pi’s are independent. The Fisher’s

combination test rejects the global null hypothesis if

T :=
n∑
i=1

−2 log pi

is large. Observe that, under H0, T := −2
∑n

i=1 log pi ∼ χ2
2n. This follows from the fact

that under H0,i,

− log pi ∼ Exp(1) ≡ Gamma(1, 1).

Again, as this test is aggregating the p-values, it will hopefully be able to detect the presence

of many weak signals.

8.3 Simultaneous inference

In simultaneous inference, we have a long list of hypotheses we are interested in testing (it

could be a finite list or even an infinite list) and our requirement is that with probability

at least 1 − α all of these hypotheses tests have to be simultaneously correct (i.e., the

probability of making any error is at most α). We can alternatively be in the setting where

our goal is to construct a CI for each parameter in a list of parameters and we would like

to ensure that all the CIs cover the respective parameters simultaneously with probability

at least 1− α.

Let us illustrate this using the Gaussian sequence setting (149)99. We may be interested in

the following questions:

(a) We could ask questions about each µi, e.g., can we test the hypothesis H0,i : µi =

0 simultaneously for all i. Correspondingly, we can ask if we can form confidence

intervals for the µi’s that have simultaneous coverage, i.e.,

P (µi ∈ CIi ∀i) ≥ 1− α

where CIi is a confidence interval for µi, for all i.

99Sometimes also called as the one-way layout with Gaussian noise.
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(b) We can also ask if µi and µj are the same, i.e., test H0,i,j : µi = µj simultaneously

for all i, j ∈ {1, . . . , n}? What can we do to obtain simultaneously valid inference for

these
(
n
2

)
hypotheses? Similarly, we can ask, if we can construct CIs for each of these(

n
2

)
parameters µi − µj that are simultaneously valid.

To solve (a) we can use the Šidák correction, i.e., by taking α̃ := [1 − (1 − α)1/n], we can

ensure that

P
(
µi ∈ [yi − zα̃/2, yi + zα̃/2] ∀i

)
= P

(
|εi| ≤ zα̃/2 ∀i

)
= (1− α̃)n = 1− α.

Now, to solve (b), observe that the above display implies that

P
(
µi − µj ∈ [yi − yj − 2zα̃/2, yi − yj + 2zα̃/2] ∀i

)
≥ 1− α.

This is our option (i) for solving (a). However the above approach could be conservative.

In option (ii), we can apply Bonferroni directly to the following
(
n
2

)
data points:

(yi − yj) = (µi − µj) + (εi − εj),

where εi − εj ∼ N(0, 2). This will lead to the following CIs which are simultaneously valid

with probability at least 1− α:

(yi − yj)±
√

2zα/(2(n2)).

Again, this approach is likely to be a bit conservative because of the dependence between

the variables.

Yet another approach is the Tukey’s honest significant difference test (HSD) which avoids

the union bound and the overly conservative nature of the Bonferroni procedure. The idea

is to look at qn,α, the (1− α)’th quantile of the distribution of

max
i=1,...,n

εi − min
i=1,...,n

εi,

where ε1, . . . , εn are i.i.d. N(0, 1) (the quantiles of this distribution can be easily simulated).

We can now show that

CIij := (yi − yj)± qm,α

is a valid level α simultaneously valid confidence interval for (µi−µj) (and unlike Bonferroni,

Tukey’s HSD is not conservative):

P (µi − µj ∈ CIij ∀i 6= j) = P (|(µi − µj)− (yi − yj)| ≤ qn,α ∀i 6= j)

= P
(
|εi − εj | ≤ qn,α ∀i 6= j

)
= P

(
max
i,j
|εi − εj | ≤ qn,α

)
= P

(
max
i
εi −min

i
εi ≤ qn,α

)
= 1− α.
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8.4 Multiple testing/comparison problem: False discovery rate

Until now, we have been considering tests of the global null H0 = ∩iH0,i or simultaneous

inference. For some testing problems, however, our goal is to accept or reject each individual

H0,i, for i ∈ {1, . . . , n} =: [n]. Let H0 ⊂ [n] (here [n] denotes all the hypotheses being

tested) denote the true nulls with |H0| = n0 and the remaining hypotheses are non-null.

Let R ⊂ {1, . . . , n} denote the rejections by any multiple testing procedure.

We have four types of outcomes for a multiple testing proecure:

Accept H0,i Reject H0,i

H0,i true U V n0

H0,i false T S n− n0

n−R R n

where R = number of rejections (an observed random variable) and U, V, S, T are unobserved

random variables. Note that

V = number of false discoveries.

8.4.1 Family-wise error rate

Ideally, we would not like to make false discoveries (i.e., reject the null when the null is

true). But if you are not willing to make any false discoveries, which basically translates

to our threshold/cutoff being really large for each test, then we will not be able make any

discoveries at all.

Traditionally, statisticians want to control the family-wise error rate (FWER):

FWER := P(V ≥ 1).

It is very easy to design a test whose FWER is controlled by a predetermined level α: reject

or accept each hypothesis H0,i according to a test whose type I error is at most α/n. Indeed,

this is the Bonferroni method. By the union bound, one then has

FWER = P (∪i∈H0 {Reject H0,i}) ≤
∑
i∈H0

P (Reject H0,i) ≤
αn0

n
≤ α.

In modern theory of hypothesis testing, control of the FWER is considered too stringent

mainly because it leads to tests that fail to reject many non-null hypotheses as well.

8.4.2 False discovery rate

The false discovery rate (FDR) is an error control criterion developed in the 1990s as an

alternative to the FWER. When the number of tests is in the tens of thousands or even
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higher, FWER control is so stringent a criterion that individual departures from the null

have little chance of being detected. In such cases, it may be unreasonable to control the

probability of having any false rejections. Attempting to do so would leave us with virtually

no power to reject individual non-nulls.

A new point of view advanced by Benjamini and Hochberg [1] proposes controlling the

(expected) proportion of errors among the rejected hypotheses. The false discovery (or

rejection) proportion (FDP) is defined as

FDP :=
# false discoveries

# discoveries
=
|H0 ∩R|
|R|

=
V

R
(here 0

0 is taken to be 0). (150)

Intuitively, FDP reflects the “cost” of following up on discoveries, i.e., if FDP ≤ 0.1, then

approximately 90% of discoveries are expected to be “real”. It seems perfectly reasonable

to try to develop multiple testing procedures with small FDP.

But FDP is an unobserved random variable, so the criterion we propose to control is its

expectation, which we refer to as the false discovery rate (FDR), i.e.,

FDR := E(FDP). (151)

Question: What if we reject all H0,i with pi ≤ α (for some fixed α ∈ (0, 1))?

Answer: In this case we expect around α·|H0| many false positives (discoveries/rejections);

this will be the numerator in (150). When the number of true signals (i.e., hypotheses

where the null is false) is (extremely) small, then most of our discoveries are going to be

false discoveries, and thus FDP ≈ 1, which is not necessarily good for follow-up studies.

However, if the number of true signals is large, then α · |H0| many false positives is quite a

reasonable number of false discoveries in the context a very large number of true discoveries

(we expect R to be large here).

So until we know how many signals there are we will not know whether we have a high or

low FDP. Thus, we would want to choose a p-value threshold adaptively to the data which

may ensure that FDR is controlled.

8.4.3 Benjamini-Hochberg procedure

The Benjamini-Hochberg (BH) procedure controls FDR at any desired level (e.g., suppose

we take q = 0.2), i.e., FDR ≤ q = 0.2; thus out of all of the rejections we make we are

willing to have 20% of them be false, on an average.

The BH procedure can be described as: suppose that p1, . . . , pn are the p-values from the

n hypotheses tests. Let

p(1) ≤ p(2) ≤ . . . ≤ p(n)
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be the sorted p-values. Let

i0 := max

{
i ≤ n : p(i) ≤ q

i

n

}
, 0 < q < 1.

We reject all hypotheses H0,(i) for 1 ≤ i ≤ i0 (reject those hypotheses with p-values from

p(1) to p(i0)). Pictorially this can be easily expressed as: draw the line with slope q passing

through the origin and plot the ordered p-values {( in , p(i))}ni=1, and accept all the hypotheses

whose p-values lie above the line after the last time it was below the line.

Another way to view the BH procedure is via the following sequential description: start

with {i = n} and keep accepting the hypothesis corresponding to p(i) as long as p(i) > qi/n.

As soon as p(i) ≤ iq/n, stop and reject all the hypotheses corresponding to p(j) for j ≤ i.

We can also think of the BH procedure as finding the maximum k such that at least k many

pi’s are ≤ qk/n and then rejecting all pi’s such that pi ≤ qk/n.

Theorem 8.2. Suppose that the p-values p1, . . . , pn are independent. Suppose further that

the BH procedure (at level q) is used to accept/reject the hypotheses. Then

FDR = E
(

V

max(R, 1)

)
= q

n0

n
.

Remark 8.2. Note that the above result states that the BH procedure controls FDR for

all configurations of {H0,i}ni=1.

Proof. This proof can be found in the recent paper by Heesen and Janssen [6]100. Although

there are many ways to prove this result, we will use the so-called leave-one-out technique101.

Another useful technique uses martingale ideas; see Storey et al. [13].

We may assume that H0 is nonempty for otherwise V ≡ 0 and there will be nothing to

prove. Let p := (p1, . . . , pn) and let R ≡ R(p) denote the number of rejections made by

the BH procedure. From the description, it should be clear that R(p) is exactly equal to

i0. We can therefore write the FDP as

FDP =
V

R(p) ∨ 1
=
∑
j∈H0

I {pj ≤ qR(p)/n}
R(p) ∨ 1

.

We now fix j ∈ H0 and let p̃ := (p1, . . . , pj−1, 0, pj+1, . . . , pn), i.e., the j’th p-value is replaced

by 0 and the rest of the p-values are unchanged. Let R(p̃) denote the number of rejections

100I came to know of this proof from the blog https://statpacking.wordpress.com/
101The intuition behind the leave-one-out proof technique is as follows:

FDR = E
[
V

R

]
=
∑
j∈H0

E
[
I {pj ≤ qR/n}

R

]
≈
∑
j∈H0

E
[
qR/n

R

]
=
∑
j∈H0

q

n
= q

n0

n
,

where the ≈ step may hold if R were independent of pj (which is not true).
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of the BH procedure for p̃. It should be noted that R(p̃) ≥ 1 because of the presence of a

zero p-value in p̃. The key observation now is

I {pj ≤ qR(p)/n}
R(p) ∨ 1

=
I {pj ≤ qR(p̃)/n}

R(p̃)
. (152)

To see this, first observe that when pj ≤ qR(p)/n, then the j’th hypothesis is rejected

and R(p) = R(p̃), and thus I {pj ≤ qR(p)/n} = I {pj ≤ qR(p̃)/n}. Suppose that the left

indicator is zero and that pj equals p(k) (i.e., pj equals the k’th order statistic). Then the

fact that the left indicator is zero implies that pj ≡ p(k) > qk/n (because otherwise, we

would reject the j’th hypothesis). By definition of the BH procedure, we must then have

p(i) > qi/n for every i > k. Let us denote p̃ by (p̃1, . . . , p̃n). As p̃(i) = p(i) for i > k, we

also have p̃(i) > qi/n for every i > k and this implies that R(p̃) ≤ k. We therefore have

pj = p(k) > qk/n ≥ qR(p̃)/n which means that the right hand side of (152) is also zero.

Using (152), we can write

FDR =
∑
j∈H0

E
[
I {pj ≤ qR(p)/n}

R(p) ∨ 1

]
=
∑
j∈H0

E
[
I {pj ≤ qR(p̃)/n}

R(p̃)

]
.

The independence assumption of p1, . . . , pn now implies that pj and R(p̃) are independent.

Also because pj is uniformly distributed on [0, 1] as j ∈ H0, we deduce that

FDR =
∑
j∈H0

E
[
E
[
I {pj ≤ qR(p̃)/n}

R(p̃)

∣∣∣p̃]] =
∑
j∈H0

E
[ q
n

]
= q

n0

n

and this completes the proof.
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A Appendix

A.1 Hilbert spaces

A vector space in Rn can be spanned by a finite set of vectors. A Hilbert space is a

generalization of the notion of a Euclidean space and admit expansions like that as in a

finite dimensional vector space.

Definition A.1 (Hilbert space). Let H be a (real) vector space together with a function

〈·, ·〉 : H×H → R (the inner product) for which

〈x, y〉 = 〈y, x〉, ∀x, y ∈ H (symmetric),

〈x, ay + bz〉 = a〈x, y〉+ b〈x, z〉, ∀x, y, z ∈ H, α, β ∈ R (bilinear),

〈x, x〉 ≥ 0, x ∈ H, with equality if and only if x = 0.

Suppose that the norm in H is defined by

‖x‖ :=
√
〈x, x〉

and H is complete102 in the metric d(x, y) := ‖x − y‖. Then H forms a Hilbert space

equipped with the inner product 〈·, ·〉.

Example A.2 (Euclidean space). Let H = Rm and 〈x, y〉 :=
∑m

i=1 xiyi (where x =

(x1, . . . , xm) ∈ Rm); or more generally 〈x, y〉 = x>Ay where A is a symmetric positive

definite matrix.

Example A.3 (Euclidean matrices). Let H = Rm×m be the set of all m × m matrices.

Define 〈x, y〉 := tr(xy>). Then 〈·, ·〉 defines a Hilbert space over m×m matrices.

Example A.4 (L2 space). Let (Ω,A, µ) be a measure space and let L2(Ω,A, µ) be the set

(of equivalence classes) of all square integrable functions with

〈f, g〉 :=

∫
fg dµ.

Example A.5 (Sobolev space). The Sobolev space Wm[0, 1] is the collection of all functions

f : [0, 1]→ R with m−1 continuous derivatives, f (m−1) absolutely continuous, and ‖f (m)‖ <
∞. With an inner product 〈·, ·〉 defined by

〈f, g〉 :=

m−1∑
k=0

f (k)(0)g(k)(0) +

∫ 1

0
f (m)(x)g(m)(x)dx, f, g ∈Wm[0, 1], (153)

Wm[0, 1] is a Hilbert space.

Here are some properties of any Hilbert space H with inner product 〈·, ·〉:
102A metric space H is said to be complete if every Cauchy sequence in H has a limit in H.
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• The Cauchy-Schwarz inequality holds:

|〈x, y〉| ≤ ‖x‖‖y‖, ∀ x, y ∈ H.

• The Parallelogram laws assert that

‖x+ y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) and ‖x+ y‖2−‖x− y‖2 = 4〈x, y〉 ∀ x, y ∈ H.

• (Linear functional) A function ϕ : H → R is said to be a linear functional if ϕ(αx +

βy) = αϕ(x)+βϕ(y) whenever x, y ∈ H and α, β ∈ R. For example, for a fixed y ∈ H,

ϕy(x) := 〈x, y〉, ∀ x ∈ H, (154)

defines a continuous linear functional, a linear functional that is continuous with

respect to the metric induced by the inner product.

• (Dual space) The dual space H∗ (of H) is the space of all continuous linear functions

from H into R. It carries a natural norm103, defined by

‖ϕ‖H∗ = sup
‖x‖=1,x∈H

|ϕ(x)|, ϕ ∈ H∗.

This norm satisfies the parallelogram laws.

The following result, known as the Riesz representation theorem ,gives a convenient

description of the dual.

Theorem A.6 (Riesz representation theorem). Any continuous linear functional can

be represented in the form (154) for some y ∈ H depending on the linear functional.

Thus to every element ϕ of the dual H∗ there exists one and only one uϕ ∈ H such

that 〈x, uϕ〉 = ϕ(x), for all x ∈ H. The inner product on the dual space H∗ satisfies

〈ϕ,ψ〉H∗ := 〈uψ, uϕ〉H.

So the dual space is also an inner product space. The dual space is also complete,

and so it is a Hilbert space in its own right.

103Let X and Y be normed vector spaces over R. A function T : X → Y is called a linear operator if

T (cx1 + x2) = cT (x1) + T (x2), ∀ x1, x2 ∈ X , c ∈ R.

The operator norm (or spectral norm) of T is defined as ‖T‖ := sup{‖T (x)‖ : ‖x‖ ≤ 1}, and T is called

bounded if ‖T‖ <∞.

(a) Show that a bounded operator T is continuous: If ‖xn − x‖ → 0, then ‖T (xn)− T (x)‖ → 0.

(b) Show that a continuous linear operator T is bounded.

(c) Let X = Rm and Y = Rn, with the usual Euclidean norms. Let A be an n×m matrix, and define a

linear operator T by T (x) = Ax. Relate the operator norm ‖T‖ to the eigenvalues of A>A.
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• (Convex sets) Recall that a subset H0 ⊂ H is called a linear subspace if it is closed

under addition and scalar multiplication; i.e., αx+ βy ∈ H0 whenever x, y ∈ H0 and

α, β ∈ R.

A subset C ⊂ H is said to be convex if it contains the line joining any two of its

elements, i.e., αx+ (1− α)y ∈ C whenever x, y ∈ C and 0 ≤ α ≤ 1.

A set C ⊂ H is said to be a cone if αx ∈ C whenever x ∈ C and α ≥ 0. Thus, C

is a convex cone if αx + βy ∈ C whenever x, y ∈ C and 0 ≤ α, β < ∞. Any linear

subspace is, by definition, also a convex cone. Any ball, B = {x ∈ H : ‖x‖ ≤ c},
c > 0, is a convex set, but not a convex cone.

• (Projection theorem) If C ⊂ H is a closed convex set and z ∈ H, then there is a

unique x ∈ C for which

‖x− z‖ = inf
z∈C
‖y − z‖.

In fact, x ∈ C satisfies the condition

〈z − x, y − x〉 ≤ 0, ∀ y ∈ C. (155)

The element x ∈ C is called the projection of z onto C and denoted by ΠC(z). Prove

the projection theorem.

In particular, if C is a convex cone, setting y = x/2 and y = 2x in (155) shows that

〈z − x, x〉 = 0. Thus, x is the unique element of C for which

〈z − x, x〉 = 0 and 〈z − x, y〉 ≤ 0 ∀ y ∈ C.

If C is a linear subspace, then z − x is orthogonal to C, i.e.,

〈z − x, y〉 = 0 ∀ y ∈ C.

• (Orthogonal complement) Suppose that H0 ⊂ H. The orthogonal complement of H0

is

H⊥0 := {x ∈ H : 〈x, y〉 = 0, ∀ y ∈ H0}.

Result: The orthogonal complement of a subset of a Hilbert space is a closed linear

subspace.

The projection theorem states that if C ⊂ H is a closed subspace, then any z ∈ C
may be uniquely represented as z = x+ y, where x ∈ C is the best approximation to

z, and y ∈ C⊥.

Result: If C ⊂ H is a closed subspace, then H = C ⊕ C⊥, where

A⊕B := {x+ y : x ∈ A, y ∈ B}.

Thus, every closed subspace C of H has a closed complementary subspace C⊥.
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• (Orthonormal basis) A collection {et : t ∈ T} ⊂ H (where T is any index set) is said

to be orthonormal if es ⊥ et (i.e., 〈es, et〉 = 0) for all s 6= t and ‖et‖ = 1, for all t ∈ T .

As in the finite-dimensional case, we would like to represent elements in our Hilbert

space as linear combinations of elements in an orthonormal collection, but extra care

is necessary because some infinite linear combinations may not make sense.

The linear span of S ⊂ H, denoted span(S), is the collection of all finite linear

combinations α1x1 + · · ·+ αnxn with α1, . . . , αn ∈ R and x1, . . . , xn ∈ S. The closure

of this set is denoted by span(S).

An orthonormal collection {et, t ∈ T}, is called an orthonormal basis for the Hilbert

space H if 〈et, x〉 6= 0 for some t ∈ T , for every nonzero x ∈ H.

Result: Every Hilbert space has an orthonormal basis.

WhenH is separable104, a basis can be found by applying the Gram-Schmidt algorithm

to a countable dense set, and in this case the basis will be countable.

Result: If {en}n≥1, is an orthonormal basis of H, then each x ∈ H may be written

as x =
∑∞

k=1〈x, ek〉ek. Show this.
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