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Multivariate nonparametric testing

Consider the following two nonparametric hypothesis testing problems

Testing for equality of distributions (two-sample goodness-of-fit (GoF))

Data: {Xi}mi=1 iid P1 on Rd ; {Yj}nj=1 iid P2 on Rd , d ≥ 1

Test if the two-samples came from the same distribution, i.e.,

H0 : P1 = P2 versus H1 : P1 6= P2

When d = 1: Smirnov (1939), Wald and Wolfowitz (1940),
Wilcoxon (1945), Mann and Whitney (1947), Anderson (1962), ...

When d > 1: Weiss (1960), Bickel (1969), Friedman and Rafsky
(1979), Schilling (1986), Henze (1988), Liu and Singh (1993),
Székely (2003), Rosenbaum (2005), Gretton et al. (2012), Biswas et
al. (2014), Chen and Friedman (2017), ...
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Multivariate nonparametric testing

Testing for mutual independence

(X,Y) ∼ P on Rd1 × Rd2 ; d1, d2 ≥ 1

Data: n iid observations {(Xi ,Yi )}ni=1 from P

Test if X is independent of Y, i.e.,

H0 : X ⊥⊥ Y versus H1 : X 6⊥⊥ Y

When d1 = d2 = 1: Pearson (1904), Spearman (1904), Kendall
(1938), Hoeffding (1948), Blomqvist (1950), Blum et al. (1961),
Rosenblatt (1975), Feuerverger (1993), ...

When d1 > 1 or d2 > 1: Friedman and Rafsky (1979), Székely et
al. (2007), Gretton et al. (2008), Oja (2010), Heller et al. (2013),
Biswas et al. (2016), Berrett and Samworth (2019), ...

We can also handle testing for K -vector/sample analogues of these
problems and can also test for multivariate symmetry
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Multivariate distribution-free nonparametric testing

Two-sample GoF testing: H0 : P1 = P2 vs. H1 : P1 6= P2

Testing for independence: H0 : X ⊥⊥ Y vs. H1 : X 6⊥⊥ Y

Our contributions: summary

Develop exactly distribution-free multivariate tests (i.e., null
distributions of the test statistics are free of the underlying
(unknown) data generating distributions, for all sample sizes)

Consistent against all fixed alternatives (i.e., power of the test
converges to 1 as sample size increases)

Computationally feasible (O(n3) algorithm)

Most existing tests do not satisfy the above three desirable properties
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Multivariate distribution-free nonparametric testing

A general framework for multivariate distribution-free nonparametric
testing based on ranks

Multivariate ranks obtained using the theory of optimal transport
[Hallin (2017), Chernozhukov et al. (2017), del Barrio et al. (2018),
Ghosal and S. (2019), Deb and S. (2019), ...]

Why ranks?

In one-dimension, ranks lead to distribution-free tests

Examples: Wilcoxon rank-sum test [Wilcoxon (1945)], Spearman’s
rank correlation [Spearman (1904)], two-sample Kolmogorov-
Smirnov test [Smirnoff (1933)], two-sample Cramér-von Mises
statistic [Anderson (1962)], Wald-Wolfowitz runs test [Wald and
Wolfowitz (1940)], Hoeffding’s D-test [Hoeffding (1948)], etc. ...

In general, rank-based tests are: (i) distribution-free and have good
efficiency, (ii) are more powerful for distributions with heavy tails,
and (iii) are robust to outliers & contamination
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Optimal Transport: Monge’s problem

Gaspard Monge (1781): What is the cheapest way to transport a pile of
sand to cover a sinkhole?

Goal: inf
T :T (X )∼µ

Eν [c(X ,T (X ))] X ∼ ν

ν (on X ) and µ (on Y) probability measures,
∫
X
dν(x) =

∫
Y
dµ(y) = 1

c(x , y) ≥ 0: cost of transporting x to y (e.g., c(x , y) = ‖x − y‖2)

T (X ) ∼ µ where X ∼ ν; T transports ν to µ
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Rank function as the optimal transport map: when d = 1

X ∼ ν (abs. cont.) on R, F ≡ Fν c.d.f. of ν

Rank: The rank of x ∈ R is F (x) (a.k.a. the c.d.f. at x)

Property: F (X ) ∼ Uniform([0, 1]) ≡ µ; i.e., F transports ν to µ

In fact (if Eν [X 2] <∞) the c.d.f. F is the optimal transport map as

F = arg min
T :T (X )∼µ

Eν [(X − T (X ))2]

where
c(x , y) = (x − y)2
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Sample rank: when d = 1

Data: X1, . . . ,Xn iid ν (cont. distribution) on R

Sample rank map: R̂n : {X1,X2, . . . ,Xn} −→ { 1n ,
2
n , . . . ,

n
n}

x(1) x(2) x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9) x(10)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

Data points

Empirical ranks

Sample rank map R̂n is also a transport map that transports

νn := 1
n

n∑
i=1

δXi to µn := 1
n

n∑
i=1

δ i
n
,

i.e., R̂n := arg min
T

1

n

n∑
i=1

|Xi − T (Xi )|2 = arg max
T

1

n

n∑
i=1

X(i) · T (X(i))
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Multivariate rank functions as transport maps

X ∼ ν; ν is a probability measure in Rd (abs. cont.)

Find “optimal” transport map T s.t. T(X)
d
= U ∼ Unif([0, 1]d) ≡ µ

Population rank function

If Eν‖X‖2 <∞, rank function R : Rd → [0, 1]d is the transport map s.t.

R := arg min
T:T(X)∼µ

Eν‖X− T(X)‖2

Properties of population rank function [Brenier (1991), McCann (1995)]

R(·) characterizes distribution: R1(x) = R2(x) ∀ x ∈ Rd iff P1 = P2

R(·) is invertible, i.e., there exists unique Q(·) s.t.

R ◦Q(u) = u (µ-a.e.) and Q ◦ R(x) = x (ν-a.e.)

Both R(·) and Q(·) and gradients of convex functions
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If Eν‖X‖2 <∞, the population rank function R(·) is defined as

R := arg min
T:T(X)∼µ

Eν‖X− T(X)‖2 (1)

Even when Eν‖X‖2 = +∞, R(·) can still be defined

Characterization of the population rank function [McCann (1995)]

Suppose X ∼ ν abs. cont. on Rd . Then ∃ ν-a.e. unique meas. mapping

R : Rd → [0, 1]d , transporting X to U (i.e., R(X)
d
= U), of the form

R(x) = ∇ϕ(x), for ν-a.e. x, (2)

where ϕ : Rd → R ∪ {+∞} is a convex function (cf. when d = 1).

Moreover, when Eν‖X‖2 <∞, R(·) as defined in (2) also satisfies (1).
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Data: X1, . . . ,Xn iid ν on Rd (abs. cont. distribution)

Empirical rank map R̂n : {X1, . . . ,Xn} → {c1, . . . , cn} ⊂ [0, 1]d —
sequence of “uniform-like” points (quasi-Monte Carlo sequence)

(1,1)(0,1)

(0,0) (1,0)

Data points

Empirical ranks

Sample multivariate rank map is defined as the tranport map s.t.

R̂n := arg min
T

1

n

n∑
i=1

‖Xi − T(Xi )‖2

where T transports νn := 1
n

∑n
i=1 δXi to µn := 1

n

∑n
i=1 δci

Assignment problem (can be reduced to a linear program — O(n3))
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Distribution-free property [Hallin (2017), Deb and S. (2019)]

Suppose that X1, . . . ,Xn iid on Rd with abs. cont. distribution. Then,

(R̂n(X1), . . . , R̂n(Xn))

is uniformly distributed over the n! permutations of {c1, . . . , cn}.

This is the first step to obtaining distribution-free tests

Regularity: a.s.-convergence [Deb and S. (2019)]

X1, . . . ,Xn iid ν (abs. cont.). If 1
n

∑n
i=1 δci

d→ Unif([0, 1]d), then

1

n

n∑
i=1

‖R̂n(Xi )− R(Xi )‖
a.s.−→ 0 as n→∞.

Result gives the required regularity to the empirical multivariate rank map

Open research question: What is the rate of convergence of R̂n to R?
[Hütter and Rigollet (2019)]
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Multivariate two-sample goodness-of-fit test

Testing for equality of two multivariate distributions

Data: {Xi}mi=1 iid P1 on Rd ; {Yj}nj=1 iid P2 on Rd , d ≥ 1

Test if the two samples come from the same distribution, i.e.,

H0 : P1 = P2 versus H1 : P1 6= P2

Start with a “good” test, say the energy statistic [Székely (2003),
Székely and Rizzo (2013)]; can also use any kernel test (MMD)
[Gretton et al. (2012), Sejdinovic et al. (2013)]

Suppose X,X′
iid∼ P1, Y,Y′

iid∼ P2 and set h(s, t) := ‖s− t‖
The energy distance between P1 and P2:

E2(P1,P2) := 2E[h(X,Y)]− E[h(X,X′)]− E[h(Y,Y′)] ≥ 0

Characterizes equality of distributions: E(P1,P2) = 0 iff P1 = P2
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The energy distance between P1 and P2:

E2(P1,P2) := 2E[h(X,Y)]− E[h(X,X′)]− E[h(Y,Y′)] ≥ 0

E-statistic: E2
m,n

(
{Xi}mi=1, {Yj}nj=1

)
:= 2A− B − C where

A =
1

mn

m,n∑
i,j=1

h(Xi ,Yj), B =
1

m2

m∑
i,j=1

h(Xi ,Xj), C =
1

n2

n∑
i,j=1

h(Yi ,Yj)

Energy test [Székely (2003)]

H0 : P1 = P2 versus H1 : P1 6= P2

Test: Reject H0 if Em,n

(
{Xi}mi=1, {Yj}nj=1

)
> cα

Critical value cα depends on P1 = P2! (but can be by-passed by
using a permutation test)
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Our proposal: Rank energy test

Rank energy statistic [Deb and S. (2019)]

Joint rank map: The sample ranks of the pooled observations:

R̂m,n : {X1, . . . ,Xm,Y1, . . . ,Yn} → {c1, . . . , cm+n} ⊂ [0, 1]d

Rank energy: RE2
m,n := E2

m,n

(
{R̂m,n(Xi )}mi=1, {R̂m,n(Yj)}nj=1

)

Distribution-freeness

Under H0, distribution of REm,n is free of P1 ≡ P2, if P1 is abs. cont.

Dist. of REm,n just depends on ci ’s, m, n and d

Rank energy test: Reject H0 if REm,n > κ
(m,n)
α ;

κ
(m,n)
α is a universal threshold (free of P1 ≡ P2)

The only other computationally feasible distribution-free test in this
context was proposed by Rosenbaum (2005)
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Limiting distribution under H0 : P1 = P2

If (i) P1 ≡ P2 is abs. cont., and

(ii) 1
n

∑n
i=1 δci

d→ Uniform([0, 1]d),

then, under H0, for some universal {λj ≥ 0 : j ≥ 1},

mn

m + n
RE2

m,n
d−→

∞∑
j=1

λjZ
2
j as min{m, n} → ∞

where {Zj}j≥1 are iid N(0, 1).

The choice of the ci ’s have no effect for large m, n

Power

Under (ii) and P1 6= P2, if m
m+n → λ ∈ (0, 1), then,

P
(
REm,n > κ(m,n)α

)
→ 1 as m, n→∞.

Proposed test has asymptotic power 1, against all fixed alternatives
(under minimal assumptions)
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Rank energy distance: Population version

Assume m
m+n → λ ∈ (0, 1)

X ∼ P1 and Y ∼ P2 (on Rd); Z ∼ λP1 + (1− λ)P2

Rank energy distance [Deb and S. (2019)]

“Pooled” population rank map Rλ s.t. Rλ(Z) ∼ Uniform([0, 1]d)

Rank energy distance: RE2
λ(P1,P2) := E2(Rλ(X),Rλ(Y))

Result: REλ = 0 iff P1 = P2 provided P1, P2 are abs. cont.

Almost sure convergence

If 1
n

∑n
i=1 δci

d→ Uniform([0, 1]d), then

RE2
m,n

a.s.−→ RE2
λ(P1,P2).
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When d = 1

When d = 1, REm,n is equivalent to two-sample Cramér-von Mises
statistic [Anderson (1962)] :

1

2
RE2

m,n =

∫ {
FX
m(t)− FY

n (t)
}2

dFm+n(t)

where FX
n , FY

n and Fm+n are the empirical c.d.f.’s of the X ’s, Y ’s, and
the pooled sample.

Our general principle could have been used with any other procedure
for testing equality of distributions, e.g., the MMD statistic [Gretton
et al. (2012)] which uses ideas from RKHS, ...

For example, take “any” kernel K (·, ·) in

MMD2(P1,P2) := E[K (X,X′)] + E[K (Y,Y′)]− 2E[K (X,Y)] ≥ 0

and all the results hold almost verbatim



When d = 1

When d = 1, REm,n is equivalent to two-sample Cramér-von Mises
statistic [Anderson (1962)] :

1

2
RE2

m,n =

∫ {
FX
m(t)− FY

n (t)
}2

dFm+n(t)

where FX
n , FY

n and Fm+n are the empirical c.d.f.’s of the X ’s, Y ’s, and
the pooled sample.

Our general principle could have been used with any other procedure
for testing equality of distributions, e.g., the MMD statistic [Gretton
et al. (2012)] which uses ideas from RKHS, ...

For example, take “any” kernel K (·, ·) in

MMD2(P1,P2) := E[K (X,X′)] + E[K (Y,Y′)]− 2E[K (X,Y)] ≥ 0

and all the results hold almost verbatim



−0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

Mean

P
o
w

e
r

−0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6

0
.
2

0
.
4

0
.
6

0
.
8

1
.
0

Mean

P
o
w

e
r

Left panel:

X1

X2

X3

 ∼ N3(0, I3);
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 ∼ N3(µ13, I3) as µ ∈ R varies

Right panel: U = (U1,U2,U3), V = (V1,V2,V3), Ui = eXi , Vi = eYi

Performance of 4 tests: Energy, Rank energy, Crossmatch, HHG



More simulations

(C) (HHG) (EN) (REN)

V1 0.13 0.15 0.13 0.34

V2 0.34 0.94 0.94 0.89

V3 0.41 0.34 0.34 0.46

V4 0.34 0.31 0.33 0.32

V5 0.73 0.70 0.56 0.93

V6 0.90 0.88 0.82 0.99

V7 0.13 0.51 0.65 0.63

V8 0.11 0.39 0.35 0.43

V9 0.06 1.00 0.97 1.00

V10 0.28 0.99 1.00 0.59

Table: Proportion of times the null hypothesis was rejected across 10 settings.
Here n = 200, d = 3. Here (C) – Rosenbaum’s crossmatch test [Rosenbaum
(2005)], (HHG) – Heller, Heller and Gorfine [Heller et al. (2013)], (EN) –
energy statistic [Székely and Rizzo (2013)], (REN) – rank energy test.



Asymptotic stabilization of critical values

Critical values κ
(m,n)
α

n = 100 300 500 700 900

α = 0.05 0.39 0.40 0.39 0.40 0.40

α = 0.10 0.36 0.36 0.36 0.36 0.36

Table: Thresholds for α = 0.05, 0.1 & m = n = 100, 300, 500, 700, 900, d = 2.

n = 100 300 500 700 900

α = 0.05 1.37 1.38 1.38 1.38 1.38

α = 0.10 1.34 1.35 1.35 1.35 1.35

Table: Thresholds for α = 0.05, 0.1 & m = n = 100, 300, 500, 700, 900, d = 8.
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Asymptotic (Pitman) efficiency

X1, . . . ,Xm
iid∼ Pθ1 & Y1, . . . ,Yn

iid∼ Pθ2 ; N = m + n; m/N = λ ∈ (0, 1)

Test: H0 : θ2 = θ1 versus H1 : θ2 = θ1 + hN−1/2; h 6= 0 ∈ Rp

Pitman efficiency

Fix α (size) and γ > α (power); two test functions — TN and SN

K (TN) denotes minimum number of samples such that:

EH0 [TN ] ≤ α and EH1 [TN ] ≥ γ

The Pitman efficiency of SN w.r.t. to TN is given by

lim
N→∞

K (TN)

K (SN)

In general, a test has non-trivial Pitman efficiency if it has non-trivial
asymptotic power for testing against the above local alternatives
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Asymptotic efficiency for rank energy test

Want to test: H0 : θ2 = θ1 versus H1 : θ2 = θ1 + hN−1/2; h 6= 0 ∈ Rp

Theorem [Deb, Bhattacharya and S. (2020+)]

Assume regularity conditions; e.g., {Pθ} satisfies DQM. Then, under
H1 : θ2 = θ1 + hN−1/2,

mn

m + n
RE2

m,n
d−→

∞∑
j=1

λj Z̃
2
j

where Z̃ 2
j has non-central chi-squared distribution (depending on h).

Let TN denote the test based on the rank energy statistic RE2
m,n

Then, lim
N→∞

EH0 [TN ] = α and lim
‖h‖→∞

lim
N→∞

EH1 [TN ] = 1

Therefore, rank energy test does distinguish between the null and
the alternative (has non-trivial power) at the contiguous scale
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Other (asymptotically) distribution-free GoF tests

Crossmatch test of Rosenbaum (2005) is a distribution-free,
consistent, and computationally feasible GoF test

The crossmatch test SN does not distinguish between the null and
the alternative at the contiguous N−1/2-scale, i.e., for any h:

EH0 [SN ] = α and EH1 [SN ] −→ α

Pitman efficiency of rank energy test w.r.t. crossmatch is +∞

What about other asymptotically distribution-free tests?

Many other graph-baseda (asymptotically distribution-free) tests are
also asymptotically powerless [Bhattacharya (2019)]

The data depth-based (asymptotically distribution-free) tests have
power at N−1/2-scale, but computationally infeasible as d increases

aincluding Friedman & Rafsky (1979)’s MST based test; Schilling (1988) and
Henze (1988) used K -nearest neighbor (K-NN) graph



Other (asymptotically) distribution-free GoF tests

Crossmatch test of Rosenbaum (2005) is a distribution-free,
consistent, and computationally feasible GoF test

The crossmatch test SN does not distinguish between the null and
the alternative at the contiguous N−1/2-scale, i.e., for any h:

EH0 [SN ] = α and EH1 [SN ] −→ α

Pitman efficiency of rank energy test w.r.t. crossmatch is +∞

What about other asymptotically distribution-free tests?

Many other graph-baseda (asymptotically distribution-free) tests are
also asymptotically powerless [Bhattacharya (2019)]

The data depth-based (asymptotically distribution-free) tests have
power at N−1/2-scale, but computationally infeasible as d increases

aincluding Friedman & Rafsky (1979)’s MST based test; Schilling (1988) and
Henze (1988) used K -nearest neighbor (K-NN) graph



Outline

1 Multivariate Rank-based Distribution-free Nonparametric Testing
Nonparametric Testing: Introduction
Optimal Transport: Monge’s Problem

2 Multivariate Two-sample Goodness-of-fit Testing
Distribution-free Testing
Asymptotic (Pitman) Efficiency

3 Testing for Independence Between Two Random Vectors
Distribution-free Testing



Testing for mutual independence

(X,Y) ∼ P on Rd1 × Rd2 , X ∼ PX , Y ∼ PY , d1, d2 ≥ 1

Data: {(Xi ,Yi ) : 1 ≤ i ≤ n} iid P

Test: H0 : X ⊥⊥ Y vs. H1 : X 6⊥⊥ Y

Distance Covariance [Szekely et al. (2007, 2009), Feuerverger (1993)]

Let (X,Y), (X′,Y′), (X′′,Y′′)
iid∼ P (with finite mean), and set

h(s, t) := ‖s− t‖

Distance covariance: dCov(X,Y) is defined as

dCov(X,Y) := E
[
h(X,X′)h(Y,Y′)

]
+ E

[
h(X,X′)

]
E
[
h(Y,Y′)

]
− 2E

[
h(X,X′)h(Y,Y′′)

]
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Test: H0 : X ⊥⊥ Y vs. H1 : X 6⊥⊥ Y

Distance covariance test: Reject H0 if

dCovn({(Xi ,Yi )}ni=1) > cα

Critical value cα depends on n, PX , PY ! (can use permutation test)
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Test: H0 : X ⊥⊥ Y vs. H1 : X 6⊥⊥ Y

Distance covariance test: Reject H0 if

dCovn({(Xi ,Yi )}ni=1) > cα

Critical value cα depends on n, PX , PY ! (can use permutation test)

Rank distance covariance [Deb and S. (2019)]

Sample rank of Xi : R̂X
n : {X1, . . . ,Xn} → {c(1)1 , . . . , c

(1)
n } ⊂ [0, 1]d1

Sample rank of Yi : R̂Y
n : {Y1, . . . ,Yn} → {c(2)1 , . . . , c

(2)
n } ⊂ [0, 1]d2

Rank distance cov.: RdCovn = dCovn

({
(R̂X

n (Xi ), R̂Y
n (Yi ))

}n

i=1

)

Distribution-freeness

X and Y abs. cont. Under H0, the dist. of RdCovn is free of PX and PY .
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Under H0, distribution of RdCovn just depends on c
(k)
i ’s, n, d1, d2

Rank distance covariance test: Reject H0 if RdCovn > κ
(n)
α

Limiting distribution under H0 [Deb and S. (2019)]

Suppose: (i) X and Y are abs. cont., and

(ii) 1
n

∑n
i=1 δc(k)i

d→ Uniform([0, 1]dk ), for k = 1, 2.

Then, under H0, ∃ universal distribution Ld1,d2 (not depending on c
(k)
i ’s)

s.t.
n · Rdcovn

d−→ Ld1,d2 as n→∞.

The choice of the c
(k)
i ’s have no effect for large n

Power

Suppose X 6⊥⊥ Y, and (i) & (ii) hold. Then,

P
(
RdCovn > κ(n)α

)
→ 1 as n→∞.

Proposed test has asymptotic power 1, against all fixed alternatives
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When d1 = d2 = 1

When d1 = d2 = 1, RdCovn has close connections to Hoeffding’s
D-statistic [Hoeffding (1948)]:

1

4
RdCovn =

∫ {
Fn(x , y)− FX

n (x)FY
n (y)

}2
dFX

n (x) dFY
n (y)

where Fn, FX
n , and FY

n are the empirical c.d.f.’s of (X ,Y ), X and Y .

Our general principle could have been used with any other procedure
for mutual independence testing, e.g., the HSIC statistic [Gretton et
al. (2005)] which uses ideas from RKHS, ...

The other computationally feasible distribution-free test in the
context was proposed in Heller et al. (2012); however they do not
guarantee consistency against all fixed alternatives
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Summary

Multivariate distribution-free nonparametric testing procedures

Based on multivariate ranks defined using optimal transport

Proposed a general framework, other examples may include testing
for symmetry, testing the equality of K -distributions, independence
testing of K -vectors, ...

Tuning-free, computationally feasible procedures

The proposed tests are: (i) distribution-free and have good efficiency
in general, (ii) are more powerful for distributions with heavy tails,
and (iii) are robust to outliers & contamination

Deb and S. (2019). https://arxiv.org/pdf/1909.08733.pdf

Thank you very much!

Questions?

https://arxiv.org/pdf/1909.08733.pdf


Summary

Multivariate distribution-free nonparametric testing procedures

Based on multivariate ranks defined using optimal transport

Proposed a general framework, other examples may include testing
for symmetry, testing the equality of K -distributions, independence
testing of K -vectors, ...

Tuning-free, computationally feasible procedures

The proposed tests are: (i) distribution-free and have good efficiency
in general, (ii) are more powerful for distributions with heavy tails,
and (iii) are robust to outliers & contamination

Deb and S. (2019). https://arxiv.org/pdf/1909.08733.pdf

Thank you very much!

Questions?

https://arxiv.org/pdf/1909.08733.pdf


Summary

Multivariate distribution-free nonparametric testing procedures

Based on multivariate ranks defined using optimal transport

Proposed a general framework, other examples may include testing
for symmetry, testing the equality of K -distributions, independence
testing of K -vectors, ...

Tuning-free, computationally feasible procedures

The proposed tests are: (i) distribution-free and have good efficiency
in general, (ii) are more powerful for distributions with heavy tails,
and (iii) are robust to outliers & contamination

Deb and S. (2019). https://arxiv.org/pdf/1909.08733.pdf

Thank you very much!

Questions?

https://arxiv.org/pdf/1909.08733.pdf

	Multivariate Rank-based Distribution-free Nonparametric Testing
	Nonparametric Testing: Introduction
	Optimal Transport: Monge's Problem

	Multivariate Two-sample Goodness-of-fit Testing
	Distribution-free Testing
	Asymptotic (Pitman) Efficiency

	Testing for Independence Between Two Random Vectors
	Distribution-free Testing


