Optimal Inference with a Multidimensional Multiscale Statistic

Bodhisattva Sen
Department of Statistics
Columbia University, New York
bodhi@stat.columbia.edu

Joint work with Pratyay Datta (Columbia University)

22 June, 2018

1Supported by NSF grants DMS-1712822 and AST-1614743
Outline

1. Introduction: Problem Setting and our Approach when $d = 1$

2. Multidimensional Multiscale Statistic: Some Optimality Results

3. Adaptive Confidence Bands for Shape-restricted Regression in Multidimension

4. Proof Ideas
1. Introduction: Problem Setting and our Approach when $d = 1$

2. Multidimensional Multiscale Statistic: Some Optimality Results

3. Adaptive Confidence Bands for Shape-restricted Regression in Multidimension

4. Proof Ideas
Nonparametric regression: Estimate $f : [0, 1] \rightarrow \mathbb{R}$ from data

$$Y_i = f \left(\frac{i}{n} \right) + \epsilon_i, \quad \epsilon_i \overset{i.i.d.}{\sim} N(0, 1), \ i = 1, \ldots, n \quad (1)$$

Gaussian (continuous) white noise model

- Observe stochastic process $\{Z(t) : t \in [0, 1]\}$ where

$$Z(t) = \sqrt{n} \int_0^t f(x)dx + W(t), \quad t \in [0, 1] \quad (2)$$

- $W(\cdot)$: Brownian motion on $[0, 1]$; n: “sample size”

Goal: Make (optimal) inference about $f \in L_1([0, 1])$ (unknown)

$$^a \frac{1}{\sqrt{n}} \sum_{i=1}^j Y_i = \frac{1}{\sqrt{n}} \sum_{i=1}^j f(i/n) + \frac{1}{\sqrt{n}} \sum_{i=1}^j \epsilon_i \ \Leftrightarrow \ Z(t) = \sqrt{n} \int_0^t f(x)dx + W(t)$$

- (1) and (2) are asymptotically equivalent (Brown and Low, 1996) under suitable conditions

- Any asymptotic solution to one of these problems will automatically yield a corresponding solution to the other
Testing the hypothesis $H_0 : f = 0$

- Consider testing
 $$H_0 : f = 0 \quad \text{versus} \quad H_1 : f \neq 0 \in \mathbb{H}_{\beta,L}$$

- $\mathbb{H}_{\beta,L} := \{g : [0, 1] \rightarrow \mathbb{R} : |g(a) - g(b)| \leq L|a - b|^\beta \ \forall \ a, b \in [0, 1]\}$
 denotes the Hölder class of functions with $\beta \in (0, 1]$ and $L > 0$.

- For $k < \beta \leq k + 1$, with an integer $k > 0$, $\mathbb{H}_{\beta,L}$ denotes the set of functions that are k times differentiable and whose k-th derivative belongs to $\mathbb{H}_{\beta-k,L}$.

Testing for a constant signal in an interval

- Consider testing
 $$H_0 : f = 0 \quad \text{versus} \quad H_1 : f = \mu \mathbb{I}_I$$

 for unknown $\mu \in \mathbb{R}$ and $I \subseteq [0, 1]$ unknown interval.
Model: \(Z(t) = \sqrt{n} \int_0^t f(x)dx + W(t), \quad t \in [0, 1] \)

The multiscale approach: Motivation

- The multiscale approach is based on the idea of *kernel averaging*

- \(\psi : \mathbb{R} \to \mathbb{R} \) is a *kernel*; define
 \[\psi_{t,h}(x) := \psi\left(\frac{x - t}{h} \right), \quad x \in [0, 1], \quad h > 0 \]

- *Kernel estimator*:
 \[\hat{f}_h(t) := \frac{1}{n^{1/2}h} \langle 1, \psi \rangle \int_0^1 \psi_{t,h}(x)dZ(x) \]

- **Example**: If \(\psi = \mathbb{I}_{[-1,1]} \), \(\hat{f}_h(t) = \frac{1}{2\sqrt{nh}}[Z(t + h) - Z(t - h)] \)

- **Discrete setting**: \(Y_i = f\left(\frac{i}{n} \right) + \epsilon_i, \quad i = 1, \ldots, n \), when \(\psi = \mathbb{I}_{[-1,1]} \),
 \[\hat{f}_h\left(\frac{i}{n} \right) = \frac{1}{2\lfloor nh \rfloor + 1} \sum_{s = i - \lfloor nh \rfloor}^{i + \lfloor nh \rfloor} Y_s \]

\(^a \psi : \mathbb{R} \to \mathbb{R} \) is a measurable function s.t. (i) \(\psi \) is 0 outside \([-1, 1]\); (ii) \(\psi \in L_2(\mathbb{R}) \), i.e., \(\int_{\mathbb{R}} \psi^2(x)dx < \infty \); (iii) \(\psi \) is of finite total variation; and (iv) \(\int_{\mathbb{R}} \psi(x)dx > 0 \).

\(^b \) For \(g_1, g_2 \in L_2(\mathbb{R}) \), \(\langle g_1, g_2 \rangle := \int_{\mathbb{R}} g_1(x)g_2(x)dx \); \(\|g\|^2 := \int_{\mathbb{R}} g^2(x)dx \)
• For fixed $t \in (0, 1)$, we can test $f(t) = 0$ by rejecting for extreme values of the normalized statistic:

$$\hat{\Psi}(t, h) := \frac{\hat{f}_h(t)}{\sqrt{\text{Var}(\hat{f}_h(t))}} = \int_0^1 \psi_{t,h}(x)dZ(x) \sim N(0, 1) \text{ (when } f \equiv 0)$$

• So, a naive approach to testing $H_0 : f \equiv 0$ could be to consider

$$\sup_{t \in [h, 1-h]} |\hat{\Psi}(t, h)|,$$

or

$$\sup_{h \in (0, 1/2]} \sup_{t \in [h, 1-h]} |\hat{\Psi}(t, h)|^\dagger$$

• **Discrete setting:** $Y_i = f\left(\frac{i}{n}\right) + \epsilon_i$, analogue of \dagger, when $\psi = 1_{[-1,1]}$, is

$$\max_{1 \leq i < j \leq n} \frac{\sum_{s=i}^{j} Y_s}{\sqrt{j-i+1}}$$

• The latter statistic **bypasses the choice** of the bandwidth h, and is a **multiscale statistic** (combines kernel estimators of various scales)
Recall: \(\hat{\Psi}(t, h) = \frac{\hat{f}_h(t)}{\sqrt{\text{Var}(\hat{f}_h(t))}} = \frac{\int_0^1 \psi_{t,h}(x) dZ(x)}{\sqrt{h \| \psi \|}} \)

However, under \(H_0 \),

\[
\sup_{h \in (0, 1/2]} \sup_{t \in [h, 1-h]} |\hat{\Psi}(t, h)| = +\infty \text{ a.s.}
\]

Proof: For \(\psi = \mathbb{I}_{[-1,1]} \), take \(h = 1/(2m) \), \(m \geq 1 \) integer. Then

\[
\sup_{t \in [h, 1-h]} |\hat{\Psi}(t, h)| \geq \sup_{t \in \{ \frac{1}{2m}, \frac{3}{2m}, \ldots, \frac{2m-1}{2m} \}} |\hat{\Psi}(t, h)| \overset{d}{=} \max\{|Z_1|, \ldots, |Z_m|\} = O_p(\sqrt{2 \log m})
\]

where \(Z_i = \frac{1}{\sqrt{2h}} [W(\frac{2i}{2m}) - W(\frac{2i-2}{2m})] \overset{i.i.d.}{\sim} N(0, 1) \)
Normalized test statistic: \(\hat{\Psi}(t, h) := \frac{1}{\sqrt{h \|\psi\|}} \int_0^1 \psi_{t,h}(x) dZ(x) \)

Multiscale statistic [Dümbgen and Spokoiny (2001)]

- Multiscale statistic:
 \[
 T(Z, \psi) := \sup_{h \in (0, 1/2]} \sup_{t \in [h, 1-h]} \frac{\left| \hat{\Psi}(t, h) \right| - \Gamma(2h)}{D(2h)}
 \]

where \(\Gamma, D : (0, 1] \rightarrow (0, \infty) \) are two functions defined as

\[
\Gamma(r) := \sqrt{2 \log(1/r)} \quad \text{and} \quad D(r) := (\log(e/r))^{-1/2} \log \log(e^e/r)
\]

- \(\Gamma(\cdot) \) — scale calibrating term that puts different scales on equal footing

- Prevents smaller scales from dominating the overall test statistic

- Resolves the multiple testing issue; improves power

Theorem [Dümbgen and Spokoiny (2001)]

Let \(\psi : \mathbb{R} \rightarrow \mathbb{R} \) be a kernel. Then, when \(f \equiv 0 \), \(T(Z, \psi) \equiv T(W, \psi) < \infty \) a.s.
1. Introduction: Problem Setting and our Approach when \(d = 1 \)

2. Multidimensional Multiscale Statistic: Some Optimality Results

3. Adaptive Confidence Bands for Shape-restricted Regression in Multidimension

4. Proof Ideas
Multivariate Gaussian (continuous) white noise model

Observe stochastic process \(\{Z(t) : t \in [0, 1]^d\} \) \((d \geq 1)\) where

\[
Z(t_1, \ldots, t_d) = \sqrt{n} \int_0^{t_1} \cdots \int_0^{t_d} f(x_1, \ldots, x_d) \, dx_d \cdots dx_1 + W(t_1, \ldots, t_d)
\]

- \(W(\cdot)\): Brownian sheet\(^a\) on \([0, 1]^d\) (unobserved)

Goal: Make (optimal) inference about \(f\) (unknown)

\(^a\)A \(d\)-dimensional Brownian sheet is a mean-zero Gaussian process \(\{W(t) : t \in [0, 1]^d\}\) with covariance kernel

\[
\text{Cov}(W(t_1, \ldots, t_d), W(s_1, \ldots, s_d)) = \Pi_{i=1}^d \min(t_i, s_i), \tag{3}
\]

for \((t_1, \ldots, t_d), (s_1, \ldots, s_d) \in [0, 1]^d\). The Brownian sheet is the \(d\)-dimensional counterpart of the standard Brownian motion; see Khoshnevisan (2002).
Kernel estimator

- $\psi : \mathbb{R}^d \to \mathbb{R}$ is a kernel\(^2\)
- **Smoothing bandwidths**: $h = (h_1, \ldots, h_d) \in (0, 1/2]^d$
- Define: $\psi_{t,h}(x) := \psi \left(\frac{x_1-t_1}{h_1}, \ldots, \frac{x_d-t_d}{h_d} \right), \quad x = (x_1, \ldots, x_d) \in [0,1]^d$
- **Kernel estimator**\(^3\):
 \[
 \hat{f}_h(t) := \frac{1}{\sqrt{n}(\prod_{i=1}^d h_i)} \langle 1, \psi \rangle \int_{[0,1]^d} \psi_{t,h}(x) dZ(x)
 \]

Discrete setting: $d = 2$

- $Y_{i,j} = f \left(\frac{i}{m}, \frac{j}{m} \right) + \epsilon_{i,j}$, $i,j = 1, \ldots, m$; $m^2 = n$
- If $\psi = \mathbb{I}_{[-1,1]^2}$, $\hat{h}(\frac{i_1+i_1}{2m}, \frac{i_2+i_2}{2m}) := \frac{\sum_{k=i_1}^{j_1} \sum_{l=i_2}^{j_2} Y_{k,l}}{(j_1-i_1+1)(j_2-i_2+1)}$, $h_k = \frac{j_k-i_k}{2m}, k = 1,2$

\(^2\) $\psi : \mathbb{R} \to \mathbb{R}$ is a measure function s.t. (i) ψ is 0 outside $[-1,1]^d$; (ii) $\psi \in L_2(\mathbb{R}^d)$, i.e., $\int_{\mathbb{R}^d} \psi^2(x) dx < \infty$; (iii) ψ is of finite total HK-variation; and (iv) $\int_{\mathbb{R}^d} \psi(x) dx > 0$

\(^3\) For $g_1, g_2 \in L_2(\mathbb{R}^d)$, $\langle g_1, g_2 \rangle := \int_{\mathbb{R}^d} g_1(x)g_2(x) dx$; $\|g\|^2 := \int_{\mathbb{R}^d} g^2(x) dx$
Normalized test statistic (for testing $H_0 : f(t) = 0$):

$$\hat{\Psi}(t, h) := \frac{\hat{f}_h(t)}{\sqrt{\text{Var}(\hat{f}_h(t))}} = \frac{1}{(\prod_{i=1}^{d} h_i)^{1/2} \|\psi\|} \int_{[0,1]^d} \psi_{t,h}(x) dZ(x)$$

For any $h := (h_1, \ldots, h_d) \in (0, 1/2]^d$, we define

$$A_h := \{ t \in \mathbb{R}^d : h_i \leq t_i \leq 1 - h_i, \text{ for } i = 1, \ldots, d \}$$

So, a naive approach to testing $H_0 : f \equiv 0$ could be to consider

$$\sup_{t \in A_h} |\hat{\Psi}(t, h)|, \quad \text{or} \quad \sup_{h \in (0,1/2]^d} \sup_{t \in A_h} |\hat{\Psi}(t, h)|$$

The latter statistic bypasses the choice of the bandwidth h, and is a multiscale statistic (combines kernel estimators of various scales)

However (under $H_0 : f \equiv 0$),

$$\sup_{h > 0} \sup_{t \in A_h} |\hat{\Psi}(t, h)| = +\infty \quad \text{a.s.}$$
Normalized test statistic: \(\hat{\Psi}(t, h) = \frac{1}{(\prod_{i=1}^{d} h_i)^{1/2}} \| \psi \| \int_{[0,1]^d} \psi_{t,h}(x) dZ(x) \)

Multiscale statistic [Datta and S. (2018a)]

- **Multiscale statistic\(^a\):** When \(f \equiv 0 \)

\[
T(Z, \psi) := \sup_{h \in (0,1/2]^d} \sup_{t \in A_h} \frac{|\hat{\Psi}(t, h)| - \Gamma(2^d \prod_{i=1}^{d} h_i)}{D(2^d \prod_{i=1}^{d} h_i)} < \infty \quad \text{a.s.}
\]

where \(\Gamma, D : (0, 1] \rightarrow (0, \infty) \) are two functions defined as

\[
\Gamma(r) := \sqrt{2 \log(1/r)} \quad \text{and} \quad D(r) := (\log(e/r))^{-1/2} \log \log(e^e/r)
\]

- \(\Gamma(\cdot) \) — scale calibrating term that puts **different scales on equal footing**
- Prevents smaller scales from dominating the overall test statistic
- Resolves the *multiple testing* issue; improves **power**

\(^a\)see Datta and S. (2018a); https://arxiv.org/abs/1806.02194
Multiscale statistic: \(T(Z, \psi) = \sup_{h \in (0, 1/2]^d} \sup_{t \in A_h} \frac{|\hat{\psi}(t, h)| - \Gamma(2^d \prod_{i=1}^d h_i)}{D(2^d \prod_{i=1}^d h_i)} \)

Computational Issues \((d = 2)\)

- **Discrete setting:** \(Y_{i,j} = f(\frac{i}{m}, \frac{j}{m}) + \epsilon_{i,j}, \quad i, j = 1, \ldots, m; \quad m^2 = n \)

- \(T_m(Z, \mathbb{I}_{[-1,1]^2}) := \max_{1 \leq i_1 < j_1 \leq m} \max_{1 \leq i_2 < j_2 \leq m} \frac{\sum_{k=i_1}^{j_1} \sum_{l=i_2}^{j_2} Y_{k,l}}{\sqrt{(j_1 - i_1 + 1)(j_2 - i_2 + 1)}} \Gamma\left(\frac{(j_1 - i_1 + 1)(j_2 - i_2 + 1)}{m^2}\right) \)

- Computing \(T_m(Z, \mathbb{I}_{[-1,1]^2}) \) can be **expensive**; \(O(n^2) \equiv O(m^4) \)

- For a suitable collection of rectangles \(\mathcal{R} \) we can compute

\[
T_{\mathcal{R}}(Z, \mathbb{I}_{[-1,1]^2}) = \max_{R \in \mathcal{R}} \frac{\text{Ave}(Y_{k,l}: k,l \in R)}{\sqrt{m^2|R|}} - \Gamma(|R|) D(|R|); \quad |R| = \text{area of } R
\]

- Walther (2010): \(O(n \log^2 n) \) rectangles — is almost **linear** in \(n \); for \(d = 1 \exists \) many clever algorithms, Frick et al. (2015) ...

- We will **not** address the computational issues in this talk
Theorem [Datta and S. (2018a)]

Let $\psi : \mathbb{R}^d \to \mathbb{R}$ be a kernel. Then, when $f \equiv 0$,

$$T(Z, \psi) := \sup_{h \in (0, 1/2]^d} \sup_{t \in A_h} \frac{|\hat{\psi}(t, h)| - \Gamma(2^d \prod_{i=1}^{d} h_i)}{D(2^d \prod_{i=1}^{d} h_i)} < \infty \quad \text{a.s.}$$

Some comments

- Seems to us that the above result was not known before

- Let

$$\Gamma_V(r) := (2^V \log(1/r))^{1/2}.$$

Our multiscale statistic the penalization term corresponds to $V = 1$

- König et al. (2018) use $V = 2d - 1 + \epsilon$, for any $\epsilon > 0$

- Yields optimal tests when $d > 1$

- Cannot have $V < 1$! Our choice of the penalization term is optimal
Optimality against Hölder class of functions $\mathbb{H}_{\beta, L}$

$\beta \in (0, 1]$

$\mathbb{H}_{\beta, L} := \left\{ g : [0, 1]^d \to \mathbb{R} : |f(a) - f(b)| \leq L\|a - b\|^\beta \quad \forall \ a, b \in [0, 1]^d \right\}$

$\beta > 1$

- For $k = (k_1, k_2, \ldots, k_d) \in \mathbb{N}^d$ set $\|k\|_1 := \sum_{i=1}^{d} k_i$.

- $\mathbb{H}_{\beta, L}$ is the set of all functions $f : [0, 1]^d \to \mathbb{R}$ having all partial derivatives of order $\lfloor \beta \rfloor$ on $[0, 1]^d$ such that

$$\sum_{0 \leq \|k\|_1 \leq \lfloor \beta \rfloor} \sup_{x \in [0,1]^d} \left| \frac{\partial^{\|k\|_1} f(x)}{\partial x_1^{k_1} \ldots \partial x_d^{k_d}} \right| \leq L$$

and

$$\sum_{\|k\|_1 = \lfloor \beta \rfloor} \left| \frac{\partial^{\|k\|_1} f(a)}{\partial x_1^{k_1} \ldots \partial x_d^{k_d}} - \frac{\partial^{\|k\|_1} f(b)}{\partial x_1^{k_1} \ldots \partial x_d^{k_d}} \right| \leq L\|a - b\|^{{\beta - \lfloor \beta \rfloor}} \quad \forall \ a, b \in [0, 1]^d.$$
Optimality against Hölderian alternatives

Test: \(H_0 : f = 0 \) versus \(H_1 : f \neq 0 \in \mathbb{H}_\beta, L \)

Theorem [Datta and S. (2018a)]

- Consider \(T(Z, \psi) \) with \(\psi \equiv \psi_\beta \) (\(\psi_\beta(x) = 1\{\|x\| \leq 1\}(1 - \|x\|^\beta), \beta \leq 1 \))
- Let \(\rho_n = \left(\frac{\log n}{n}\right)^{\beta/(2\beta+d)} \) and \(c_* := \left(\frac{2dL^{d/\beta}}{(2\beta+d)\|\psi_\beta\|^2}\right)^{\beta/(2\beta+d)} \).
- (Impossibility) For arbitrary tests \(\phi_n \) with \(\mathbb{E}_0[\phi_n(Z)] \leq \alpha,^a \)
 \[
 \limsup_{n \to \infty} \inf_{g \in \mathbb{H}_\beta, L : \|g\|_\infty \geq (1 - \epsilon_n)c_* \rho_n} \mathbb{E}_g[\phi_n(Z)] \leq \alpha
 \]
- (Optimality\(^b\)) Let \(J_n := [(c_* \rho_n/L)^{1/\beta}, 1 - (c_* \rho_n/L)^{1/\beta}]^d \). Then,
 \[
 \lim_{n \to \infty} \inf_{g \in \mathbb{H}_\beta, L : \|g\|_{J_n, \infty} \geq (1 + \epsilon_n)c_* \rho_n} \mathbb{P}_g[T(Z, \psi_\beta) \geq \kappa_\alpha] = 1
 \]
 where \(\kappa_\alpha \) is the \((1 - \alpha)'\)th quantile of \(T(W, \psi_\beta) \)

^aHere \(\epsilon_n \to 0 \) and \(\epsilon_n \sqrt{\log n} \to \infty \) as \(n \to \infty \)
^bHere \(\beta \) needs to be known but the method is adaptive to \(L \)
Proposition (When $\beta \in (0, 1]$ is unknown) [Datta and S. (2018a)]

Let $\psi_1(x) = 1\{\|x\| \leq 1\}(1 - \|x\|)$. Let $T_1 \equiv T(Y, \psi_1)$ be the multiscale statistic with kernel ψ_1. Define

$$\rho_n := \left(\frac{\log n}{n}\right)^{\frac{\beta}{2\beta + d}} \text{ and } M > \left(\frac{2dL^{d/\beta}\|\psi_1\|^2}{(2\beta + d)\langle \psi_1, \psi_\beta \rangle^2}\right)^{\frac{\beta}{2\beta + d}}.$$

Let $J_n := [(M\rho_n/L)^{1/\beta}, 1 - (M\rho_n/L)^{1/\beta}]^{\diamond}$. Then we have

$$\lim_{n \to \infty} \inf_{g \in \mathcal{H}_{\beta, L} : \|g\|_{J_n, \infty} \geq M\rho_n} \mathbb{P}_g(T > \kappa_\alpha) = 1$$

where κ_α is the $(1 - \alpha)$ quantile of $T(W, \psi_1)$.

- Thus our test is *rate optimal* over arbitrary Hölder classes
- Adaptivity with respect to *both* β and L, is still an open problem
- Can extend the argument to *anisotropic* Hölder classes with different smoothness along each coordinate axis
Optimality against constant signals

Test: \(H_0 : f = 0 \) versus \(H_1 : f_n = \mu_n \mathbb{1}_{B_n} \) \((\mu_n, B_n \text{ unknown})\)

where \(B_n \) is an hyperrectangle with sides parallel to the coordinate axes.

Theorem [Datta and S. (2018)] (Signal on large scales)

- Let \(T \equiv T(Z, \psi_0) \) where \(\psi_0 = \mathbb{1}_{[-1,1]^d} \). Consider the case
 \[
 \lim \inf_{n \to \infty} |B_n| > 0^a.
 \]

- (Impossibility) Let \(\phi_n \) be any test of level \(\alpha \in (0, 1) \). Then, for any \(f_n = \mu_n \mathbb{1}_{B_n} \) s.t. \(\limsup_{n \to \infty} |\mu_n| \sqrt{n |B_n|} < \infty \),
 \[
 \limsup_{n \to \infty} \mathbb{E}_{f_n}[\phi_n(Z)] < 1
 \]

- (Optimality) For the proposed multiscale test based on \(T \), we have
 \[
 \lim_{n \to \infty} \inf_{f_n: \lim \sqrt{n |B_n| |\mu_n| = \infty} \mathbb{P}_{f_n}(T > \kappa_\alpha) = 1.
 \]

\(^a|B_n|\) denotes the Lebesgue measure of the set \(B_n \).
Test: \(H_0 : f = 0 \) versus \(H_1 : f_n = \mu_n \mathbb{I}_{B_n} \) (\(\mu_n, B_n \) unknown)

Theorem [Datta and S. (2018)] (Signal on small scales)

- Let \(T \equiv T(Z, \psi_0) \) where \(\psi_0 = \mathbb{I}_{[-1,1]} \). Consider the case

\[
\lim_{n \to \infty} |B_n| = 0.
\]

- (Impossibility) Let

\[
G_n^- := \left\{ f_n = \mu_n \mathbb{I}_{B_n} : |\mu_n| \sqrt{n|B_n|} = (1 - \epsilon_n) \sqrt{2 \log(1/|B_n|)} \right\}.
\]

Let \(\phi_n \) be any test of level \(\alpha \in (0, 1) \), then\(^a\)

\[
\limsup_{n \to \infty} \inf_{f_n \in G_n^-} \mathbb{E}_{f_n}[\phi_n(Z)] \leq \alpha
\]

- (Optimality) Let

\[
G_n^+ := \left\{ f_n = \mu_n \mathbb{I}_{B_n} : |\mu_n| \sqrt{n|B_n|} \geq (1 + \epsilon_n) \sqrt{2 \log(1/|B_n|)} \right\},
\]

then for our multiscale test we have

\[
\lim_{n \to \infty} \inf_{f_n \in G_n^+} \mathbb{P}_{f_n}(T > \kappa_\alpha) = 1
\]

\(^a\)Here, we assume that \(\epsilon_n \to 0 \) and \(\epsilon_n \sqrt{2 \log(1/|B_n|)} \to \infty \) as \(n \to \infty \)
Summary

- Proposed a *multidimensional multiscale statistic*

- Showed that the statistic is *finite a.s.* (Under H_0)

- Illustrated its *optimality* in testing $H_0 : f \equiv 0$ against Hölder classes of functions

- Optimal for detecting *constant signals* on a rectangle, both at *large* and *small* scales

- The *scan* statistic, *average* likelihood ratio statistic are *NOT* optimal
1 Introduction: Problem Setting and our Approach when \(d = 1 \)

2 Multidimensional Multiscale Statistic: Some Optimality Results

3 Adaptive Confidence Bands for Shape-restricted Regression in Multidimension

4 Proof Ideas
Multivariate shape-restricted regression \((d \geq 1)\)

- **Model**: \(Y_i = f(x_i) + \epsilon_i, \quad i = 1, \ldots, n \quad (x_1, \ldots, x_n \in [0, 1]^d)\)

- **Unknown**: \(f : [0, 1]^d \rightarrow \mathbb{R}, f \in \mathcal{F}\) is *shape-constrained*

Multivariate isotonic function [Chatterjee et al. (2018), Han et al. (2017+)]

- \(f : [0, 1]^d \rightarrow \mathbb{R}\) is *isotonic* (coordinate-wise nondecreasing) if
 \[
f(u_1, \ldots, u_d) \leq f(v_1, \ldots, v_d) \quad \text{when} \quad u_i \leq v_i \quad \text{for} \quad i = 1, \ldots, d
 \]

- \(\mathcal{F}_1 := \{f : [0, 1]^d \rightarrow \mathbb{R} : f \text{ is isotonic}\}\)

![Figure 1. Illustration of IRP on Baseball data. Salary is modeled by number of runs batted in and hits. Models after iterations 1 and 10 of IRP and the final model are shown.](image)

Progress of IRP is illustrated in Figure 1, where we show an example of applying IRP to the well-known Baseball data set [He, Ng an d Por t noy (1998)] describing the dependence of salary on a collection of player properties. We limit the model to only two covariates to facilitate visualization, and we choose to use the number of runs batted in and hits since they seemed a priori most likely to comply with the isotonicity assumptions. The increasing model complexity can be seen, moving from iteration 1 (a single split) through 10 iterations of IRP, to the final isotonic model optimally solving (1), comprising a splitting of the covariate space into 29 regions, each of which is fitted with a constant. Note that the single split from iteration 1 creates two flat surfaces (the highest and lowest in the figure), and that the in-between surfaces are interpolations in regions with no data points based on the two-surface model. The figures for models after 10 and 28 iterations are quite complex for the same reason—interpolations in the continuous covariate space.

An obvious analogy of IRP can be made to well-known recursive partitioning approaches for regression such as CART [Breiman et al. (1984)], where the iterative splitting of the covariate space generates a sequence of models (trees) of increasing model complexity, from which the “best” tree is chosen via cross-validation [e.g., using the 1-SE rule Breiman et al. (1984)]. As with CART and other similar approaches, IRP performs a greedy search and finds a “local” optimum at every iteration. However, unlike CART, which has no guarantees on the overall model it generates, IRP is proven to terminate in the global solution of the isotonic regression problem (1). Another difference is that IRP splits are not made along one axis at a time, but rather each split is a nonparametric division of one region in \(X\) into two subregions.

Importantly, while our presentation has so far concentrated on isotonic regression with an \(l_2\) loss function, an interesting extension of the partitioning scheme can be used to solve large-scale isotonic regressions under other loss functions that are of great interest in statistics, for example, logistic and poisson log-likelihoods. Specifically, a well-known result of Barlow and Brunk [(1972), Theorem 3.1], implies that, for a large class of loss functions (formally defined in our Discussion section), the solution of isotonic models is optimal.
Multivariate convex function [Kuosmanen (2008), Seijo and S. (2011)]

- $f : [0, 1]^d \rightarrow \mathbb{R}$ is convex iff

 $$f(\lambda u + (1 - \lambda)v) \leq \lambda f(u) + (1 - \lambda)f(v), \quad \forall \lambda \in [0, 1], \forall u, v \in [0, 1]^d$$

- $\mathcal{F}_2 := \{f : [0, 1]^d \rightarrow \mathbb{R} : f \text{ is convex}\}$

Belgium firms

Concave regression ($d = 1$) Convex regression ($d = 2$)
Goals

- Construct confidence band for \(f \in \mathcal{F} \) (\(\mathcal{F}_1 \) or \(\mathcal{F}_2 \)) with guaranteed coverage, i.e., construct \((\hat{\ell}, \hat{u}) : [0, 1]^d \rightarrow \mathbb{R} \times \mathbb{R}\) s.t.
 \[
 \mathbb{P}_f \left(\hat{\ell}(t) \leq f(t) \leq \hat{u}(t) \text{ for all } t \in [0, 1]^d \right) \geq 1 - \alpha, \quad \forall \ n, \ \forall \ f \in \mathcal{F}
 \]

- The width
 \[
 \sup_{t \in A_n} [\hat{u}(t) - \hat{\ell}(t)], \quad A_n \subset [0, 1]^d
 \]
 of the constructed confidence band should be as “small” as possible

Summary of results

- Use the proposed multiscale statistic to construct confidence band\(^a\)

- Our confidence band adapts to the unknown smoothness and intrinsic dimension of the underlying function class

- Exhibits parametric \((n^{-1/2}) \) rates for certain “simple” \(f \)

- In some cases confidence band has (almost) minimum possible width

\(^a\)Our approach generalizes Dümbgen (2003) beyond \(d = 1 \)
Observe stochastic process \(\{ Z(t) : t \in [0, 1]^d \} \) \((d \geq 1)\) where

\[
Z(t_1, \ldots, t_d) = \sqrt{n} \int_0^{t_1} \cdots \int_0^{t_d} f(x_1, \ldots, x_d) \, dx_d \cdots dx_1 + W(t_1, \ldots, t_d)
\]

\(W(\cdot) \): Brownian sheet\(^4 \) on \([0, 1]^d\) (unobserved)

\(f(\cdot) \): Unknown function of interest

\(^4\)A \(d \)-dimensional Brownian sheet is a mean-zero Gaussian process \(\{ W(t) : t \in [0, 1]^d \} \) with covariance kernel

\[
\text{Cov}(W(t_1, \ldots, t_d), W(s_1, \ldots, s_d)) = \prod_{i=1}^{d} \min(t_i, s_i),
\]

for \((t_1, \ldots, t_d), (s_1, \ldots, s_d) \in [0, 1]^d\). The Brownian sheet is the \(d \)-dimensional counterpart of the standard Brownian motion; see Khoshnevisan (2002).
- **Model:** \(dZ(t) = \sqrt{n}f(t)dt + dW(t), \quad t \in [0, 1]^d, \quad f \text{ unknown} \)

- \(\psi : \mathbb{R}^d \to \mathbb{R} \) is a *kernel*; \(\psi_{t,h}(x) := \psi\left(\frac{x_1-t_1}{h_1}, \ldots, \frac{x_d-t_d}{h_d} \right) \)

- **Kernel estimator of** \(f \): \(\hat{f}_h(t) = \frac{\int_{[0,1]^d} \psi_{t,h}(x) dZ(x)}{\sqrt{n(\prod_{i=1}^d h_i) \langle 1, \psi \rangle}} \)

- Elementary calculations show that

\[
\begin{align*}
\mathbb{E}[\hat{f}_h(t)] &= \frac{\int_{[0,1]^d} \psi_{t,h}(x)f(x)dx}{(\prod_{i=1}^d h_i) \langle 1, \psi \rangle}, \\
\text{Var}(\hat{f}_h(t)) &= \frac{\|\psi\|^2}{n(\prod_{i=1}^d h_i) \langle 1, \psi \rangle^2}
\end{align*}
\]

- \(\frac{\hat{f}_h(t) - \mathbb{E}(\hat{f}_h(t))}{\sqrt{\text{Var}(\hat{f}_h(t))}} = \frac{\int_{[0,1]^d} \psi_{t,h}(x)(dZ(x) - \sqrt{n}f(x)dx)}{\sqrt{n(\prod_{i=1}^d h_i) \langle 1, \psi \rangle \|\psi\|}} = \frac{\int_{[0,1]^d} \psi_{t,h}(x)dW(x)}{\sqrt{n(\prod_{i=1}^d h_i) \|\psi\|^2}} \sim N(0, 1), \quad \forall t, h \)

- **Question:** How do we control the *random fluctuations* for this kernel estimator *uniformly in* \(t \) and \(h \)?
Recall: \[
\frac{\hat{f}_h(t) - \mathbb{E}(\hat{f}_h(t))}{\sqrt{\text{Var}(\hat{f}_h(t))}} = \frac{\int_{[0,1]^d} \psi_{t,h}(x) dW(x)}{(\prod_{i=1}^d h_i)^{1/2} \|\psi\|}
\]

For \(h := (h_1, \ldots, h_d) \in (0, 1/2]^d \), \(A_h = \{ t \in \mathbb{R}^d : h_i \leq t_i \leq 1 - h_i \} \)

Theorem [Datta and S. (2018a)] — Multiscale statistic

Let \(\psi : \mathbb{R}^d \to \mathbb{R} \) be a kernel. Then,

\[
T(\psi) := \sup_{h > 0} \sup_{t \in A_h} \left(\frac{\int_{[0,1]^d} \psi_{t,h}(x) dW(x)}{(\prod_{i=1}^d h_i)^{1/2} \|\psi\|} - \Gamma(2^d \prod_{i=1}^d h_i) \right) < \infty \quad \text{a.s.}
\]

where \(\Gamma : (0, 1] \to (0, \infty) \) is defined as

\[
\Gamma(r) := \sqrt{2 \log(1/r)}
\]

- \(\Gamma(\cdot) \) — scale calibrating term that puts *different scales on equal footing*

- Prevents *smaller scales* from dominating the overall test statistic
Question: What about the *bias* of these kernel estimators?

What does it mean for \(f \) to be shape-restricted?

- Assume \(f \in \mathcal{F} \) (e.g., \(\mathcal{F} \) could be \(\mathcal{F}_1 \) or \(\mathcal{F}_2 \))

- We say that \(\mathcal{F} \) is *shape-restricted* if we can find kernels \(\psi^{(l)} \) and \(\psi^{(u)} \) such that the corresponding kernel estimators \(\hat{f}^l_h(t) \) and \(\hat{f}^u_h(t) \) satisfy

\[
\mathbb{E}[\hat{f}_h^l(t)] \leq f(t) \leq \mathbb{E}[\hat{f}_h^u(t)] \quad \forall h, \forall t \in A_h, \text{ and } \forall f \in \mathcal{F}
\]

- For example, when \(f \in \mathcal{F}_1 \) one such trivial choice could be \(\psi^{(l)} = \mathbb{I}_{[-1,0]^d} \) and \(\psi^{(u)} = \mathbb{I}_{[0,1]^d} \)

- Due to the known shape-constraint on \(\mathcal{F} \) we can *bound* the *bias* of the kernel estimators
Question: How to construct the confidence band?

- \mathcal{F} is \textit{shape-restricted}, i.e., \exists kernels $\psi^{(l)}$ and $\psi^{(u)}$ such that

$$\mathbb{E}(f^l_h(t)) \leq f(t) \leq \mathbb{E}(f^u_h(t)) \quad \text{for all } h > 0, \ t \in A_h \text{ and } f \in \mathcal{F}$$

- $T(\psi) = \sup_{h > 0} \sup_{t \in A_h} \left(\frac{\hat{f}_h(t) - \mathbb{E}(\hat{f}_h(t))}{\sqrt{\text{Var}(\hat{f}_h(t))}} - \Gamma(2^d \prod_{i=1}^d h_i) \right) < \infty \text{ a.s.}$

Therefore, for every $h \in (0, 1/2]^d$,

$$f(t) = \{f(t) - \mathbb{E}(\hat{f}^l_h(t))\} + \{\mathbb{E}(\hat{f}^l_h(t)) - \hat{f}^l_h(t)\} + \hat{f}^l_h(t) \geq \hat{f}^l_h(t) - \frac{\|\psi^{(l)}\| (T(\psi^{(l)}) + \Gamma(2^d \prod_{i=1}^d h_i))}{\langle 1, \psi^{(l)} \rangle (n \prod_{i=1}^d h_i)^{1/2}}$$

- Similarly, we have, for every $h \in (0, 1/2]^d$,

$$f(t) \leq \hat{f}^u_h(t) + \frac{\|\psi^{(u)}\| (T(-\psi^{(u)}) + \Gamma(2^d \prod_{i=1}^d h_i))}{\langle 1, \psi^{(u)} \rangle (n \prod_{i=1}^d h_i)^{1/2}}$$

- Let κ_α is the $(1 - \alpha)$ quantile of the combined statistic

$$T^* = \max(T(\psi^{(l)}), T(-\psi^{(u)}))$$
Define our confidence band as follows: for \(t \in [0, 1]^d \), let

\[
\hat{\ell}(t) := \sup_{h > 0 : t \in A_h} \left\{ \hat{f}_h^l(t) - \frac{\|\psi^{(l)}\| (\kappa_\alpha + \Gamma(2^d \prod_{i=1}^d h_i))}{\langle 1, \psi^{(l)} \rangle (n \prod_{i=1}^d h_i)^{1/2}} \right\}
\]

and

\[
\hat{u}(t) := \inf_{h > 0 : t \in A_h} \left\{ \hat{f}_h^u(t) + \frac{\|\psi^{(u)}\| (\kappa_\alpha + \Gamma(2^d \prod_{i=1}^d h_i))}{\langle 1, \psi^{(u)} \rangle (n \prod_{i=1}^d h_i)^{1/2}} \right\}
\]

Theorem

Let \(\mathcal{F} \) be shape-restricted. Let \((\hat{\ell}, \hat{u}) : [0, 1]^d \to \mathbb{R} \times \mathbb{R} \) be defined as above. Then

\[
\mathbb{P}_f \left(\hat{\ell}(t) \leq f(t) \leq \hat{u}(t) \quad \text{for all } t \in [0, 1]^d \right) \geq 1 - \alpha, \quad \forall \ n, \ \forall \ f \in \mathcal{F}
\]
Confidence band for the function $f(x_1, x_2) = x_1 + x_2$ assuming $f \in \mathcal{F}_1$ and sample size $n = 50^2$
Confidence band for the function \(f(x_1, x_2) = \mathbb{I}(x_1 \geq 0.5) \) assuming \(f \in \mathcal{F}_1 \) and sample size \(n = 50^2 \)
Confidence band for the function \(f(x_1, x_2) = 40((x_1 - 0.5)^2 + (x_2 - 0.5)^2) \)
assuming \(f \in \mathcal{F}_2 \) and sample size \(n = 40^2 \)
<table>
<thead>
<tr>
<th>$f(x_1, x_2)$</th>
<th>Category</th>
<th>Coverage probability</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>isotonic</td>
<td>0.95</td>
</tr>
<tr>
<td>$x_1 + x_2$</td>
<td>isotonic</td>
<td>0.97</td>
</tr>
<tr>
<td>$20(x_2 + x_2)$</td>
<td>isotonic</td>
<td>1.00</td>
</tr>
<tr>
<td>$\mathbb{I}(x \geq 0.5)$</td>
<td>isotonic</td>
<td>0.97</td>
</tr>
<tr>
<td>0</td>
<td>convex</td>
<td>0.95</td>
</tr>
<tr>
<td>$x_1 + x_2$</td>
<td>convex</td>
<td>0.96</td>
</tr>
<tr>
<td>$10(x_1 + x_2)$</td>
<td>convex</td>
<td>0.95</td>
</tr>
<tr>
<td>$(x_1 - 0.5)^2 + (x_2 - 0.5)^2$</td>
<td>convex</td>
<td>0.98</td>
</tr>
</tbody>
</table>

Table: Estimated coverage probabilities of nominal 95% confidence bands for different functions
Goal: Construct *adaptive* (and *optimal*) confidence band for appropriate subclasses of \mathcal{F}_1 and \mathcal{F}_2

Rate of convergence of a confidence band

- We say that the confidence band $\{(\ell(t), u(t)) : t \in [0, 1]^d\}$, with coverage probability $1 - \alpha$, has *rate of convergence* γ_n on the set A_n for a class of functions \mathcal{G} if

$$\inf_{f \in \mathcal{G}} \mathbb{P}_f \left(\sup_{t \in A_n} (u(t) - \ell(t)) \leq \Delta \gamma_n \right) \geq 1 - \alpha, \quad \text{for all } n$$

- Δ is a constant *not depending on* n (but may depend on α and \mathcal{G})

Note: Without any *qualitative* assumptions on f constructing confidence bands (with *guaranteed coverage* for all $f \in \mathcal{G}$) is an *ill-posed* problem, even when $d = 1$; see e.g., Donoho (1988) ...
Result: Our confidence band *optimally adapts to unknown smoothness*

Theorem (Datta and S. (2018b))

Suppose that \(f \in G \) where \(G \) is either \(\mathcal{F}_1 \cap \mathbb{H}_{\beta,L} \) (\(0 < \beta \leq 1 \) and \(L > 0 \) unknowns) or \(\mathcal{F}_2 \cap \mathbb{H}_{\beta,L} \) (\(1 < \beta \leq 2 \) and \(L > 0 \) unknowns). Then,

\[
\inf_{f \in G} \mathbb{P}_f \left(\sup_{t \in A(\epsilon_n, \ldots, \epsilon_n)} (\hat{u}(t) - \hat{\ell}(t)) \leq \Delta \left[\frac{\log(en)}{n} \right]^{\frac{\beta}{2\beta+d}} \right) \geq 1 - \alpha \quad \forall \ n
\]

for some constant \(\Delta \) depending only on \(L, \beta, \psi^{(l)}, \psi^{(u)}, \alpha \) and \(\epsilon_n = (\log(en)/n)^{1/(2\beta+d)} \) and \(A(\epsilon_n, \ldots, \epsilon_n) := \{ t \in \mathbb{R}^d : \epsilon_n \leq t_i \leq 1 - \epsilon_n \} \)

- This shows that the rate of convergence of our confidence band is \((\log n/n)^{\beta/(2\beta+d)} \) for the class \(\mathcal{F}_i \cap \mathbb{H}_{\beta,L} \) \((i = 1, 2) \) on \(A(\epsilon_n, \ldots, \epsilon_n) \)

- This rate is indeed *optimal*!

- Construction of \((\hat{\ell}, \hat{u})\) *does NOT* need knowledge of \(\beta \) and \(L \)
Result: Our confidence band *automatically adapts* to the unknown *intrinsic dimension* (# of relevant variables) and *smoothness* of f.

- Define the following function classes ($1 \leq k \leq d$ is an integer):

$$G_k := \left\{ f \in L_1([0, 1]^d) : f(x) = g(x_j : j \in \mathcal{P}), \ \forall \ x = (x_1, \ldots, x_d), \right.$$

$$\mathcal{P} \subseteq \{1, \ldots, d\} \text{ with } |\mathcal{P}| = k \leq d \right\}$$

<table>
<thead>
<tr>
<th>Function class</th>
<th>Rate of convergence</th>
<th>Corresponding set5</th>
</tr>
</thead>
<tbody>
<tr>
<td>$G_k \cap F_i \cap \mathbb{H}_{\beta,L}$</td>
<td>$(\log(en)/n)^{\beta/(2\beta+k)}$</td>
<td>$A_{\epsilon} : \text{ any } \epsilon > 0$</td>
</tr>
</tbody>
</table>

$^5A_{(\epsilon, \ldots, \epsilon)} := \{(t_1, \ldots, t_d) \in \mathbb{R}^d : \epsilon \leq t_i \leq 1 - \epsilon\}$
Result: *Parametric* rate of convergence when f is *locally constant/affine*

- Suppose that $f \in \mathcal{F}_1$ and that the set
 \[l_4(f, \varepsilon) := \left\{ t \in [0, 1]^d : B_\infty(t, \varepsilon) \subset [0, 1]^d, f \text{ is constant on } B_\infty(t, \varepsilon) \right\} \neq \emptyset \]
 where $\varepsilon = (\varepsilon_1, \ldots, \varepsilon_d) > 0$ and $B_\infty(t, \varepsilon) = \prod_{i=1}^d (t_i - \varepsilon_i, t_i + \varepsilon_i)$

- $l_4(f, \varepsilon)$ denotes the subset of $[0, 1]^d$ such that f is *constant* around an ε-*neighborhood* of each of its elements.

- Our confidence band has *parametric* rate of convergence on $l_4(f, \varepsilon)$, i.e.,
 \[\mathbb{P}_f \left(\sup_{t \in l_4(f, \varepsilon)} (\hat{u}(t) - \hat{l}(t)) \leq \Delta_\varepsilon n^{-1/2} \right) \geq 1 - \alpha, \quad \text{for all } n \]

Similar result holds when $f \in \mathcal{F}_2$ and $l_4(f, \varepsilon)$ is replaced by
 \[l_5(f, \varepsilon) := \left\{ t \in [0, 1]^d : B_\infty(t, \varepsilon) \subset [0, 1]^d, f \text{ is affine on } B_\infty(t, \varepsilon) \right\} \neq \emptyset \]
Result: Our confidence band has (almost) *minimal width (locally)*

- Suppose that $f \in \mathcal{F}_1$ continuously differentiable in a neighborhood U of $x_0 \in (0, 1)^d$ s.t.

\[
\tilde{L}[x_0] := \left[\prod_{i=1}^d \frac{\partial}{\partial x_i} f(x_1, \ldots, x_d) \bigg|_{x=x_0} \right]^{1/d} > 0.
\]

- For any confidence band $\{(\ell(t), u(t)) : t \in [0, 1]^d\}$ for f with guaranteed coverage $(1 - \alpha)$ for the class \mathcal{F}_1, and for any $\epsilon \in (0, 1)$,

\[
\liminf_{n \to \infty} P_f \left(\sup_{x \in U} [f(x) - \ell(x)] \geq (1 - \epsilon) \Delta^{(l)} \tilde{L}^{d/2+d} [x_0] \left(\frac{\log(en)}{n} \right)^{1/(2+d)} \right) \geq 1 - \alpha
\]

- For our constructed confidence band $(\hat{\ell}, \hat{u})$, for any $\epsilon > 0$, we have

\[
\lim_{n \to \infty} P_f \left((f - \hat{\ell})(x_0) \leq (1 + \epsilon) \Delta^{(l)} \tilde{L}^{d/2+d} [x_0] \left(\frac{\log(en)}{n} \right)^{1/(2+d)} \right) = 1
\]

- *Similar* results also exist when considering the difference $\hat{u} - f$
Summary

- Proposed a *multiscale statistic* in multidimension

- Constructed *confidence bands* for *shape-restricted regression functions* that have *guaranteed coverage*

- Our confidence band *adapts* to the *unknown smoothness* and *intrinsic dimension* of the (shape-restricted) function class

- In some cases our band has (almost) the *minimum possible width*

Thank you very much!

Questions?

References

1 Introduction: Problem Setting and our Approach when $d = 1$

2 Multidimensional Multiscale Statistic: Some Optimality Results

3 Adaptive Confidence Bands for Shape-restricted Regression in Multidimension

4 Proof Ideas
Theorem [Datta and S. (2018)]

Let X be a stochastic process on a pseudometric space (\mathcal{F}, ρ) with continuous sample paths. Suppose that the following 3 conditions hold:

(a) There is a function $\sigma : \mathcal{F} \to (0, 1]$ and a constant $K \geq 1$ such that

$$
\mathbb{P}(X(a) > \sigma(a)\eta) \leq K \exp(-\eta^2/2) \quad \text{for all } \eta > 0, \text{ for all } a \in \mathcal{F}.
$$

Moreover, $\sigma^2(b) \leq \sigma^2(a) + \rho^2(a, b)$ for all $a, b \in \mathcal{F}$.

(b) For some constants $L, M \geq 1$,

$$
\mathbb{P}(|X(a) - X(b)| > \rho(a, b)\eta) \leq L \exp(-\eta^2/M) \quad \forall \eta > 0, \forall a, b \in \mathcal{F}.
$$

(c) For some constants $A, B, V, p > 0$,

$$
N((\delta u)^{1/2}, \{a \in \mathcal{F} : \sigma^2(a) \leq \delta\}) \leq A \frac{(\log(e/\delta))^p}{u^B \delta^V} \quad \forall u, \delta \in (0, 1].
$$

Then the random variable

$$
S(X) := \sup_{a \in \mathcal{F}} \frac{X^2(a)/\sigma^2(a) - 2V \log(1/\sigma^2(a))}{\log \log(e^e/\sigma^2(a))} < \infty \quad \text{a.s.}
$$
To show: \(T(W, \psi) := \sup_{h \in (0, 1/2]^d} \sup_{t \in A_h} \frac{|\hat{\psi}(t, h)| - \Gamma(2^d \prod_{i=1}^d h_i)}{D(2^d \prod_{i=1}^d h_i)} < \infty \) a.s.

Last result shows \(S(X) := \sup_{a \in \mathcal{F}} \frac{X^2(a)/\sigma^2(a) - 2V\log(1/\sigma^2(a))}{\log \log(e^e/\sigma^2(a))} < \infty \) a.s.

Application of the previous theorem to our problem

- \(\mathcal{F} := \{(t, h) \in \mathbb{R}^d \times (0, 1/2]^d : h_i \leq t_i \leq 1 - h_i, \forall i = 1, 2, \ldots, d\} \)

- **Stochastic process:** \(X(t, h) := \sqrt{2^d \prod_{i=1}^d h_i} \hat{\psi}(t, h) \quad \forall (t, h) \in \mathcal{F} \)

- **Pseudometric:**

 \[
 \rho^2((t, h), (t', h')) := |B_\infty(t, h) \triangle B_\infty(t', h')|,^a \quad \forall (t, h), (t', h') \in \mathcal{F},
 \]

 where \(B_\infty(t, h) := \prod_{i=1}^d (t_i - h_i, t_i + h_i) \)

- \(A \triangle B := (A \cap B^c) \cup (A^c \cap B) \) is the **symmetric difference** of \(A \) and \(B \)

- \(\sigma^2(t, h) := |B_\infty(t, h)| = 2^d \prod_{i=1}^d h_i, \quad \text{for } (t, h) \in \mathcal{F} \)

\(^a|B| \) denotes the Lebesgue measure of the set \(B \)
The following result shows that for the above defined pseudometric space (\mathcal{F}, ρ) the \textit{packing number} condition (c) holds

\textbf{Lemma (Datta and S. (2018))}

Let $\mathcal{F}, \rho(\cdot, \cdot)$ and $\sigma(\cdot)$ be as described above. Then, for all $u, \delta \in (0, 1]$, $N \left(\left(u\delta \right)^{1/2}, \left\{ (t, h) \in \mathcal{F} : \sigma^2(t, h) \leq \delta \right\} \right) \leq Ku^{-2d} \delta^{-1} (\log(e/\delta))^{d-1}$ for some constant K depending only on d.
Multiscale statistic: A generalization of Lévy’s modulus of continuity \((d = 1)\)

- **Multiscale statistic:** For \(\Gamma(r) := \sqrt{2 \log(1/r)}\),

\[
T(Z, \psi) := \sup_{h \in (0, 1/2]} \sup_{t \in [h, 1-h]} \frac{\left| \hat{\Psi}(t, h) - \Gamma(2h) \right|}{D(2h)}
\]

- Consider \(\psi = \mathbb{1}_{[-1,1]}\) (and \(f \equiv 0\)), then

\[
\hat{\Psi}(t, h) = (2h)^{-1/2} [W(t + h) - W(t - h)]
\]

- **Lévy’s modulus of continuity:**

\[
\lim_{h \to 0} \sup_{t \in [h, 1-h]} \frac{\left| \hat{\Psi}(t, h) \right|}{\Gamma(2h)} \equiv \lim_{h \to 0} \sup_{t \in [h, 1-h]} \frac{\left| W(t + h) - W(t - h) \right|}{\sqrt{(2h)2 \log(1/(2h))}} = 1
\]