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(X ,Y ) ∼ µ on X × Y (topological space) with marginals µX & µY

Informal goal: Construct a coefficient that can measure the

strength of association/dependence between X & Y

beyond simply testing for independence

Motivation: Pearson’s correlation coefficient

Given (X ,Y ) ∼ bivariate normal, Pearson’s correlation ρ measures
the strength of association between X and Y

ρ = 0 iff X and Y are independent

ρ = ±1 iff one variable is a (linear) function of the other

Any value of ρ in [-1,1] conveys an idea of the strength of the
relationship between X and Y

Question: What are nonparametric analogs of Pearson’s correlation?
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Want: A measure of association that:

(a) equals 0 iff X ⊥⊥ Y ,
(b) equals 1 iff Y is a (measurable) function of X , and
(c) any value in [0,1] conveys an idea of the strength of the relationship

between X and Y

Testing for independence: For the past century, most measures of
association/dependence only focus on testing X ⊥⊥ Y , i.e., they
equal 0 iff Y ⊥⊥ X ; e.g., distance correlation (Székely et al., 2007),
Hilbert-Schmidt independence criterion (Gretton et al., 2008),
graph-based measures (Friedman and Rafsky, 1983), etc.

Dette et al., 2013, Chatterjee, 2019: When X = Y = R, authors
propose measures that equal 0 iff Y ⊥⊥ X and 1 iff Y is a
measurable function of X ; extended to the case X = Rd1 and Y = R
in Azadkia and Chatterjee, 2019.

Bottleneck: They rely on the canonical ordering of Y = R

We consider the case when X and Y are general topological spaces (e.g.,
metric spaces)
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1 Family of Measures of Association
A measure of dependence on Euclidean spaces
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A measure on X = Rd1, Y = Rd2

(X ,Y ) ∼ µ on X × Y with marginals µX & µY

Basic strategy

Most measures quantify a “discrepancy” between µ and µX ⊗ µY

We construct a discrepancy between µY |X (regular conditional
distribution of Y given X ) and µY

When Y ⊥⊥ X , µY |X = µY . When Y is a measurable function of X ,
µY |X is a degenerate measure

Define

T ≡ T (µ) := 1− E‖Y ′ − Ỹ ′‖2
E‖Y1 − Y2‖2

Generate Y1,Y2
i.i.d.∼ µY

(X ′,Y ′, Ỹ ′) is generated as: X ′ ∼ µX and then Y ′, Ỹ ′ i.i.d. µY |X ′

(i.e., Y ′ and Ỹ ′ are conditionally independent given X ′)
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Recall X ′ ∼ µX , and Y ′, Ỹ ′|X ′ iid∼ µY |X ′ , and

T = 1− E‖Y ′ − Ỹ ′‖2
E‖Y1 − Y2‖2

.

Y ′ ∼ µY , Ỹ ′ ∼ µY but Y ′ and Ỹ ′ are not necessarily independent

Suppose Y ⊥⊥ X , then µY |X ′ = µY ,

and thus Y ′, Ỹ ′
i.i.d.∼ µY ⇒ T = 0

Suppose Y = h(X ) for some measurable h(·), then

Y ′ = Ỹ ′ = h(X ′) ⇔ ‖Y ′ − Ỹ ′‖2 = 0 a.s. ⇔ T = 1

Showing that T = 0 ⇒ Y ⊥⊥ X is more complicated!
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Theorem [Deb, Ghosal and S. (2020+)]

Suppose E‖Y1‖2 <∞. Then

T ∈ [0, 1]

T = 0 iff Y ⊥⊥ X

T = 1 iff Y is a (noiseless) measurable function of X .

Interpretability and Monotonicity: What happens when T ∈ (0, 1)?

Suppose µ is the bivariate normal distribution with means µX , µY ,
variances σ2

X , σ
2
Y and correlation ρ. Then

T (µ) = 1−
√

1− ρ2.

The above function is strictly convex and increasing in |ρ|.

In many nonparametric regression models, T turns out to be a
monotonic function of the degree of dependence between Y and X

T captures the strength of the relationship between Y and X



Theorem [Deb, Ghosal and S. (2020+)]

Suppose E‖Y1‖2 <∞. Then

T ∈ [0, 1]

T = 0 iff Y ⊥⊥ X

T = 1 iff Y is a (noiseless) measurable function of X .

Interpretability and Monotonicity: What happens when T ∈ (0, 1)?

Suppose µ is the bivariate normal distribution with means µX , µY ,
variances σ2

X , σ
2
Y and correlation ρ. Then

T (µ) = 1−
√

1− ρ2.

The above function is strictly convex and increasing in |ρ|.

In many nonparametric regression models, T turns out to be a
monotonic function of the degree of dependence between Y and X

T captures the strength of the relationship between Y and X



Theorem [Deb, Ghosal and S. (2020+)]

Suppose E‖Y1‖2 <∞. Then

T ∈ [0, 1]

T = 0 iff Y ⊥⊥ X

T = 1 iff Y is a (noiseless) measurable function of X .

Interpretability and Monotonicity: What happens when T ∈ (0, 1)?

Suppose µ is the bivariate normal distribution with means µX , µY ,
variances σ2

X , σ
2
Y and correlation ρ. Then

T (µ) = 1−
√

1− ρ2.

The above function is strictly convex and increasing in |ρ|.

In many nonparametric regression models, T turns out to be a
monotonic function of the degree of dependence between Y and X

T captures the strength of the relationship between Y and X



(X (1),X (2),Y (1),Y (2)) ∼ µ on R4; (X (1),Y (1)), (X (2),Y (2)) are i.i.d.

W-shape: Y (1) = |X (1) + 0.5|1X (1)≤0 + |X (1) − 0.5|1X (1)>0 + 0.75λε,
where ε ∼ N (0, 1) with varying λ; X ∼ Uniform[−1, 1]
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Reproducing kernel Hilbert spaces (RKHS)

H: Hilbert space2 of functions from Y to R

Kernel function: A symmetric nonnegative definite function on Y,
i.e., K : Y × Y → R satisfying

m∑
i,j=1

αiαjK (yi , yj) ≥ 0

for all αi ∈ R, yi ∈ Y and m ≥ 1

For all y ∈ Y, K (y , ·) ∈ H, (note K (y , ·) : Y → R, ∀ y ∈ Y)

Identify y 7→ K (y , ·) (feature map)

Gaussian kernel: k(u, v) := exp(−‖u − v‖22)

2A Hilbert space is a complete inner product space
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Moore-Aronszajn Theorem

Suppose K (·, ·) : Y → R is a nonnegative definite kernel. Then there
exists a Hilbert space (H, 〈·, ·〉H) comprising {f : Y → R} such that:

K (y , ·) ∈ H, ∀ y ∈ Y;

(Reproducing property) For all f ∈ H, y ∈ Y,

〈f ,K (y , ·)〉H = f (y).

〈K (y1, ·),K (y2, ·)〉H = K (y1, y2)

Using the above,

‖K (y1, ·)− K (y2, ·)‖2H
= 〈K (y1, ·),K (y1, ·)〉H + 〈K (y2, ·),K (y2, ·)〉H − 2〈K (y1, ·),K (y2, ·)〉H
= K (y1, y1) + K (y2, y2)− 2K (y1, y2)
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Kernel Measure of Association (KMAc)

Recall: K (y , ·) : Y → R for all y ∈ Y, y identified with K (y , ·), and

T = 1− E‖Y ′ − Ỹ ′‖2
E‖Y1 − Y2‖2

.

Idea: Replace Y1 − Y2 with K (Y1, ·)− K (Y2, ·)

Define our kernel measure of association (KMAc) as

ηK := 1− E‖K (Y ′, ·)− K (Ỹ ′, ·)‖2H
E‖K (Y1, ·)− K (Y2, ·)‖2H
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Theorem [Deb, Ghosal and S. (2020+)]

Suppose K (·, ·) is characteristic and EK (Y1,Y1) <∞. Then:

ηK ∈ [0, 1],

ηK = 0 iff Y ⊥⊥ X ,

ηK = 1 iff Y is a noiseless measurable function of X .

A kernel is characteristic if

EP [K (Y , ·)] = EQ [K (Y , ·)] =⇒ P = Q

for probability measures P and Q.
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Examples of Characteristic Kernels

Some examples of characteristic kernels [Gretton et al., 2012, Sejdinovic
et al., 2013, Lyons 2013, 2014] include:

(Distance) K (y1, y2) := ‖y1‖2 + ‖y2‖2 − ‖y1 − y2‖2. In this case,

ηK = T

Bounded kernels: (Gaussian) K (y1, y2) := exp(−‖y1 − y2‖22) and
(Laplacian) K (y1, y2) := exp(−‖y1 − y2‖1)

For non-Euclidean domains such as video filtering, robotics, text
documents, human action recognition, characteristic kernels
constructed in Fukumizu et al., 2009, Danafar et al., 2010,
Christmann and Steinwart, 2010, ...
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Estimation Strategy

Suppose (X1,Y1), . . . , (Xn,Yn)
iid∼ µ on X × Y

X is endowed with metric ρX (·, ·)

Recall

ηK =
EK (Y ′, Ỹ ′)− EK (Y1,Y2)

EK (Y1,Y1)− EK (Y1,Y2)

By standard U-statistics theory,

EK (Y1,Y1) ≈ 1

n

n∑
i=1

K (Yi ,Yi )

and

EK (Y1,Y2) ≈ 1

n(n − 1)

∑
i 6=j

K (Yi ,Yj)

Hardest term to estimate is EK (Y ′, Ỹ ′)!
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Suppose X is a finite set. Then, EK (Y ′, Ỹ ′) can be handled as

EK(Y ′, Ỹ ′) = E[E[K(Y ′, Ỹ ′)|X ′]] ≈ 1

n

n∑
i=1

1

|{j : Xj = Xi}|
∑

j :Xj=Xi

K(Yi ,Yj)

If X is continuous, replace Xj = Xi with ρX (Xi ,Xj) being “small”

Geometric graph

A graph Gn on {X1, . . . ,Xn} which joins points that are “close” to
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every point on {X1, . . . ,Xn} to its first k nearest neighbors
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Estimate EK (Y ′, Ỹ ′) by replacing

1
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|{j : Xj = Xi}|
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n
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i=1
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di

∑
j :(i,j)∈E(Gn)

K (Yi ,Yj)

where E (Gn) is edge set of Gn and di is the degree of Xi

Geometric graph-based estimator

Now

ηK =
EK (Y ′, Ỹ ′)− EK (Y1,Y2)

EK (Y1,Y1)− EK (Y1,Y2)

can be estimated by

η̂n :=

1
n

∑n
i=1

1
di

∑
j :(i,j)∈E(Gn)

K (Yi ,Yj)− 1
n(n−1)

∑
i 6=j K (Yi ,Yj)

1
n

∑n
i=1 K (Yi ,Yi )− 1

n(n−1)
∑

i 6=j K (Yi ,Yj)
.
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Theorem (informal) [Deb, Ghosal and S. (2020+)]

Suppose Gn satisfies the “close”-ness condition in the sense that:∑
(i,j)∈E(Gn)

ρX (Xi ,Xj)

|E (Gn)|
P−→ 0,

and EK (Y1,Y1)2+ε <∞ (and other mild technical conditions), then

η̂n
P−→ ηK .

In particular, 1
n

∑n
i=1

1
di

∑
j :(i,j)∈E(Gn)

K (Yi ,Yj)
P−→ EK (Y ′, Ỹ ′)

No smoothness assumptions needed on conditional distribution of
Y |X — motivated directly from the approach used in Chatterjee,
2019, Azadkia and Chatterjee, 2019.

For k-NNGs, η̂n is consistent provided k = o(n/ log n)

Thus, for consistent estimation, a 1-NNG can be chosen
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Rate of convergence (for k-NNG)

Theorem (informal) [Deb, Ghosal and S. (2020+)]

Suppose K (·, ·) is bounded, E[K (Y , ·)|X = ·] is Lipschitz with respect to
ρX (·, ·) and the support of µX has intrinsic dimension d0. Then

η̂n − ηK =


OP

(√
k
n log n

)
if d0 ≤ 2,

OP
(
( k
n )1/d0 log n

)
if d0 > 2.

Estimation rate automatically adapts to intrinsic dimension of µX

Note: η̂n − ηK = (η̂n − Eη̂n)︸ ︷︷ ︸
Variance term∼n−1/2

+ (Eη̂n − ηK )︸ ︷︷ ︸
Bias term↑k

When Y ⊥⊥ X : Bias is always 0, and variance improves with k —
useful in independence testing.
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Limiting Distribution under Independence (general graph)

Theorem (informal) [Deb, Ghosal and S. (2020+)]

Suppose µ = µX ⊗ µY , then there exists a sequence of random variables
Vn = OP(1) such that

√
n η̂n
Vn

d−→ N (0, 1).

Result: A uniform CLT holds for a suitable class of graphs Gn, i.e.,

sup
Gn∈Gn

sup
x∈R

∣∣∣∣P(√n η̂nVn
≤ x

)
− Φ(x)

∣∣∣∣ n→∞−→ 0

Theorem holds for data driven choices Ĝn if P(Ĝn ∈ Gn)
n→∞−→ 1

Vn can be computed from the data
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Test of Independence

Consider the testing problem:

H0 : µ = µX ⊗ µY vs H1 : µ 6= µX ⊗ µY .

Recall: ηK = 0 iff µ = µX ⊗ µY , ηK > 0 otherwise, η̂n
P−→ ηK .

A natural level-α test (for α ∈ (0, 1)):

Reject H0 if

√
n η̂n
Vn

≥ zα

Consistent and maintains level, i.e.,

lim
n→∞

PH0(Reject H0) = α, lim
n→∞

PH1(Reject H0) = 1

What is the computational complexity?
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Computational Complexity

Suppose Gn is the k-NNG; computable in O(kn log n) time

Recall

η̂n =

1

n

n∑
i=1

1

di

∑
j :(i,j)∈E(Gn)

K (Yi ,Yj)︸ ︷︷ ︸
O(kn log n)

− 1
n(n−1)

∑
i 6=j

K (Yi ,Yj)

1

n

n∑
i=1

K (Yi ,Yi )︸ ︷︷ ︸
O(n)

− 1

n(n − 1)

∑
i 6=j

K (Yi ,Yj)︸ ︷︷ ︸
(?)

∑
i,j K (Yi ,Yj) = ‖

∑n
i=1 K (Yi , ·)‖2H

(?) can be computed in linear time if ‖·‖2H is exactly computable,
e.g., K (yi , yj) = 〈yi , yj〉 Otherwise

Yields a near linear time test for independence; cf. distance
correlation (or HSIC) takes O(n2B) time if B permutations are used
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Summary

Class of kernel measures of association (KMAc) when Y admits a
nonnegative definite kernel

Class of graph-based, consistent estimators (X — metric space) for
KMAc without smoothness on the conditional distribution

When k-NNG is used, the rate of convergence automatically adapts
to the intrinsic dimension of the support of µX

Established a pivotal Gaussian limit uniformly over a class of graphs

A near linear time estimator + a near linear time test of statistical
independence

In the paper, when X and Y are Euclidean, we propose another class
of measures and estimators that is distribution-free under H0
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Simulations (choice of k)

(X (1),X (2),Y (1),Y (2)) ∼ µ on R4; (X (1),Y (1)), (X (2),Y (2)) are i.i.d.

W-shape:

Y (1) = |X (1) + 0.5|1X (1)≤0 + |X (1) − 0.5|1X (1)>0 + 0.75λε,

where ε ∼ N (0, 1) with varying λ; X ∼ Uniform[-1,1]

Sinusoidal:
Y (1) = cos (8πX (1)) + 3λε,

ε ∼ N (0, 1) with varying λ.

Sample size n = 300



(KG -Gaussian kernel, KD-Distance kernel)
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Measure of Conditional Dependence3

Suppose (X ,Y ,Z ) ∼ µ on some topological space X × Y × Z

Goal: Measure the strength of conditional dependence between Y
and X given Z

Question: Can we define τ ≡ τ(Y ,X |Z ) satisfying:

(i) τ ∈ [0, 1];
(ii) τ = 0 iff Y ⊥⊥ X |Z ;
(iii) τ = 1 iff Y is a measurable function of X and Z .

Applications: Model-free variable selection, modeling causal
relations in graphical models, ...

We propose and study a class of nonparametric yet interpretable
measures and their estimates, a sub-class of which can be computed
in near linear time

3Joint work with Zhen Huang and Nabarun Deb
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Recall KMAc (for measuring dependence between Y and X ):

ηK =
EK (Y ′, Ỹ ′)− EK (Y1,Y2)

EK (Y1,Y1)− EK (Y1,Y2)
=

E[MMD2(µY |X , µY )]

E[MMD2(δY , µY )]

where X ′ ∼ µX , Y ′, Ỹ ′ are drawn independently from µY |X ′

MMD is the maximum mean discrepancy — a distance metric
between two probability distributions depending on the kernel K (·, ·)

Measuring conditional dependence between Y and X given Z

Kernel partial correlation (KPC) coefficient:

Can again employ a geometric graph-based estimation strategy
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=

EK (Y ′2, Ỹ
′
2)− EK (Y ′, Ỹ ′)

EK (Y1,Y1)− EK (Y ′, Ỹ ′)

where: (i) (X ′,Z ′) ∼ µXZ and Y ′2, Ỹ
′
2 are i.i.d. µY |(X ′,Z ′),

(ii) Z ′ ∼ µZ and Y ′, Ỹ ′ are i.i.d. µY |Z ′

Can again employ a geometric graph-based estimation strategy



For example, we can estimate

τK =
E
[
E[k(Y ′2, Ỹ

′
2)|X ,Z ]

]
− E

[
E[k(Y ′, Ỹ ′)|Z ]

]
E[k(Y1,Y1)]− E[E[k(Y ′, Ỹ ′)|Z ]]

by a 1-NNG by

τ̂n :=

1
n

∑n
i=1 k(Yi ,YN̈(i))−

1
n

∑n
i=1 k(Yi ,YN(i))

1
n

∑n
i=1 k(Yi ,Yi )− 1

n

∑n
i=1 k(Yi ,YN(i))

where (XN̈(i),ZN̈(i)) is NN of (Xi ,Zi ) and YN̈(i) is the corr. Y -value,
and ZN(i) is NN of Zi and YN(i) is the corr. Y -value.

Consistency: τ̂n
P−→ τK

Automatic adaptation to the intrinsic dimensions of µX and µXZ

Can develop a fully automatic stepwise variable selection algorithm
which is provably consistent (cf. Azadkia and Chatterjee, 2019)
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A measure of dissimilarity between M-distributions

M-distributions P1, . . . ,PM on X (e.g., metric space)

Data: {Xij}nij=1
iid∼ Pi for i = 1, . . . ,M

Question: How different are the M distributions?

We want to find a class of measures γ ≡ γ(P1, . . . ,PM) such that:
(i) γ ∈ [0, 1];
(ii) γ = 0 iff P1 = . . . = PM (i.e., all the distributions are same);
(iii) γ = 1 iff P1, . . . ,PM have disjoint supports

Define: Yij = i , for i = 1, . . . ,M

Consider {{(Xij ,Yij)}nij=1}Mi=1; X ∼
∑M

i=1 πiPY ; πi ≈ ni∑M
`=1 n`

Result: (a) P1 = . . . = PM iff X ⊥⊥ Y ;
(b) P1, . . . ,PM have disjoint supports iff Y is a deterministic
function of X

“Similar” kernel and graph-based strategy yields a desired measure
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M-distributions P1, . . . ,PM on X (e.g., metric space)

Data: {Xij}nij=1
iid∼ Pi for i = 1, . . . ,M

Question: How different are the M distributions?

We want to find a class of measures γ ≡ γ(P1, . . . ,PM) such that:
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(ii) γ = 0 iff P1 = . . . = PM (i.e., all the distributions are same);
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Define: Yij = i , for i = 1, . . . ,M

Consider {{(Xij ,Yij)}nij=1}Mi=1; X ∼
∑M

i=1 πiPY ; πi ≈ ni∑M
`=1 n`
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(b) P1, . . . ,PM have disjoint supports iff Y is a deterministic
function of X

“Similar” kernel and graph-based strategy yields a desired measure
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Summary

Measure the strength of association between X and Y on X and Y

Class of kernel measures of association (KMAc) when Y admits a
nonnegative definite kernel

Class of geometric graph-based, consistent estimators (X — metric
space) for KMAc without smoothness on the conditional distribution

When k-NNG is used, the rate of convergence automatically adapts
to the intrinsic dimension of the support of µX

Established a pivotal Gaussian limit uniformly over a class of graphs

Thank you very much!

Questions?



Near Linear time Estimator

Note
1

n(n − 1)

∑
i 6=j

K (Yi ,Yj) ≈ EK (Y1,Y2)

Replace with

1

n − 1

n−1∑
i=1

K (Yi ,Yi+1) ≈ EK (Y1,Y2)

Define

η̂lin
n :=

1
n

∑n
i=1

1
di

∑
j :(i,j)∈E(Gn)

K (Yi ,Yj)− 1
n−1

∑n−1
i=1 K (Yi ,Yi+1)

1
n

∑n
i=1 K (Yi ,Yi )− 1

n−1
∑n−1

i=1 K (Yi ,Yi+1)



Properties of η̂linn

When Gn is k-NNG with k = O(1), η̂lin
n takes O(n log n) time

η̂lin
n

P−→ ηK (the same measure of association)

η̂lin
n has the same rate of convergence as η̂n

There exists a sequence of random variables Ṽn = OP(1) such that:

√
n η̂lin

n

Ṽn

d−→ N (0, 1)

where Ṽn can be computed in near linear time

Yields a near linear time test for independence; cf. distance
correlation (or HSIC) takes O(n2B) time if B permutations are used

Price to pay: Has a higher asymptotic variance than η̂n
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