Measuring Association on Topological Spaces Using Kernels and Geometric Graphs

Bodhisattva Sen¹

Department of Statistics Columbia University

Applied Statistics Unit Indian Statistical Institute, Kolkata

Joint work with Nabarun Deb (Columbia) & Promit Ghosal (MIT)

December 15, 2020

Preprint available at https://arxiv.org/pdf/2010.01768.pdf

¹Supported by NSF grant DMS-2015376

- $(X, Y) \sim \mu$ on $\mathcal{X} \times \mathcal{Y}$ (topological space) with marginals $\mu_X \& \mu_Y$
- Informal goal: Construct a coefficient that can measure the strength of association/dependence between X & Y beyond simply testing for independence

- $(X, Y) \sim \mu$ on $\mathcal{X} \times \mathcal{Y}$ (topological space) with marginals $\mu_X \& \mu_Y$
- Informal goal: Construct a coefficient that can measure the strength of association/dependence between X & Y beyond simply testing for independence

Motivation: Pearson's correlation coefficient

- Given (X, Y) ~ bivariate normal, Pearson's correlation ρ measures the strength of association between X and Y
- $\rho = 0$ iff X and Y are independent
- $\rho = \pm 1$ iff one variable is a (linear) function of the other

- $(X, Y) \sim \mu$ on $\mathcal{X} \times \mathcal{Y}$ (topological space) with marginals $\mu_X \& \mu_Y$
- Informal goal: Construct a coefficient that can measure the strength of association/dependence between X & Y beyond simply testing for independence

Motivation: Pearson's correlation coefficient

- Given (X, Y) ~ bivariate normal, Pearson's correlation ρ measures the strength of association between X and Y
- $\rho = 0$ iff X and Y are independent
- $\rho = \pm 1$ iff one variable is a (linear) function of the other
- Any value of ρ in [-1,1] conveys an idea of the strength of the relationship between X and Y

- $(X, Y) \sim \mu$ on $\mathcal{X} \times \mathcal{Y}$ (topological space) with marginals $\mu_X \& \mu_Y$
- Informal goal: Construct a coefficient that can measure the strength of association/dependence between X & Y beyond simply testing for independence

Motivation: Pearson's correlation coefficient

- Given $(X, Y) \sim$ bivariate normal, Pearson's correlation ρ measures the strength of association between X and Y
- $\rho = 0$ iff X and Y are independent
- $\rho = \pm 1$ iff one variable is a (linear) function of the other
- Any value of ρ in [-1,1] conveys an idea of the strength of the relationship between X and Y

Question: What are nonparametric analogs of Pearson's correlation?

- Want: A measure of association that:
 - (a) equals 0 iff $X \perp Y$,
 - (b) equals 1 iff Y is a (measurable) function of X, and
 - (c) any value in [0,1] conveys an idea of the strength of the relationship between X and Y

- Want: A measure of association that:
 - (a) equals 0 iff $X \perp Y$,
 - (b) equals 1 iff Y is a (measurable) function of X, and
 - (c) any value in [0,1] conveys an idea of the strength of the relationship between X and Y
- Testing for independence: For the past century, most measures of association/dependence only focus on testing X ⊥⊥ Y, i.e., they equal 0 iff Y ⊥⊥ X; e.g., distance correlation (Székely et al., 2007), Hilbert-Schmidt independence criterion (Gretton et al., 2008), graph-based measures (Friedman and Rafsky, 1983), etc.

- Want: A measure of association that:
 - (a) equals 0 iff $X \perp Y$,
 - (b) equals 1 iff Y is a (measurable) function of X, and
 - (c) any value in [0,1] conveys an idea of the strength of the relationship between X and Y
- Testing for independence: For the past century, most measures of association/dependence only focus on testing X ⊥⊥ Y, i.e., they equal 0 iff Y ⊥⊥ X; e.g., distance correlation (Székely et al., 2007), Hilbert-Schmidt independence criterion (Gretton et al., 2008), graph-based measures (Friedman and Rafsky, 1983), etc.
- Dette et al., 2013, Chatterjee, 2019: When X = Y = ℝ, authors propose measures that equal 0 iff Y ⊥⊥ X and 1 iff Y is a measurable function of X; extended to the case X = ℝ^{d₁} and Y = ℝ in Azadkia and Chatterjee, 2019.

• Want: A measure of association that:

- (a) equals 0 iff $X \perp Y$,
- (b) equals 1 iff Y is a (measurable) function of X, and
- (c) any value in [0,1] conveys an idea of the strength of the relationship between X and Y
- Testing for independence: For the past century, most measures of association/dependence only focus on testing X ⊥⊥ Y, i.e., they equal 0 iff Y ⊥⊥ X; e.g., distance correlation (Székely et al., 2007), Hilbert-Schmidt independence criterion (Gretton et al., 2008), graph-based measures (Friedman and Rafsky, 1983), etc.
- Dette et al., 2013, Chatterjee, 2019: When X = Y = ℝ, authors propose measures that equal 0 iff Y ⊥⊥ X and 1 iff Y is a measurable function of X; extended to the case X = ℝ^{d₁} and Y = ℝ in Azadkia and Chatterjee, 2019.
- \bullet Bottleneck: They rely on the canonical ordering of $\mathcal{Y}=\mathbb{R}$

We consider the case when ${\cal X}$ and ${\cal Y}$ are general topological spaces (e.g., metric spaces)

Outline

1 Family of Measures of Association

- A measure of dependence on Euclidean spaces
- Extending to a class of kernel measures

2 Estimating the Kernel Measure of Association (KMAc)

- The estimator
- Consistency and rate of convergence
- Central limit theorem
- Computational complexity
- Other Applications of Kernels and Geometric Graphs
 - A measure of conditional dependence
 - A measure of dissimilarity between *M*-distributions

Outline

1 Family of Measures of Association

- A measure of dependence on Euclidean spaces
- Extending to a class of kernel measures

Estimating the Kernel Measure of Association (KMAc)

- The estimator
- Consistency and rate of convergence
- Central limit theorem
- Computational complexity

Other Applications of Kernels and Geometric Graphs

- A measure of conditional dependence
- A measure of dissimilarity between *M*-distributions

A measure on $\mathcal{X} = \mathbb{R}^{d_1}$, $\mathcal{Y} = \mathbb{R}^{d_2}$

 $(X, Y) \sim \mu$ on $\mathcal{X} \times \mathcal{Y}$ with marginals $\mu_X \& \mu_Y$

Basic strategy

- Most measures quantify a "discrepancy" between μ and $\mu_X \otimes \mu_Y$
- We construct a discrepancy between $\mu_{Y|X}$ (regular conditional distribution of Y given X) and μ_Y

A measure on $\mathcal{X} = \mathbb{R}^{d_1}$, $\mathcal{Y} = \mathbb{R}^{d_2}$

 $(X, Y) \sim \mu$ on $\mathcal{X} \times \mathcal{Y}$ with marginals $\mu_X \& \mu_Y$

Basic strategy

- Most measures quantify a "discrepancy" between μ and $\mu_X \otimes \mu_Y$
- We construct a discrepancy between μ_{Y|X} (regular conditional distribution of Y given X) and μ_Y
- When $Y \perp X$, $\mu_{Y|X} = \mu_Y$. When Y is a measurable function of X, $\mu_{Y|X}$ is a degenerate measure
- Define

$$T \equiv T(\mu) := 1 - \frac{\mathbb{E} \| \mathbf{Y}' - \mathbf{\tilde{Y}}' \|_2}{\mathbb{E} \| Y_1 - Y_2 \|_2}$$

- Generate $Y_1, Y_2 \stackrel{i.i.d.}{\sim} \mu_Y$
- (X', Y', \tilde{Y}') is generated as: $X' \sim \mu_X$ and then Y', \tilde{Y}' i.i.d. $\mu_{Y|X'}$ (i.e., Y' and \tilde{Y}' are conditionally independent given X')

• Recall $X' \sim \mu_X$, and $Y', \tilde{Y}' | X' \stackrel{iid}{\sim} \mu_{Y|X'}$, and

$$T = 1 - \frac{\mathbb{E} \| \mathbf{Y}' - \tilde{\mathbf{Y}}' \|_2}{\mathbb{E} \| Y_1 - Y_2 \|_2}$$

 $Y' \sim \mu_Y$, $\tilde{Y'} \sim \mu_Y$ but Y' and $\tilde{Y'}$ are not necessarily independent

• Suppose $Y \perp X$, then $\mu_{Y|X'} = \mu_Y$,

and thus
$$Y', \tilde{Y}' \stackrel{i.i.d.}{\sim} \mu_Y \quad \Rightarrow \quad T = 0$$

• Recall $X' \sim \mu_X$, and $Y', \tilde{Y}' | X' \stackrel{iid}{\sim} \mu_{Y|X'}$, and $T = 1 - \frac{\mathbb{E} ||Y' - \tilde{Y}'||_2}{\mathbb{E} ||Y_1 - |Y_2||_2}.$

 $Y' \sim \mu_Y, \ ilde Y' \sim \mu_Y$ but Y' and ilde Y' are not necessarily independent

• Suppose $Y \perp X$, then $\mu_{Y|X'} = \mu_Y$,

and thus
$$Y', \tilde{Y}' \stackrel{i.i.d.}{\sim} \mu_Y \Rightarrow T = 0$$

• Suppose Y = h(X) for some measurable $h(\cdot)$, then

$$Y' = \tilde{Y'} = h(X') \quad \Leftrightarrow \quad \|Y' - \tilde{Y'}\|_2 = 0 \text{ a.s.} \quad \Leftrightarrow \quad T = 1$$

• Recall $X' \sim \mu_X$, and $Y', \tilde{Y}' | X' \stackrel{iid}{\sim} \mu_{Y|X'}$, and $T = 1 - \frac{\mathbb{E} ||Y' - \tilde{Y}'||_2}{\mathbb{E} ||Y_1 - |Y_2||_2}.$

 $Y' \sim \mu_Y, \ ilde Y' \sim \mu_Y$ but Y' and ilde Y' are not necessarily independent

• Suppose $Y \perp X$, then $\mu_{Y|X'} = \mu_Y$,

and thus
$$Y', \tilde{Y}' \stackrel{i.i.d.}{\sim} \mu_Y \Rightarrow T = 0$$

• Suppose Y = h(X) for some measurable $h(\cdot)$, then

$$Y' = \tilde{Y'} = h(X') \quad \Leftrightarrow \quad \|Y' - \tilde{Y'}\|_2 = 0 \text{ a.s.} \quad \Leftrightarrow \quad T = 1$$

• Showing that $T = 0 \Rightarrow Y \perp X$ is more complicated!

Suppose $\mathbb{E} \| Y_1 \|_2 < \infty$. Then

- *T* ∈ [0, 1]
- T = 0 iff $Y \perp X$
- T = 1 iff Y is a (noiseless) measurable function of X.

Suppose $\mathbb{E} \| Y_1 \|_2 < \infty$. Then

- *T* ∈ [0, 1]
- T = 0 iff $Y \perp X$
- T = 1 iff Y is a (noiseless) measurable function of X.

Interpretability and Monotonicity: What happens when $T \in (0, 1)$?

• Suppose μ is the bivariate normal distribution with means μ_X, μ_Y , variances σ_X^2, σ_Y^2 and correlation ρ . Then

$$T(\mu) = 1 - \sqrt{1 - \rho^2}.$$

The above function is strictly convex and increasing in $|\rho|$.

Suppose $\mathbb{E} \| Y_1 \|_2 < \infty$. Then

- *T* ∈ [0, 1]
- T = 0 iff $Y \perp X$
- T = 1 iff Y is a (noiseless) measurable function of X.

Interpretability and Monotonicity: What happens when $T \in (0, 1)$?

• Suppose μ is the bivariate normal distribution with means μ_X, μ_Y , variances σ_X^2, σ_Y^2 and correlation ρ . Then

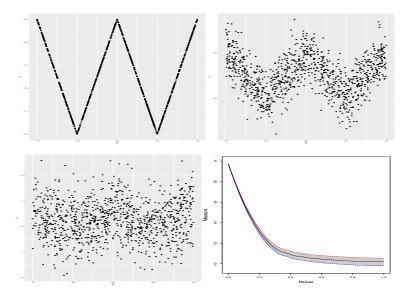
$$T(\mu) = 1 - \sqrt{1 - \rho^2}.$$

The above function is strictly convex and increasing in $|\rho|$.

• In many nonparametric regression models, *T* turns out to be a monotonic function of the degree of dependence between *Y* and *X*

T captures the strength of the relationship between Y and X

 $\begin{array}{l} (X^{(1)}, X^{(2)}, Y^{(1)}, Y^{(2)}) \sim \mu \text{ on } \mathbb{R}^4; \quad (X^{(1)}, Y^{(1)}), (X^{(2)}, Y^{(2)}) \text{ are i.i.d.} \\ \textbf{W-shape:} \ Y^{(1)} = |X^{(1)} + 0.5| \textbf{1}_{X^{(1)} \leq 0} + |X^{(1)} - 0.5| \textbf{1}_{X^{(1)} > 0} + 0.75\lambda\epsilon, \\ \text{where } \epsilon \sim \mathcal{N}(0, 1) \text{ with varying } \lambda; \qquad X \sim \text{Uniform}[-1, 1] \end{array}$



Family of Measures of Association

- A measure of dependence on Euclidean spaces
- Extending to a class of kernel measures

2 Estimating the Kernel Measure of Association (KMAc)

- The estimator
- Consistency and rate of convergence
- Central limit theorem
- Computational complexity

Other Applications of Kernels and Geometric Graphs

- A measure of conditional dependence
- A measure of dissimilarity between *M*-distributions

Reproducing kernel Hilbert spaces (RKHS)

- $\bullet \ \mathcal{H} {:} \ \text{Hilbert} \ \text{space}^2 \ \text{of functions from} \ \mathcal{Y} \ \text{to} \ \mathbb{R}$
- Kernel function: A symmetric nonnegative definite function on \mathcal{Y} , i.e., $\mathcal{K} : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ satisfying

$$\sum_{i,j=1}^m \alpha_i \alpha_j K(y_i, y_j) \ge 0$$

for all $\alpha_i \in \mathbb{R}$, $y_i \in \mathcal{Y}$ and $m \geq 1$

²A Hilbert space is a complete inner product space

Reproducing kernel Hilbert spaces (RKHS)

- $\bullet \ \mathcal{H} : \mbox{ Hilbert space}^2 \mbox{ of functions from } \mathcal{Y} \mbox{ to } \mathbb{R}$
- Kernel function: A symmetric nonnegative definite function on \mathcal{Y} , i.e., $\mathcal{K} : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ satisfying

$$\sum_{i,j=1}^m \alpha_i \alpha_j K(y_i, y_j) \ge 0$$

for all $\alpha_i \in \mathbb{R}$, $y_i \in \mathcal{Y}$ and $m \geq 1$

- For all $y \in \mathcal{Y}$, $K(y, \cdot) \in \mathcal{H}$, (note $K(y, \cdot) : \mathcal{Y} \to \mathbb{R}, \forall y \in \mathcal{Y}$)
- Identify $y \mapsto K(y, \cdot)$ (feature map)
- Gaussian kernel: $k(u, v) := \exp(-\|u v\|_2^2)$

²A Hilbert space is a complete inner product space

Moore-Aronszajn Theorem

Suppose $\mathcal{K}(\cdot, \cdot) : \mathcal{Y} \to \mathbb{R}$ is a nonnegative definite kernel. Then there exists a Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ comprising $\{f : \mathcal{Y} \to \mathbb{R}\}$ such that:

•
$$K(y, \cdot) \in \mathcal{H}, \quad \forall \ y \in \mathcal{Y};$$

• (Reproducing property) For all $f \in \mathcal{H}$, $y \in \mathcal{Y}$,

 $\langle f, K(y, \cdot) \rangle_{\mathcal{H}} = f(y).$

Moore-Aronszajn Theorem

Suppose $\mathcal{K}(\cdot, \cdot) : \mathcal{Y} \to \mathbb{R}$ is a nonnegative definite kernel. Then there exists a Hilbert space $(\mathcal{H}, \langle \cdot, \cdot \rangle_{\mathcal{H}})$ comprising $\{f : \mathcal{Y} \to \mathbb{R}\}$ such that:

•
$$K(y, \cdot) \in \mathcal{H}, \quad \forall \ y \in \mathcal{Y};$$

• (Reproducing property) For all $f \in \mathcal{H}$, $y \in \mathcal{Y}$,

 $\langle f, K(y, \cdot) \rangle_{\mathcal{H}} = f(y).$

•
$$\langle K(y_1, \cdot), K(y_2, \cdot) \rangle_{\mathcal{H}} = K(y_1, y_2)$$

Using the above,

 $\begin{aligned} &\|\mathcal{K}(y_1,\cdot) - \mathcal{K}(y_2,\cdot)\|_{\mathcal{H}}^2 \\ &= \langle \mathcal{K}(y_1,\cdot), \mathcal{K}(y_1,\cdot) \rangle_{\mathcal{H}} + \langle \mathcal{K}(y_2,\cdot), \mathcal{K}(y_2,\cdot) \rangle_{\mathcal{H}} - 2 \langle \mathcal{K}(y_1,\cdot), \mathcal{K}(y_2,\cdot) \rangle_{\mathcal{H}} \\ &= \mathcal{K}(y_1,y_1) + \mathcal{K}(y_2,y_2) - 2\mathcal{K}(y_1,y_2) \end{aligned}$

• **Recall**: $K(y, \cdot) : \mathcal{Y} \to \mathbb{R}$ for all $y \in \mathcal{Y}$, y identified with $K(y, \cdot)$, and

$$T = 1 - rac{\mathbb{E} \|Y' - \tilde{Y'}\|_2}{\mathbb{E} \|Y_1 - Y_2\|_2}.$$

• Idea: Replace $Y_1 - Y_2$ with $K(Y_1, \cdot) - K(Y_2, \cdot)$

• **Recall**: $K(y, \cdot) : \mathcal{Y} \to \mathbb{R}$ for all $y \in \mathcal{Y}$, y identified with $K(y, \cdot)$, and

$$T = 1 - \frac{\mathbb{E} \| \mathbf{Y}' - \tilde{\mathbf{Y}}' \|_2}{\mathbb{E} \| \mathbf{Y}_1 - \mathbf{Y}_2 \|_2}.$$

- Idea: Replace $||Y_1 Y_2||_2$ with $||K(Y_1, \cdot) K(Y_2, \cdot)||_{\mathcal{H}}^2$
- Define our kernel measure of association (KMAc) as

$$\eta_{\mathcal{K}} := 1 - \frac{\mathbb{E} \| \mathcal{K}(\mathbf{Y}', \cdot) - \mathcal{K}(\tilde{\mathbf{Y}}', \cdot) \|_{\mathcal{H}}^2}{\mathbb{E} \| \mathcal{K}(\mathbf{Y}_1, \cdot) - \mathcal{K}(\mathbf{Y}_2, \cdot) \|_{\mathcal{H}}^2}$$

• **Recall**: $K(y, \cdot) : \mathcal{Y} \to \mathbb{R}$ for all $y \in \mathcal{Y}$, y identified with $K(y, \cdot)$, and

$$T = 1 - \frac{\mathbb{E} \|Y' - \tilde{Y'}\|_2}{\mathbb{E} \|Y_1 - Y_2\|_2}$$

- Idea: Replace $||Y_1 Y_2||_2$ with $||K(Y_1, \cdot) K(Y_2, \cdot)||_{\mathcal{H}}^2$
- Define our kernel measure of association (KMAc) as

$$\begin{split} \eta_{\mathcal{K}} &:= 1 - \frac{\mathbb{E} \|\mathcal{K}(Y', \cdot) - \mathcal{K}(\tilde{Y}', \cdot)\|_{\mathcal{H}}^2}{\mathbb{E} \|\mathcal{K}(Y_1, \cdot) - \mathcal{K}(Y_2, \cdot)\|_{\mathcal{H}}^2} \\ &= 1 - \frac{\mathbb{E} \mathcal{K}(Y', Y') + \mathbb{E} \mathcal{K}(\tilde{Y}', \tilde{Y}') - 2\mathbb{E} \mathcal{K}(Y', \tilde{Y}')}{\mathbb{E} \mathcal{K}(Y_1, Y_1) + \mathbb{E} \mathcal{K}(Y_2, Y_2) - 2\mathbb{E} \mathcal{K}(Y_1, Y_2)} \end{split}$$

• **Recall**: $K(y, \cdot) : \mathcal{Y} \to \mathbb{R}$ for all $y \in \mathcal{Y}$, y identified with $K(y, \cdot)$, and

$$T = 1 - \frac{\mathbb{E} \|Y' - \tilde{Y'}\|_2}{\mathbb{E} \|Y_1 - Y_2\|_2}$$

- Idea: Replace $||Y_1 Y_2||_2$ with $||K(Y_1, \cdot) K(Y_2, \cdot)||_{\mathcal{H}}^2$
- Define our kernel measure of association (KMAc) as

$$\begin{split} \eta_{\mathcal{K}} &:= 1 - \frac{\mathbb{E} \|\mathcal{K}(\mathbf{Y}', \cdot) - \mathcal{K}(\tilde{\mathbf{Y}}', \cdot)\|_{\mathcal{H}}^2}{\mathbb{E} \|\mathcal{K}(\mathbf{Y}_1, \cdot) - \mathcal{K}(\mathbf{Y}_2, \cdot)\|_{\mathcal{H}}^2} \\ &= 1 - \frac{\mathbb{E} \mathcal{K}(\mathbf{Y}', \mathbf{Y}') + \mathbb{E} \mathcal{K}(\tilde{\mathbf{Y}}', \tilde{\mathbf{Y}}') - 2\mathbb{E} \mathcal{K}(\mathbf{Y}', \tilde{\mathbf{Y}}')}{\mathbb{E} \mathcal{K}(\mathbf{Y}_1, \mathbf{Y}_1) + \mathbb{E} \mathcal{K}(\mathbf{Y}_2, \mathbf{Y}_2) - 2\mathbb{E} \mathcal{K}(\mathbf{Y}_1, \mathbf{Y}_2)} \end{split}$$

• **Recall**: $K(y, \cdot) : \mathcal{Y} \to \mathbb{R}$ for all $y \in \mathcal{Y}$, y identified with $K(y, \cdot)$, and

$$T = 1 - rac{\mathbb{E} \|Y' - \tilde{Y'}\|_2}{\mathbb{E} \|Y_1 - Y_2\|_2}$$

٠

• Idea: Replace $||Y_1 - Y_2||_2$ with $||K(Y_1, \cdot) - K(Y_2, \cdot)||_{\mathcal{H}}^2$

• Define our kernel measure of association (KMAc) as

$$\begin{split} \eta_{\mathcal{K}} &:= 1 - \frac{\mathbb{E} \| \mathcal{K}(Y', \cdot) - \mathcal{K}(\tilde{Y}', \cdot) \|_{\mathcal{H}}^2}{\mathbb{E} \| \mathcal{K}(Y_1, \cdot) - \mathcal{K}(Y_2, \cdot) \|_{\mathcal{H}}^2} \\ &= 1 - \frac{\mathbb{E} \mathcal{K}(Y', Y') + \mathbb{E} \mathcal{K}(\tilde{Y}', \tilde{Y}') - 2\mathbb{E} \mathcal{K}(Y', \tilde{Y}')}{\mathbb{E} \mathcal{K}(Y_1, Y_1) + \mathbb{E} \mathcal{K}(Y_2, Y_2) - 2\mathbb{E} \mathcal{K}(Y_1, Y_2)} \\ &= \frac{\mathbb{E} \mathcal{K}(Y', \tilde{Y}') - \mathbb{E} \mathcal{K}(Y_1, Y_2)}{\mathbb{E} \mathcal{K}(Y_1, Y_1) - \mathbb{E} \mathcal{K}(Y_1, Y_2)} \end{split}$$

• Recall:
$$\eta_{\mathcal{K}} = 1 - \frac{\mathbb{E} \|\mathcal{K}(\mathbf{Y}',\cdot) - \mathcal{K}(\tilde{\mathbf{Y}}',\cdot)\|_{\mathcal{H}}^2}{\mathbb{E} \|\mathcal{K}(\mathbf{Y}_1,\cdot) - \mathcal{K}(\mathbf{Y}_2,\cdot)\|_{\mathcal{H}}^2} = \frac{\mathbb{E} \mathcal{K}(\mathbf{Y}',\tilde{\mathbf{Y}}') - \mathbb{E} \mathcal{K}(\mathbf{Y}_1,\mathbf{Y}_2)}{\mathbb{E} \mathcal{K}(\mathbf{Y}_1,\mathbf{Y}_1) - \mathbb{E} \mathcal{K}(\mathbf{Y}_1,\mathbf{Y}_2)}$$

Suppose $K(\cdot, \cdot)$ is characteristic and $\mathbb{E}K(Y_1, Y_1) < \infty$. Then:

- $\eta_{\mathcal{K}} \in [0,1]$,
- $\eta_K = 0$ iff $Y \perp X$,
- $\eta_K = 1$ iff Y is a noiseless measurable function of X.

• Recall:
$$\eta_{\mathcal{K}} = 1 - \frac{\mathbb{E} \|\mathcal{K}(\mathbf{Y}',\cdot) - \mathcal{K}(\tilde{\mathbf{Y}}',\cdot)\|_{\mathcal{H}}^{2}}{\mathbb{E} \|\mathcal{K}(\mathbf{Y}_{1},\cdot) - \mathcal{K}(\mathbf{Y}_{2},\cdot)\|_{\mathcal{H}}^{2}} = \frac{\mathbb{E} \mathcal{K}(\mathbf{Y}',\tilde{\mathbf{Y}}') - \mathbb{E} \mathcal{K}(\mathbf{Y}_{1},\mathbf{Y}_{2})}{\mathbb{E} \mathcal{K}(\mathbf{Y}_{1},\mathbf{Y}_{1}) - \mathbb{E} \mathcal{K}(\mathbf{Y}_{1},\mathbf{Y}_{2})}$$

Suppose $K(\cdot, \cdot)$ is characteristic and $\mathbb{E}K(Y_1, Y_1) < \infty$. Then:

- $\eta_{K} \in [0, 1]$,
- $\eta_K = 0$ iff $Y \perp X$,
- $\eta_K = 1$ iff Y is a noiseless measurable function of X.
- A kernel is characteristic if

$$\mathbb{E}_{P}[K(Y,\cdot)] = \mathbb{E}_{Q}[K(Y,\cdot)] \implies P = Q$$

for probability measures P and Q.

Some examples of characteristic kernels [Gretton et al., 2012, Sejdinovic et al., 2013, Lyons 2013, 2014] include:

• (Distance) $K(y_1, y_2) := \|y_1\|_2 + \|y_2\|_2 - \|y_1 - y_2\|_2$. In this case,

 $\eta_K = T$

Some examples of characteristic kernels [Gretton et al., 2012, Sejdinovic et al., 2013, Lyons 2013, 2014] include:

• (Distance) $K(y_1, y_2) := \|y_1\|_2 + \|y_2\|_2 - \|y_1 - y_2\|_2$. In this case,

$\eta_K = T$

- Bounded kernels: (Gaussian) $K(y_1, y_2) := \exp(-\|y_1 y_2\|_2^2)$ and (Laplacian) $K(y_1, y_2) := \exp(-\|y_1 y_2\|_1)$
- For non-Euclidean domains such as video filtering, robotics, text documents, human action recognition, characteristic kernels constructed in Fukumizu et al., 2009, Danafar et al., 2010, Christmann and Steinwart, 2010, ...

Outline

1 Family of Measures of Association

- A measure of dependence on Euclidean spaces
- Extending to a class of kernel measures

Estimating the Kernel Measure of Association (KMAc)

- The estimator
- Consistency and rate of convergence
- Central limit theorem
- Computational complexity

Other Applications of Kernels and Geometric Graphs

- A measure of conditional dependence
- A measure of dissimilarity between *M*-distributions

Estimation Strategy

- Suppose $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{iid}{\sim} \mu$ on $\mathcal{X} \times \mathcal{Y}$
- \mathcal{X} is endowed with metric $\rho_{\mathcal{X}}(\cdot, \cdot)$
- Recall

$$\eta_{\mathcal{K}} = \frac{\mathbb{E}\mathcal{K}(\mathcal{Y}', \tilde{\mathcal{Y}}') - \mathbb{E}\mathcal{K}(\mathcal{Y}_1, \mathcal{Y}_2)}{\mathbb{E}\mathcal{K}(\mathcal{Y}_1, \mathcal{Y}_1) - \mathbb{E}\mathcal{K}(\mathcal{Y}_1, \mathcal{Y}_2)}$$

Estimation Strategy

- Suppose $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{iid}{\sim} \mu$ on $\mathcal{X} \times \mathcal{Y}$
- \mathcal{X} is endowed with metric $\rho_{\mathcal{X}}(\cdot, \cdot)$
- Recall

$$\eta_{\mathcal{K}} = \frac{\mathbb{E}\mathcal{K}(\mathbf{Y}', \tilde{\mathbf{Y}}') - \mathbb{E}\mathcal{K}(\mathbf{Y}_1, \mathbf{Y}_2)}{\mathbb{E}\mathcal{K}(\mathbf{Y}_1, \mathbf{Y}_1) - \mathbb{E}\mathcal{K}(\mathbf{Y}_1, \mathbf{Y}_2)}$$

• By standard U-statistics theory,

$$\mathbb{E}K(Y_1, Y_1) \approx \frac{1}{n} \sum_{i=1}^n K(Y_i, Y_i)$$

and

$$\mathbb{E}K(Y_1, Y_2) \approx \frac{1}{n(n-1)} \sum_{i \neq j} K(Y_i, Y_j)$$

• Hardest term to estimate is $\mathbb{E}K(Y', \tilde{Y'})!$

• Suppose $\mathcal X$ is a finite set. Then, $\mathbb E \mathcal K(Y', \tilde Y')$ can be handled as

$$\mathbb{E}\mathcal{K}(Y',\tilde{Y}') = \mathbb{E}[\mathbb{E}[\mathcal{K}(Y',\tilde{Y}')|X']] \approx \frac{1}{n} \sum_{i=1}^{n} \frac{1}{|\{j:X_j=X_i\}|} \sum_{j:X_j=X_i} \mathcal{K}(Y_i,Y_j)$$

• Suppose \mathcal{X} is a finite set. Then, $\mathbb{E}K(Y', \tilde{Y'})$ can be handled as

$$\mathbb{E}\mathcal{K}(Y',\tilde{Y}') = \mathbb{E}[\mathbb{E}[\mathcal{K}(Y',\tilde{Y}')|X']] \approx \frac{1}{n} \sum_{i=1}^{n} \frac{1}{|\{j:X_j=X_i\}|} \sum_{j:X_j=X_i} \mathcal{K}(Y_i,Y_j)$$

• If X is continuous, replace $X_j = X_i$ with $\rho_{\mathcal{X}}(X_i, X_j)$ being "small"

Geometric graph

- A graph G_n on $\{X_1, \ldots, X_n\}$ which joins points that are "close" to each other
- For example, consider a *k*-nearest neighbor graph (*k*-NNG): Join every point on {*X*₁,...,*X_n*} to its first *k* nearest neighbors

Estimate $\mathbb{E}K(Y', \tilde{Y'})$ by replacing

$$\frac{1}{n}\sum_{i=1}^{n}\frac{1}{|\{j:X_{j}=X_{i}\}|}\sum_{j:X_{j}=X_{i}}K(Y_{i},Y_{j})$$

with

$$\frac{1}{n}\sum_{i=1}^{n}\frac{1}{d_i}\sum_{j:(i,j)\in E(G_n)}K(Y_i,Y_j)$$

where $E(G_n)$ is edge set of G_n and d_i is the degree of X_i

Estimate $\mathbb{E}K(Y', \tilde{Y'})$ by replacing

$$\frac{1}{n}\sum_{i=1}^{n}\frac{1}{|\{j:X_{j}=X_{i}\}|}\sum_{j:X_{j}=X_{i}}K(Y_{i},Y_{j})$$

with

$$\frac{1}{n}\sum_{i=1}^{n}\frac{1}{d_{i}}\sum_{j:(i,j)\in E(G_{n})}K(Y_{i},Y_{j})$$

where $E(G_n)$ is edge set of G_n and d_i is the degree of X_i

Geometric graph-based estimator

Now

$$\eta_{\mathcal{K}} = \frac{\mathbb{E}\mathcal{K}(Y', \tilde{Y}') - \mathbb{E}\mathcal{K}(Y_1, Y_2)}{\mathbb{E}\mathcal{K}(Y_1, Y_1) - \mathbb{E}\mathcal{K}(Y_1, Y_2)}$$

can be estimated by

$$\hat{\eta}_{n} := \frac{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{d_{i}} \sum_{j:(i,j) \in E(G_{n})} K(Y_{i}, Y_{j}) - \frac{1}{n(n-1)} \sum_{i \neq j} K(Y_{i}, Y_{j})}{\frac{1}{n} \sum_{i=1}^{n} K(Y_{i}, Y_{i}) - \frac{1}{n(n-1)} \sum_{i \neq j} K(Y_{i}, Y_{j})}.$$

Family of Measures of Association

- A measure of dependence on Euclidean spaces
- Extending to a class of kernel measures

2 Estimating the Kernel Measure of Association (KMAc)

- The estimator
- Consistency and rate of convergence
- Central limit theorem
- Computational complexity

Other Applications of Kernels and Geometric Graphs

- A measure of conditional dependence
- A measure of dissimilarity between *M*-distributions

Theorem (informal) [Deb, Ghosal and S. (2020+)]

Suppose G_n satisfies the "close"-ness condition in the sense that:

$$\frac{\sum_{(i,j)\in E(G_n)}\rho_{\mathcal{X}}(X_i,X_j)}{|E(G_n)|} \stackrel{\mathbb{P}}{\longrightarrow} 0,$$

and $\mathbb{E} \mathcal{K}(Y_1,Y_1)^{2+\epsilon} < \infty$ (and other mild technical conditions), then

 $\hat{\eta}_n \xrightarrow{\mathbb{P}} \eta_K.$

• In particular, $\frac{1}{n}\sum_{i=1}^{n}\frac{1}{d_i}\sum_{j:(i,j)\in E(G_n)}K(Y_i,Y_j) \stackrel{\mathbb{P}}{\longrightarrow} \mathbb{E}K(Y',\tilde{Y}')$

Theorem (informal) [Deb, Ghosal and S. (2020+)]

Suppose G_n satisfies the "close"-ness condition in the sense that:

$$\frac{\sum_{(i,j)\in E(G_n)}\rho_{\mathcal{X}}(X_i,X_j)}{|E(G_n)|} \stackrel{\mathbb{P}}{\longrightarrow} 0,$$

and $\mathbb{E} \mathcal{K}(Y_1,Y_1)^{2+\epsilon} < \infty$ (and other mild technical conditions), then

 $\hat{\eta}_n \xrightarrow{\mathbb{P}} \eta_K.$

- In particular, $\frac{1}{n}\sum_{i=1}^{n}\frac{1}{d_i}\sum_{j:(i,j)\in E(G_n)}K(Y_i,Y_j) \stackrel{\mathbb{P}}{\longrightarrow} \mathbb{E}K(Y',\tilde{Y}')$
- No smoothness assumptions needed on conditional distribution of Y|X motivated directly from the approach used in Chatterjee, 2019, Azadkia and Chatterjee, 2019.

Theorem (informal) [Deb, Ghosal and S. (2020+)]

Suppose G_n satisfies the "close"-ness condition in the sense that:

$$\frac{\sum_{(i,j)\in E(G_n)}\rho_{\mathcal{X}}(X_i,X_j)}{|E(G_n)|} \stackrel{\mathbb{P}}{\longrightarrow} 0,$$

and $\mathbb{E} \mathcal{K}(Y_1,Y_1)^{2+\epsilon} < \infty$ (and other mild technical conditions), then

 $\hat{\eta}_n \xrightarrow{\mathbb{P}} \eta_K.$

- In particular, $\frac{1}{n} \sum_{i=1}^{n} \frac{1}{d_i} \sum_{j:(i,j) \in E(G_n)} K(Y_i, Y_j) \stackrel{\mathbb{P}}{\longrightarrow} \mathbb{E}K(Y', \tilde{Y}')$
- No smoothness assumptions needed on conditional distribution of Y|X motivated directly from the approach used in Chatterjee, 2019, Azadkia and Chatterjee, 2019.
- For k-NNGs, $\hat{\eta}_n$ is consistent provided $k = o(n/\log n)$
- Thus, for consistent estimation, a 1-NNG can be chosen

Rate of convergence (for *k*-NNG)

Theorem (informal) [Deb, Ghosal and S. (2020+)]

Suppose $K(\cdot, \cdot)$ is bounded, $\mathbb{E}[K(Y, \cdot)|X = \cdot]$ is Lipschitz with respect to $\rho_X(\cdot, \cdot)$ and the support of μ_X has intrinsic dimension d_0 . Then

$$\hat{\eta}_n - \eta_K = \begin{cases} \mathcal{O}_{\mathbb{P}}\left(\sqrt{\frac{k}{n}}\log n\right) & \text{if } d_0 \leq 2, \\ \\ \mathcal{O}_{\mathbb{P}}\left(\left(\frac{k}{n}\right)^{1/d_0}\log n\right) & \text{if } d_0 > 2. \end{cases}$$

• Estimation rate automatically adapts to intrinsic dimension of μ_X

Rate of convergence (for *k*-NNG)

Theorem (informal) [Deb, Ghosal and S. (2020+)]

Suppose $K(\cdot, \cdot)$ is bounded, $\mathbb{E}[K(Y, \cdot)|X = \cdot]$ is Lipschitz with respect to $\rho_X(\cdot, \cdot)$ and the support of μ_X has intrinsic dimension d_0 . Then

$$\hat{\eta}_n - \eta_K = \begin{cases} \mathcal{O}_{\mathbb{P}}\left(\sqrt{\frac{k}{n}}\log n\right) & \text{if } d_0 \leq 2, \\ \\ \mathcal{O}_{\mathbb{P}}\left(\left(\frac{k}{n}\right)^{1/d_0}\log n\right) & \text{if } d_0 > 2. \end{cases}$$

• Estimation rate automatically adapts to intrinsic dimension of μ_X

• Note:
$$\hat{\eta}_n - \eta_K = (\hat{\eta}_n - \mathbb{E}\hat{\eta}_n) + (\mathbb{E}\hat{\eta}_n - \eta_K)$$

Variance term $\sim n^{-1/2}$ Bias term $\uparrow k$

• When Y ⊥⊥ X: Bias is always 0, and variance improves with k — useful in independence testing.

Family of Measures of Association

- A measure of dependence on Euclidean spaces
- Extending to a class of kernel measures

2 Estimating the Kernel Measure of Association (KMAc)

- The estimator
- Consistency and rate of convergence
- Central limit theorem
- Computational complexity

Other Applications of Kernels and Geometric Graphs

- A measure of conditional dependence
- A measure of dissimilarity between *M*-distributions

Limiting Distribution under Independence (general graph)

Theorem (informal) [Deb, Ghosal and S. (2020+)]

Suppose $\mu = \mu_X \otimes \mu_Y$, then there exists a sequence of random variables $V_n = \mathcal{O}_{\mathbb{P}}(1)$ such that

$$\frac{\sqrt{n}\,\hat{\eta}_n}{V_n} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1).$$

Limiting Distribution under Independence (general graph)

Theorem (informal) [Deb, Ghosal and S. (2020+)]

Suppose $\mu = \mu_X \otimes \mu_Y$, then there exists a sequence of random variables $V_n = \mathcal{O}_{\mathbb{P}}(1)$ such that

$$\frac{\sqrt{n}\,\hat{\eta}_n}{V_n} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1).$$

• **Result**: A uniform CLT holds for a suitable class of graphs \mathcal{G}_n , i.e.,

$$\sup_{G_n \in \mathcal{G}_n} \sup_{x \in \mathbb{R}} \left| \mathbb{P}\left(\frac{\sqrt{n} \, \hat{\eta}_n}{V_n} \leq x \right) - \Phi(x) \right| \stackrel{n \to \infty}{\longrightarrow} 0$$

• Theorem holds for data driven choices \hat{G}_n if $\mathbb{P}(\hat{G}_n \in \mathcal{G}_n) \stackrel{n \to \infty}{\longrightarrow} 1$

• V_n can be computed from the data

Test of Independence

• Consider the testing problem:

$$\mathrm{H}_{0}: \mu = \mu_{X} \otimes \mu_{Y}$$
 vs $\mathrm{H}_{1}: \mu \neq \mu_{X} \otimes \mu_{Y}$.

• **Recall**: $\eta_K = 0$ iff $\mu = \mu_X \otimes \mu_Y$, $\eta_K > 0$ otherwise, $\hat{\eta}_n \xrightarrow{\mathbb{P}} \eta_K$.

• A natural level- α test (for $\alpha \in (0, 1)$):

Reject
$$H_0$$
 if $\frac{\sqrt{n}\,\hat{\eta}_n}{V_n} \ge z_{\alpha}$

• Consistent and maintains level, i.e.,

$$\lim_{n \to \infty} \mathbb{P}_{\mathrm{H}_{0}}(\mathsf{Reject} \ \mathrm{H}_{0}) = \alpha, \qquad \lim_{n \to \infty} \mathbb{P}_{\mathrm{H}_{1}}(\mathsf{Reject} \ \mathrm{H}_{0}) = 1$$

Test of Independence

• Consider the testing problem:

$$\mathrm{H}_{0}: \mu = \mu_{X} \otimes \mu_{Y}$$
 vs $\mathrm{H}_{1}: \mu \neq \mu_{X} \otimes \mu_{Y}$.

• **Recall**: $\eta_{\mathcal{K}} = 0$ iff $\mu = \mu_X \otimes \mu_Y$, $\eta_{\mathcal{K}} > 0$ otherwise, $\hat{\eta}_n \xrightarrow{\mathbb{P}} \eta_{\mathcal{K}}$.

• A natural level- α test (for $\alpha \in (0, 1)$):

Reject
$$H_0$$
 if $\frac{\sqrt{n}\,\hat{\eta}_n}{V_n} \ge z_\alpha$

• Consistent and maintains level, i.e.,

$$\lim_{n\to\infty}\mathbb{P}_{\mathrm{H}_{0}}(\mathsf{Reject}\ \mathrm{H}_{0})=\alpha,\qquad\lim_{n\to\infty}\mathbb{P}_{\mathrm{H}_{1}}(\mathsf{Reject}\ \mathrm{H}_{0})=1$$

• What is the computational complexity?

Family of Measures of Association

- A measure of dependence on Euclidean spaces
- Extending to a class of kernel measures

2 Estimating the Kernel Measure of Association (KMAc)

- The estimator
- Consistency and rate of convergence
- Central limit theorem
- Computational complexity

Other Applications of Kernels and Geometric Graphs

- A measure of conditional dependence
- A measure of dissimilarity between *M*-distributions

Computational Complexity

• Suppose G_n is the k-NNG; computable in $\mathcal{O}(kn \log n)$ time

Recall

$$\hat{\eta}_{n} = \frac{\underbrace{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{d_{i}} \sum_{j:(i,j) \in E(G_{n})} K(Y_{i}, Y_{j}) - \frac{1}{n(n-1)} \sum_{i \neq j} K(Y_{i}, Y_{j})}_{\underbrace{\mathcal{O}(kn \log n)}}}_{\underbrace{\frac{1}{n} \sum_{i=1}^{n} K(Y_{i}, Y_{i}) - \underbrace{\frac{1}{n(n-1)} \sum_{i \neq j} K(Y_{i}, Y_{j})}_{(\star)}}_{\mathcal{O}(n)}}_{(\star)}$$

Computational Complexity

• Suppose G_n is the k-NNG; computable in $\mathcal{O}(kn \log n)$ time

Recall

$$\hat{\eta}_{n} = \frac{\underbrace{\frac{1}{n} \sum_{i=1}^{n} \frac{1}{d_{i}} \sum_{j:(i,j) \in E(G_{n})} K(Y_{i}, Y_{j}) - \frac{1}{n(n-1)} \sum_{i \neq j} K(Y_{i}, Y_{j})}_{\underbrace{\mathcal{O}(kn \log n)}}}_{\underbrace{\frac{1}{n} \sum_{i=1}^{n} K(Y_{i}, Y_{i}) - \underbrace{\frac{1}{n(n-1)} \sum_{i \neq j} K(Y_{i}, Y_{j})}_{(\star)}}_{\mathcal{O}(n)}}_{(\star)}$$

•
$$\sum_{i,j} K(Y_i, Y_j) = \|\sum_{i=1}^n K(Y_i, \cdot)\|_{\mathcal{H}}^2$$

- (*) can be computed in linear time if $\|\cdot\|_{\mathcal{H}}^2$ is exactly computable, e.g., $\mathcal{K}(y_i, y_j) = \langle y_i, y_j \rangle$ Otherwise
- Yields a near linear time test for independence; cf. distance correlation (or HSIC) takes O(n²B) time if B permutations are used

- Class of kernel measures of association (KMAc) when ${\cal Y}$ admits a nonnegative definite kernel
- Class of graph-based, consistent estimators (\mathcal{X} metric space) for KMAc without smoothness on the conditional distribution
- When *k*-NNG is used, the rate of convergence automatically adapts to the intrinsic dimension of the support of μ_X
- Established a pivotal Gaussian limit uniformly over a class of graphs
- A near linear time estimator + a near linear time test of statistical independence

- Class of kernel measures of association (KMAc) when ${\cal Y}$ admits a nonnegative definite kernel
- Class of graph-based, consistent estimators (\mathcal{X} metric space) for KMAc without smoothness on the conditional distribution
- When *k*-NNG is used, the rate of convergence automatically adapts to the intrinsic dimension of the support of μ_X
- Established a pivotal Gaussian limit uniformly over a class of graphs
- A near linear time estimator + a near linear time test of statistical independence
- In the paper, when \mathcal{X} and \mathcal{Y} are Euclidean, we propose another class of measures and estimators that is distribution-free under H_0

Simulations (choice of k)

 $(X^{(1)}, X^{(2)}, Y^{(1)}, Y^{(2)}) \sim \mu$ on \mathbb{R}^4 ; $(X^{(1)}, Y^{(1)}), (X^{(2)}, Y^{(2)})$ are i.i.d. • W-shape:

$$Y^{(1)} = |X^{(1)} + 0.5|\mathbf{1}_{X^{(1)} \le 0} + |X^{(1)} - 0.5|\mathbf{1}_{X^{(1)} > 0} + 0.75\lambda\epsilon,$$

where $\epsilon \sim \mathcal{N}(0, 1)$ with varying λ ; $X \sim \text{Uniform}[-1, 1]$

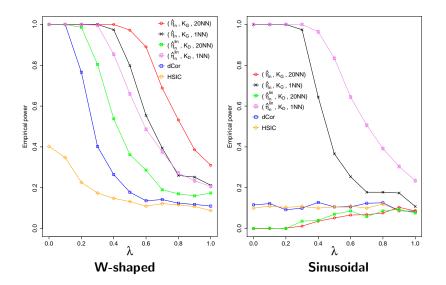
• Sinusoidal:

$$Y^{(1)} = \cos\left(8\pi X^{(1)}\right) + 3\lambda\epsilon,$$

 $\epsilon \sim \mathcal{N}(0,1)$ with varying λ .

Sample size n = 300

$(K_G$ -Gaussian kernel, K_D -Distance kernel)



Outline

1 Family of Measures of Association

- A measure of dependence on Euclidean spaces
- Extending to a class of kernel measures

Estimating the Kernel Measure of Association (KMAc)

- The estimator
- Consistency and rate of convergence
- Central limit theorem
- Computational complexity

Other Applications of Kernels and Geometric Graphs

- A measure of conditional dependence
- A measure of dissimilarity between *M*-distributions

Measure of Conditional Dependence³

- Suppose $(X, Y, Z) \sim \mu$ on some topological space $\mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$
- **Goal**: Measure the strength of conditional dependence between *Y* and *X* given *Z*

³Joint work with Zhen Huang and Nabarun Deb

Measure of Conditional Dependence³

- Suppose $(X, Y, Z) \sim \mu$ on some topological space $\mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$
- **Goal**: Measure the strength of conditional dependence between *Y* and *X* given *Z*
- Question: Can we define $\tau \equiv \tau(Y, X|Z)$ satisfying: (i) $\tau \in [0, 1]$; (ii) $\tau = 0$ iff $Y \perp X|Z$; (iii) $\tau = 1$ iff Y is a measurable function of X and Z.

³Joint work with Zhen Huang and Nabarun Deb

Measure of Conditional Dependence³

- Suppose $(X, Y, Z) \sim \mu$ on some topological space $\mathcal{X} \times \mathcal{Y} \times \mathcal{Z}$
- **Goal**: Measure the strength of conditional dependence between *Y* and *X* given *Z*
- Question: Can we define τ ≡ τ(Y, X|Z) satisfying:
 (i) τ ∈ [0, 1];
 (ii) τ = 0 iff Y ⊥⊥ X|Z;
 (iii) τ = 1 iff Y is a measurable function of X and Z.
- **Applications**: Model-free variable selection, modeling causal relations in graphical models, ...
- We propose and study a class of nonparametric yet interpretable measures and their estimates, a sub-class of which can be computed in near linear time

³Joint work with Zhen Huang and Nabarun Deb

• Recall KMAc (for measuring dependence between Y and X):

$$\eta_{\mathcal{K}} = \frac{\mathbb{E}\mathcal{K}(\mathcal{Y}', \tilde{\mathcal{Y}}') - \mathbb{E}\mathcal{K}(\mathcal{Y}_1, \mathcal{Y}_2)}{\mathbb{E}\mathcal{K}(\mathcal{Y}_1, \mathcal{Y}_1) - \mathbb{E}\mathcal{K}(\mathcal{Y}_1, \mathcal{Y}_2)} = \frac{\mathbb{E}[\mathrm{MMD}^2(\mu_{\mathcal{Y}|\mathcal{X}}, \mu_{\mathcal{Y}})]}{\mathbb{E}[\mathrm{MMD}^2(\delta_{\mathcal{Y}}, \mu_{\mathcal{Y}})]}$$

where $X' \sim \mu_X$, $Y', \tilde{Y'}$ are drawn independently from $\mu_{Y|X'}$

 MMD is the maximum mean discrepancy — a distance metric between two probability distributions depending on the kernel K(·, ·) • Recall KMAc (for measuring dependence between Y and X):

$$\eta_{\mathcal{K}} = \frac{\mathbb{E}\mathcal{K}(\mathbf{Y}', \tilde{\mathbf{Y}}') - \mathbb{E}\mathcal{K}(\mathbf{Y}_1, \mathbf{Y}_2)}{\mathbb{E}\mathcal{K}(\mathbf{Y}_1, \mathbf{Y}_1) - \mathbb{E}\mathcal{K}(\mathbf{Y}_1, \mathbf{Y}_2)} = \frac{\mathbb{E}[\mathrm{MMD}^2(\mu_{\mathbf{Y}|\mathbf{X}}, \mu_{\mathbf{Y}})]}{\mathbb{E}[\mathrm{MMD}^2(\delta_{\mathbf{Y}}, \mu_{\mathbf{Y}})]}$$

where $X' \sim \mu_X$, $Y', \tilde{Y'}$ are drawn independently from $\mu_{Y|X'}$

 MMD is the maximum mean discrepancy — a distance metric between two probability distributions depending on the kernel K(·, ·)

Measuring conditional dependence between Y and X given Z

• Kernel partial correlation (KPC) coefficient:

$$\tau_{\mathcal{K}} := \frac{\mathbb{E}[\mathrm{MMD}^2(\mu_{Y|XZ}, \mu_{Y|Z})]}{\mathbb{E}[\mathrm{MMD}^2(\delta_Y, \mu_{Y|Z})]}$$

• Recall KMAc (for measuring dependence between Y and X):

$$\eta_{\mathcal{K}} = \frac{\mathbb{E}\mathcal{K}(\mathbf{Y}', \tilde{\mathbf{Y}}') - \mathbb{E}\mathcal{K}(\mathbf{Y}_1, \mathbf{Y}_2)}{\mathbb{E}\mathcal{K}(\mathbf{Y}_1, \mathbf{Y}_1) - \mathbb{E}\mathcal{K}(\mathbf{Y}_1, \mathbf{Y}_2)} = \frac{\mathbb{E}[\mathrm{MMD}^2(\mu_{\mathbf{Y}|\mathbf{X}}, \mu_{\mathbf{Y}})]}{\mathbb{E}[\mathrm{MMD}^2(\delta_{\mathbf{Y}}, \mu_{\mathbf{Y}})]}$$

where $X' \sim \mu_X$, $Y', \tilde{Y'}$ are drawn independently from $\mu_{Y|X'}$

 MMD is the maximum mean discrepancy — a distance metric between two probability distributions depending on the kernel K(·, ·)

Measuring conditional dependence between Y and X given Z

• Kernel partial correlation (KPC) coefficient:

$$\tau_{\mathcal{K}} := \frac{\mathbb{E}[\mathrm{MMD}^{2}(\mu_{Y|XZ}, \mu_{Y|Z})]}{\mathbb{E}[\mathrm{MMD}^{2}(\delta_{Y}, \mu_{Y|Z})]} = \frac{\mathbb{E}\mathcal{K}(Y'_{2}, \tilde{Y}'_{2}) - \mathbb{E}\mathcal{K}(Y', \tilde{Y}')}{\mathbb{E}\mathcal{K}(Y_{1}, Y_{1}) - \mathbb{E}\mathcal{K}(Y', \tilde{Y}')}$$

where: (i) $(X', Z') \sim \mu_{XZ}$ and Y'_{2}, \tilde{Y}'_{2} are i.i.d. $\mu_{Y|(X', Z')}$,
(ii) $Z' \sim \mu_{Z}$ and Y', \tilde{Y}' are i.i.d. $\mu_{Y|Z'}$

Can again employ a geometric graph-based estimation strategy

• For example, we can estimate

$$\tau_{\mathcal{K}} = \frac{\mathbb{E}\left[\mathbb{E}[k(Y_{2}', \tilde{Y}_{2}')|X, Z]\right] - \mathbb{E}\left[\mathbb{E}[k(Y', \tilde{Y}')|Z]\right]}{\mathbb{E}[k(Y_{1}, Y_{1})] - \mathbb{E}[\mathbb{E}[k(Y', \tilde{Y}')|Z]]}$$

by a 1-NNG by

$$\hat{\tau}_{n} := \frac{\frac{1}{n} \sum_{i=1}^{n} k(Y_{i}, Y_{\ddot{N}(i)}) - \frac{1}{n} \sum_{i=1}^{n} k(Y_{i}, Y_{N(i)})}{\frac{1}{n} \sum_{i=1}^{n} k(Y_{i}, Y_{i}) - \frac{1}{n} \sum_{i=1}^{n} k(Y_{i}, Y_{N(i)})}$$

where $(X_{\ddot{N}(i)}, Z_{\ddot{N}(i)})$ is NN of (X_i, Z_i) and $Y_{\ddot{N}(i)}$ is the corr. Y-value, and $Z_{N(i)}$ is NN of Z_i and $Y_{N(i)}$ is the corr. Y-value.

For example, we can estimate

$$\tau_{\mathcal{K}} = \frac{\mathbb{E}\left[\mathbb{E}[k(Y_{2}', \tilde{Y}_{2}')|X, Z]\right] - \mathbb{E}\left[\mathbb{E}[k(Y', \tilde{Y}')|Z]\right]}{\mathbb{E}[k(Y_{1}, Y_{1})] - \mathbb{E}[\mathbb{E}[k(Y', \tilde{Y}')|Z]]}$$

by a 1-NNG by

$$\hat{\tau}_{n} := \frac{\frac{1}{n} \sum_{i=1}^{n} k(Y_{i}, Y_{\ddot{N}(i)}) - \frac{1}{n} \sum_{i=1}^{n} k(Y_{i}, Y_{N(i)})}{\frac{1}{n} \sum_{i=1}^{n} k(Y_{i}, Y_{i}) - \frac{1}{n} \sum_{i=1}^{n} k(Y_{i}, Y_{N(i)})}$$

where $(X_{\ddot{N}(i)}, Z_{\ddot{N}(i)})$ is NN of (X_i, Z_i) and $Y_{\ddot{N}(i)}$ is the corr. Y-value, and $Z_{N(i)}$ is NN of Z_i and $Y_{N(i)}$ is the corr. Y-value.

- **Consistency**: $\hat{\tau}_n \xrightarrow{\mathbb{P}} \tau_K$
- Automatic adaptation to the intrinsic dimensions of μ_X and μ_{XZ}
- Can develop a fully automatic stepwise variable selection algorithm which is provably consistent (cf. Azadkia and Chatterjee, 2019)

Family of Measures of Association

- A measure of dependence on Euclidean spaces
- Extending to a class of kernel measures

2 Estimating the Kernel Measure of Association (KMAc)

- The estimator
- Consistency and rate of convergence
- Central limit theorem
- Computational complexity

Other Applications of Kernels and Geometric Graphs

- A measure of conditional dependence
- A measure of dissimilarity between *M*-distributions

• *M*-distributions P_1, \ldots, P_M on \mathcal{X} (e.g., metric space)

• Data:
$$\{X_{ij}\}_{j=1}^{n_i} \stackrel{iid}{\sim} P_i$$
 for $i = 1, \dots, M$

• **Question**: How different are the *M* distributions?

• Data:
$$\{X_{ij}\}_{j=1}^{n_i} \stackrel{iid}{\sim} P_i$$
 for $i = 1, \dots, M$

- Question: How different are the *M* distributions?
- We want to find a class of measures γ ≡ γ(P₁,..., P_M) such that:
 (i) γ ∈ [0, 1];
 (ii) γ = 0 iff P₁ = ... = P_M (i.e., all the distributions are same);
 (iii) γ = 1 iff P₁,..., P_M have disjoint supports

• Data:
$$\{X_{ij}\}_{j=1}^{n_i} \stackrel{iid}{\sim} P_i$$
 for $i = 1, \dots, M$

- Question: How different are the *M* distributions?
- We want to find a class of measures γ ≡ γ(P₁,..., P_M) such that:
 (i) γ ∈ [0, 1];
 (ii) γ = 0 iff P₁ = ... = P_M (i.e., all the distributions are same);
 (iii) γ = 1 iff P₁,..., P_M have disjoint supports
- Define: $Y_{ij} = i$, for $i = 1, \dots, M$
- Consider $\{\{(X_{ij}, Y_{ij})\}_{j=1}^{n_i}\}_{i=1}^M$; $X \sim \sum_{i=1}^M \pi_i P_Y$; $\pi_i \approx \frac{n_i}{\sum_{\ell=1}^M n_\ell}$

• Data:
$$\{X_{ij}\}_{j=1}^{n_i} \stackrel{iid}{\sim} P_i$$
 for $i = 1, \dots, M$

- Question: How different are the *M* distributions?
- We want to find a class of measures γ ≡ γ(P₁,..., P_M) such that:
 (i) γ ∈ [0, 1];
 (ii) γ = 0 iff P₁ = ... = P_M (i.e., all the distributions are same);
 (iii) γ = 1 iff P₁,..., P_M have disjoint supports
- **Define**: $Y_{ij} = i$, for i = 1, ..., M
- Consider $\{\{(X_{ij}, Y_{ij})\}_{j=1}^{n_i}\}_{i=1}^M; X \sim \sum_{i=1}^M \pi_i P_Y; \pi_i \approx \frac{n_i}{\sum_{\ell=1}^M n_\ell}$
- Result: (a) P₁ = ... = P_M iff X ⊥⊥ Y;
 (b) P₁,..., P_M have disjoint supports iff Y is a deterministic function of X

• Data:
$$\{X_{ij}\}_{j=1}^{n_i} \stackrel{iid}{\sim} P_i$$
 for $i = 1, \dots, M$

- Question: How different are the *M* distributions?
- We want to find a class of measures γ ≡ γ(P₁,..., P_M) such that:
 (i) γ ∈ [0, 1];
 (ii) γ = 0 iff P₁ = ... = P_M (i.e., all the distributions are same);
 (iii) γ = 1 iff P₁,..., P_M have disjoint supports
- **Define**: $Y_{ij} = i$, for i = 1, ..., M
- Consider $\{\{(X_{ij}, Y_{ij})\}_{j=1}^{n_i}\}_{i=1}^M; X \sim \sum_{i=1}^M \pi_i P_Y; \pi_i \approx \frac{n_i}{\sum_{\ell=1}^M n_\ell}$
- Result: (a) P₁ = ... = P_M iff X ⊥⊥ Y;
 (b) P₁,..., P_M have disjoint supports iff Y is a deterministic function of X
- "Similar" kernel and graph-based strategy yields a desired measure

Summary

- Measure the strength of association between X and Y on $\mathcal X$ and $\mathcal Y$
- Class of kernel measures of association (KMAc) when ${\cal Y}$ admits a nonnegative definite kernel
- Class of geometric graph-based, consistent estimators (X metric space) for KMAc without smoothness on the conditional distribution
- When *k*-NNG is used, the rate of convergence automatically adapts to the intrinsic dimension of the support of μ_X
- Established a pivotal Gaussian limit uniformly over a class of graphs

Thank you very much!

Questions?

Near Linear time Estimator

Note

$$\frac{1}{n(n-1)}\sum_{i\neq j} \mathcal{K}(Y_i, Y_j) \approx \mathbb{E}\mathcal{K}(Y_1, Y_2)$$

• Replace with

$$\frac{1}{n-1}\sum_{i=1}^{n-1} \mathcal{K}(Y_i, Y_{i+1}) \approx \mathbb{E}\mathcal{K}(Y_1, Y_2)$$

Define

$$\hat{\eta}_n^{\mathsf{lin}} := \frac{\frac{1}{n} \sum_{i=1}^n \frac{1}{d_i} \sum_{j:(i,j) \in E(G_n)} K(Y_i, Y_j) - \frac{1}{n-1} \sum_{i=1}^{n-1} K(Y_i, Y_{i+1})}{\frac{1}{n} \sum_{i=1}^n K(Y_i, Y_i) - \frac{1}{n-1} \sum_{i=1}^{n-1} K(Y_i, Y_{i+1})}$$

Properties of $\hat{\eta}_n^{\sf lin}$

- When G_n is k-NNG with $k = \mathcal{O}(1)$, $\hat{\eta}_n^{\text{lin}}$ takes $\mathcal{O}(n \log n)$ time
- $\hat{\eta}_n^{\text{lin}} \xrightarrow{\mathbb{P}} \eta_{\mathcal{K}}$ (the same measure of association)
- $\hat{\eta}_n^{\text{lin}}$ has the same rate of convergence as $\hat{\eta}_n$
- There exists a sequence of random variables $ilde{V}_n = \mathcal{O}_{\mathbb{P}}(1)$ such that:

$$\frac{\sqrt{n}\,\hat{\eta}_n^{\mathsf{lin}}}{\tilde{V}_n} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$$

where \tilde{V}_n can be computed in near linear time

 Yields a near linear time test for independence; cf. distance correlation (or HSIC) takes O(n²B) time if B permutations are used

Properties of $\hat{\eta}_n^{\sf lin}$

- When G_n is k-NNG with $k = \mathcal{O}(1)$, $\hat{\eta}_n^{\text{lin}}$ takes $\mathcal{O}(n \log n)$ time
- $\hat{\eta}_n^{\text{lin}} \xrightarrow{\mathbb{P}} \eta_{\mathcal{K}}$ (the same measure of association)
- $\hat{\eta}_n^{\text{lin}}$ has the same rate of convergence as $\hat{\eta}_n$
- There exists a sequence of random variables $ilde{V}_n = \mathcal{O}_{\mathbb{P}}(1)$ such that:

$$\frac{\sqrt{n}\,\hat{\eta}_n^{\mathsf{lin}}}{\tilde{V}_n} \stackrel{d}{\longrightarrow} \mathcal{N}(0,1)$$

where \tilde{V}_n can be computed in near linear time

- Yields a near linear time test for independence; cf. distance correlation (or HSIC) takes O(n²B) time if B permutations are used
- Price to pay: Has a higher asymptotic variance than $\hat{\eta}_n$