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1 Introduction

1.1 Statistical Inference: Motivation

Statistical inference is concerned with making probabilistic statements about ran-
dom variables encountered in the analysis of data.

Examples : means, median, variances ...

Example 1.1. A company sells a certain kind of electronic component. The company
is interested in knowing about how long a component is likely to last on average.

They can collect data on many such components that have been used under typical
conditions.

They choose to use the family of exponential distributions1 to model the length of time
(in years) from when a component is put into service until it fails.

The company believes that, if they knew the failure rate θ, then Xn = (X1, X2, . . . , Xn)
would be n i.i.d random variables having the exponential distribution with parameter
θ. We may ask the following questions:

1. Can we estimate θ from this data? If so, what is a reasonable estimator?

2. Can we quantify the uncertainty in the estimation procedure, i.e., can we con-
struct confidence interval for θ?

1.2 Recap: Some results from probability

Definition 1 (Sample mean). Suppose that X1, X2, . . . , Xn are n i.i.d r.v’s with (un-
known) mean µ ∈ R (i.e., E(X1) = µ) and variance σ2 <∞. A natural “estimator”
of µ is the sample mean (or average) defined as

X̄n :=
1

n
(X1 + . . .+Xn) =

1

n

n∑

i=1

Xi.

Lemma 1.2. E(X̄n) = µ and Var(X̄n) = σ2/n.

Proof. Observe that

E(X̄n) =
1

n

n∑

i=1

E(Xi) =
1

n
· nµ = µ.

1X has an exponential distribution with (failure) rate θ > 0, i.e., X ∼ Exp(θ), if the p.d.f of X
is given by

fθ(x) = θe−θx1[0,∞)(x), for x ∈ R.
The mean (or expected value) of X is given by E(X) = θ−1, and the variance of X is Var(X) = θ−2.

5



0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
2

4
6

8
1

0

x

G
a

m
m

a
(1

,1
0

) 
d

e
n

si
ty

Histogram of sample mean when n = 100

x

F
re

q
u

e
n

cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
5

0
1

0
0

1
5

0
2

0
0

Histogram of sample mean when n = 1000

x

F
re

q
u

e
n

cy

0.0 0.1 0.2 0.3 0.4 0.5 0.6

0
5

0
1

0
0

1
5

0
2

0
0

2
5

0

Figure 1: The plots illustrate the convergence (in probability) of the sample mean to
the population mean.

Also,

Var(X̄n) =
1

n2
Var

(
n∑

i=1

Xi

)
=

1

n2
· nσ2 =

σ2

n
.

Theorem 1.3 (Weak law of large numbers). Suppose that X1, X2, . . . , Xn are n i.i.d
r.v’s with finite mean µ. Then for any ε > 0, we have

P

(∣∣∣∣∣
1

n

n∑

i=1

Xi − E(X)

∣∣∣∣∣ > ε

)
→ 0 as n→∞.

This says that if we take the sample average of n i.i.d r.v’s the sample average will
be close to the true population average. Figure 1 illustrates the result: The left
panel shows the density of the data generating distribution (in this example we took
X1, . . . , Xn i.i.d. Exp(10)); the middle and right panels show the distribution (his-
togram obtained from 1000 replicates) of X̄n for n = 100 and n = 1000, respectively.
We see that as the sample size increases, the distribution of the sample mean concen-

trates around E(X1) = 1/10 (i.e., X̄n
P→ 10−1 as n→∞).

Definition 2 (Convergence in probability). In the above, we say that the sample
mean 1

n

∑n
i=1Xi converges in probability to the true (population) mean.

More generally, we say that the sequence of r.v’s {Zn}∞n=1 converges to Z in proba-
bility, and write

Zn
P→ Z,

if for every ε > 0,
P(|Zn − Z| > ε)→ 0 as n→∞.

This is equivalent to saying that for every ε > 0,

lim
n→∞

P(|Zn − Z| ≤ ε) = 1.

6



Definition 3 (Convergence in distribution). We say a sequence of r.v’s {Zn}ni=1 with
c.d.f ’s Fn(·) converges in distribution to F if

lim
n→∞

Fn(u) = F (u)

for all u such that F is continuous2 at u (here F is itself a c.d.f).

The second fundamental result in probability theory, after the law of large numbers
(LLN), is the Central limit theorem (CLT), stated below. The CLT gives us the
approximate (asymptotic) distribution of X̄n

Theorem 1.4 (Central limit theorem). If X1, X2, . . . are i.i.d with mean zero and
variance 1, then

1√
n

n∑

i=1

Xi
d→ N(0, 1),

where N(0, 1) is the standard normal distribution. More generally, the usual rescaling
tell us that, for X1, X2, . . . are i.i.d with mean µ and variance σ2 <∞

√
n(X̄n − µ) ≡ 1√

n

n∑

i=1

(Xi − µ)
d→ N(0, σ2).

The following plots illustrate the CLT: The left, center and right panels of Figure 2
show the (scaled) histograms of X̄n when n = 10, 30 and 100, respectively (as before,
in this example we took X1, . . . , Xn i.i.d. Exp(10); the histograms are obtained from
5000 independent replicates). We also overplot the normal density with mean 0.1 and
variance 10−1/

√
n. The remarkable agreement between the two densities illustrates

the power of the CLT. Observe that the original distribution of the Xi’s is skewed
and highly nor-normal (Exp(10)), but even for n = 10, the distribution of X̄10 is quite
close to being normal.

Another class of useful results we will use very much in this course go by the name
“continuous mapping theorem”. Here are two such results.

Theorem 1.5. If Zn
P→ b and if g(·) is a function that is continuous at b, then

g(Zn)
P→ g(b).

2Explain why do we need to restrict our attention to continuity points of F . (Hint: think of the
following sequence of distributions: Fn(u) = I(u ≥ 1/n), where the “indicator” function of a set A
is one if x ∈ A and zero otherwise.)

It’s worth emphasizing that convergence in distribution — because it only looks at the c.d.f.
— is in fact weaker than convergence in probability. For example, if pX is symmetric, then the
sequence X,−X,X,−X, . . . trivially converges in distribution to X, but obviously doesn’t converge
in probability.

Also, if U ∼ Unif(0, 1), then the sequence

U, 1− U,U, 1− U, . . .

converge in distribution to a uniform distribution. But obviously they do not converge in probability.
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Figure 2: The plots illustrate the convergence (in distribution) of the sample mean
to a normal distribution.

Theorem 1.6. If Zn
d−→ Z and if g(·) is a function that is continuous, then

g(Zn)
d−→ g(Z).

1.3 Back to Example 1.1

In the first example we have the following results:

• by the LLN, the sample mean X̄n converges in probability to the expectation
1/θ (failure rate), i.e.,

X̄n
P→ 1

θ
;

• by the continuous mapping theorem (see Theorem 1.5) X̄−1
n converges in prob-

ability to θ, i.e.,

X̄−1
n

P→ θ;

• by the CLT, we know that

√
n(X̄n − θ−1)

d→ N(0, θ−2)

where Var(X1) = θ−2;

• But how does one find an approximation to the distribution of X̄−1
n ?

1.4 Delta method

The first thing to note is that if {Zn}ni=1 converges in distribution (or probability) to

a constant θ, then g(Zn)
d→ g(θ), for any continuous function g(·).
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We can also “zoom in” to look at the asymptotic distribution (not just the limit
point) of the sequence of r.v’s {g(Zn)}ni=1, whenever g(·) is sufficiently smooth.

Theorem 1.7. Let Z1, Z2, . . . , Zn be a sequence of r.v’s and let Z be a r.v with a
continuous c.d.f F ∗. Let θ ∈ R, and let a1, a2, . . ., be a sequence such that an → ∞.
Suppose that

an(Zn − θ) d→ F ∗.

Let g(·) be a function with a continuous derivative such that g′(θ) 6= 0. Then

an
g(Zn)− g(θ)

g′(θ)

d→ F ∗.

Proof. We will only give an outline of the proof (think an = n1/2, if Zn as the sample
mean). As an →∞, Zn must get close to θ with high probability as n→∞.

As g(·) is continuous, g(Zn) will be close to g(θ) with high probability.

Let’s say g(·) has a Taylor expansion around θ, i.e.,

g(Zn) ≈ g(θ) + g′(θ)(Zn − θ),
where we have ignored all terms involving (Zn − θ)2 and higher powers.

Then if
an(Zn − θ) d→ Z,

for some limit distribution F ∗ and a sequence of constants an →∞, then

an
g(Zn)− g(θ)

g′(θ)
≈ an(Zn − θ) d→ F ∗.

In other words, limit distributions are passed through functions in a pretty simple
way. This is called the delta method (I suppose because of the deltas and epsilons
involved in this kind of limiting argument), and we’ll be using it a lot.

The main application is when we’ve already proven a CLT for Zn,
√
n(Zn − µ)

σ

d→ N(0, 1),

in which case √
n(g(Zn)− g(µ))

d→ N(0, σ2(g′(µ))2).

Exercise 1: Assume n1/2Zn
d→ N(0, 1). What is the asymptotic distribution of

1. g(Zn) = (Zn − 1)2?

2. What about g(Zn) = Z2
n? Does anything go wrong when applying the delta

method in this case? Can you fix this problem?

9



1.5 Back to Example 1.1

By the delta method, we can show that

√
n(X̄−1

n − θ)
d→ N(0, (θ2)2θ−2),

where we have considered g(x) = 1
x
; g′(x) = − 1

x2
(observe that g is continuous on

(0,∞)). Note that the variance of X1 is Var(X1) = θ−2.

10



2 Statistical Inference: Estimation

2.1 Statistical model

Definition 4 (Statistical model). A statistical model is

• an identification of random variables of interest,

• a specification of a joint distribution or a family of possible joint distributions
for the observable random variables,

• the identification of any parameters of those distributions that are assumed un-
known,

• (Bayesian approach, if desired) a specification for a (joint) distribution for the
unknown parameter(s).

Definition 5 (Statistical Inference). Statistical inference is a procedure that produces
a probabilistic statement about some or all parts of a statistical model.

Definition 6 (Parameter space). In a problem of statistical inference, a characteristic
or combination of characteristics that determine the joint distribution for the
random variables of interest is called a parameter of the distribution.

The set Ω of all possible values of a parameter θ or of a vector of parameters
θ = (θ1, . . . , θk) is called the parameter space.

Examples :

• The family of binomial distributions has parameters n and p.

• The family of normal distributions is parameterized by the mean µ and variance
σ2 of each distribution (so θ = (µ, σ2) can be considered a pair of parameters,
and Ω = R× R+).

• The family of exponential distributions is parameterized by the rate parameter
θ (the failure rate must be positive: Ω will be the set of all positive numbers).

The parameter space Ω must contain all possible values of the parameters in a given
problem.

11



Example 2.1. Suppose that n patients are going to be given a treatment for a con-
dition and that we will observe for each patient whether or not they recover from the
condition.

For each patient i = 1, 2, . . ., let Xi = 1 if patient i recovers, and let Xi = 0 if not.
As a collection of possible distributions for X1, X2, . . . , we could choose to say that
the Xi’s are i.i.d. having the Bernoulli distribution with parameter p, for 0 ≤ p ≤ 1.

In this case, the parameter p is known to lie in the closed interval [0, 1], and this
interval could be taken as the parameter space. Notice also that by the LLN, p is the
limit as n→∞ of the proportion of the first n patients who recover.

Definition 7 (Statistic). Suppose that the observable random variables of interest
are X1, . . . , Xn. Let ϕ be a real-valued function of n real variables. Then the random
variable T = ϕ(X1, . . . , Xn) is called a statistic.

Examples :

• the sample mean X̄n = 1
n

∑n
i=1 Xi;

• the maximum X(n) of the values X1, . . . , Xn;

• the sample variance S2
n = 1

n−1

∑n
i=1(Xi − X̄n)2 of the values X1, . . . , Xn.

Definition 8 (Estimator/Estimate). Let X1, . . . , Xn be observable data whose joint
distribution is indexed by a parameter θ taking values in a subset Ω of the real line.

An estimator θ̂n of the parameter θ is a real-valued function θ̂n = ϕ(X1, . . . , Xn).

If {X1 = x1, . . . , Xn = xn} is observed, then ϕ(x1, . . . , xn) is called the estimate of θ.

Definition 9 (Estimator/Estimate). Let X1, . . . , Xn be observable data whose joint
distribution is indexed by a parameter θ taking values in a subset Ω of d-dimensional
space, i.e., Ω ⊂ Rd.

Let h : Ω→ Rd, be a function from Ω into d-dimensional space. Define ψ = h(θ).

An estimator of ψ is a function g(X1, . . . , Xn) that takes values in d-dimensional
space. If {X1 = x1, . . . , Xn = xn} are observed, then g(x1, . . . , xn) is called the
estimate of ψ.

When h in Definition 9 is the identity function h(θ) = θ, then ψ = θ and we are
estimating the original parameter θ. When g(θ) is one coordinate of θ, then the ψ
that we are estimating is just that one coordinate.

12



Definition 10 (Consistent (in probability) estimator). A sequence of estimators θ̂n
that converges in probability to the unknown value of the parameter θ being esti-
mated is called a consistent sequence of estimators, i.e., θ̂n is consistent if and
only if for every ε > 0,

P(|θ̂n − θ| > ε)→ 0, as n→∞.

In this Chapter we shall discuss three types of estimators:

• Method of moments estimators,

• Maximum likelihood estimators, and

• Bayes estimators.

2.2 Method of Moments estimators

The method of moments (MOM) is an intuitive method for estimating parameters
when other, more attractive, methods may be too difficult (to implement/compute).

Definition 11 (Method of moments estimator). Assume that X1, . . . , Xn form a
random sample from a distribution that is indexed by a k-dimensional parameter θ
and that has at least k finite moments. For j = 1, . . . , k, let

µj(θ) := Eθ(Xj
1).

Suppose that the function µ(θ) = (µ1(θ), . . . , µk(θ)) is a one-to-one function of θ. Let
M(µ1, . . . , µk) denote the inverse function, that is, for all θ,

θ = M(µ1, . . . , µk).

Define the sample moments as

µ̂j :=
1

n

n∑

i=1

Xj
i for j = 1, . . . , k.

The method of moments estimator of θ is M(µ̂1, . . . , µ̂k).

The usual way of implementing the method of moments is to set up the k equations

µ̂j = µj(θ), for j = 1, . . . , k,

and then solve for θ.

13



Example 2.2. Let X1, X2, . . . , Xn be from a N(µ, σ2) distribution. Thus θ = (µ, σ2).
What is the MOM estimator of θ?

Solution: Consider µ1 = E(X1) and µ2 = E(X2
1 ). Clearly, the parameter θ can be

expressed as a function of the first two population moments, since

µ = µ1 , σ
2 = µ2 − µ2

1 .

To get MOM estimates of µ and σ2 we are going to plug in the sample moments.
Thus

µ̂ = µ̂1 = X̄ ,

and

σ̂2 =
1

n

n∑

j=1

X2
j − X̄2 =

1

n

n∑

i=1

(Xi − X̄)2

where we have used the fact that µ̂2 = n−1
∑n

j=1 X
2
j .

Example 2.3. Suppose that X1, X2, . . . , Xn are i.i.d Gamma(α, β), α, β > 0. Thus,
θ = (α, β) ∈ Ω := R+ × R+. The first two moments of this distribution are:

µ1(θ) =
α

β
, µ2(θ) =

α(α + 1)

β2
,

which implies that

α =
µ2

1

µ2 − µ2
1

, β =
µ1

µ2 − µ2
1

.

The MOM says that we replace the right-hand sides of these equations by the sample
moments and then solve for α and β. In this case, we get

α̂ =
µ̂2

1

µ̂2 − µ̂2
1

, β̂ =
µ̂1

µ̂2 − µ̂2
1

.

MOM can thus be thought of as “plug-in” estimates; to get an estimate θ̂ of θ =
M(µ1, µ2, . . . , µk), we plug-in estimates of the µi’s, which are the µ̂i’s, to get θ̂.

Result: If M is continuous, then the fact that mi converges in probability to µi, for
every i = 1, . . . , k, entails that

θ̂ = M(µ̂1, µ̂2, . . . , µ̂k)
P→M(µ1, µ2, . . . , µk) = θ.

Thus MOM estimators are consistent under mild assumptions.
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Proof. LLN: the sample moments converge in probability to the population moments
µ1(θ), . . . , µk(θ).

The generalization of the continuous mapping theorem (Theorem 6.2.5 in the book) to
functions of k variables implies that M(·) evaluated at the sample moments converges
in probability to θ, i.e., the MOM estimator converges in probability to θ.

Remark: In general, we might be interested in estimating Ψ(θ) where Ψ(θ) is some
(known) function of θ; in such a case, the MOM estimate of Ψ(θ) is Ψ(θ̂) where θ̂ is
the MOM estimate of θ.

Example 2.4. Let X1, X2, . . . , Xn be the indicators of n Bernoulli trials with success
probability θ. We are going to find a MOM estimator of θ.

Solution: Note that θ is the probability of success and satisifes,

θ = E(X1) , θ = E(X2
1 ) .

Thus we can get MOMs of θ based on both the first and the second moments. Thus,

θ̂MOM = X̄,

and

θ̂MOM =
1

n

n∑

j=1

X2
j =

1

n

n∑

j=1

Xj = X̄.

Example 2.5. Let X1, X2, . . . , Xn be i.i.d. Poisson(λ), λ > 0. Find the MOM esti-
mator of λ.

Solution: We know that,
E(X1) = µ1 = λ

and Var(X1) = µ2 − µ2
1 = λ. Thus

µ2 = λ+ λ2.

Now, a MOM estimate of λ is clearly given by λ̂ = µ̂1 = X̄; thus a MOM estimate of
µ2 = λ2 + λ is given by X̄2 + X̄.

On the other hand, the obvious MOM estimate of µ̂2 is µ̂2 = 1
n

∑n
j=1X

2
j . However

these two estimates are not necessarily equal; in other words, it is not necessarily the
case that X̄2 + X̄ = (1/n)

∑n
j=1 X

2
j .

This illustrates one of the disadvantages of MOM estimates — they may not be
uniquely defined.
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Example 2.6. Consider n systems with failure times X1, X2, . . . , Xn assumed to be
i.i.d Exp(λ), λ > 0. Find the MOM estimators of λ.

Solution: It is not difficult to show that

E(X1) =
1

λ
, E(X2

1 ) =
2

λ2
.

Therefore

λ =
1

µ1

=

√
2

µ2

.

The above equations lead to two different MOM estimators for λ; the estimate based
on the first moment is

λ̂MOM =
1

µ̂1

,

and the estimate based on the second moment is

λ̂MOM =

√
2

µ̂2

.

Once again, note the non-uniqueness of the estimates.

We finish up this section by some key observations about method of moments esti-
mates.

(i) The MOM principle generally leads to procedures that are easy to compute and
which are therefore valuable as preliminary estimates.

(ii) For large sample sizes, these estimates are likely to be close to the value being
estimated (consistency).

(iii) The prime disadvantage is that they do not provide a unique estimate and this
has been illustrated before with examples.

3 Method of Maximum Likelihood

As before, we have i.i.d observations X1, X2, . . . , Xn with common probability density
(or mass function) f(x, θ), where θ ∈ Ω ⊆ Rk is a Euclidean parameter indexing the
class of distributions being considered.

The goal is to estimate θ or some Ψ(θ) where Ψ is some known function of θ.

16



Definition 12 (Likelihood function). The likelihood function for the sample Xn =
(X1, X2, . . . , Xn) is

Ln(θ) ≡ Ln(θ,Xn) :=
n∏

i=1

f(Xi, θ).

This is simply the joint density (or mass function) but we now think of this as a
function of θ for a fixed Xn; namely the Xn that is realized.

Intuition: Suppose for the moment that Xi’s are discrete, so that f is actually a
p.m.f. Then Ln(θ) is exactly the probability that the observed data is realized or
“happens”.

We now seek to obtain that θ ∈ Ω for which Ln(θ) is maximized. Call this θ̂n (assume
that it exists). Thus θ̂n is that value of the parameter that maximizes the likelihood
function, or in other words, makes the observed data most likely.

It makes sense to pick θ̂n as a guess for θ.

When the Xi’s are continuous and f(x, θ) is in fact a density we do the same thing –
maximize the likelihood function as before and prescribe the maximizer as an estimate
of θ.

For obvious reasons, θ̂n is called an maximum likelihood estimate (MLE).

Note that θ̂n is itself a deterministic function of Xn = (X1, X2, . . . , Xn) and is there-
fore a random variable. Of course there is nothing that guarantees that θ̂n is unique,
even if it exists.

Sometimes, in the case of multiple maximizers, we choose one which is more desirable
according to some “sensible” criterion.

Example 3.1. Suppose that X1, . . . , Xn are i.i.d Poisson(θ), θ > 0. Find the
MLE of θ.

Solution: In this case, it is easy to see that

Ln(θ) =
n∏

i=1

e−θ θXi

Xi !
= C(Xn) e−n θ θ

∑n
i=1Xi .

To maximize this expression, we set

∂

∂θ
logLn(θ) = 0 .

This yields that

∂

∂θ

[
−n θ +

(
n∑

i=1

Xi

)
log θ

]
= 0;

17



i.e.,

−n+

∑n
i=1 Xi

θ
= 0 ,

showing that
θ̂n = X̄ .

It can be checked (by computing the second derivative at θ̂n) that the stationary point
indeed gives (a unique) maximum (or by noting that the log-likelihood is a (strictly)
concave function).

Exercise 2: Let X1, X2, . . . , Xn be i.i.d Ber(θ) where 0 ≤ θ ≤ 1. What is the MLE
of θ?

Example 3.2. Suppose X1, X2, . . . , Xn are i.i.d Uniform([0, θ]) random variables,
where θ > 0. We want to obtain the MLE of θ.

Solution: The likelihood function is given by,

Ln(θ) =
n∏

i=1

1

θ
I[0,θ](Xi)

=
1

θn

n∏

i=1

I[Xi,∞)(θ)

=
1

θn
I[maxi=1,...,nXi,∞)(θ).

It is then clear that Ln(θ) is constant and equals 1/θn for θ ≥ max
i=1,...,n

Xi and is 0

otherwise. By plotting the graph of this function, you can see that

θ̂n = max
i=1,...,n

Xi.

Here, differentiation will not help you to get the MLE because the likelihood function
is not differentiable at the point where it hits the maximum.

Example 3.3. Suppose that X1, X2, . . . , Xn are i.i.d N(µ, σ2). We want to find the
MLEs of the mean µ and the variance σ2.

Solution: We write down the likelihood function first. This is,

Ln(µ, σ2) =
1

(2π)n/2σn
exp

(
− 1

2σ2

n∑

i=1

(Xi − µ)2

)
.
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It is easy to see that,

logLn(µ, σ2) = −n
2

log σ2 − 1

2σ2

n∑

i=1

(Xi − µ)2 + constant

= −n
2

log σ2 − 1

2σ2

n∑

i=1

(Xi − X̄n)2 − n

2σ2
(X̄n − µ)2.

To maximize the above expression w.r.t µ and σ2 we proceed as follows. For any
(µ, σ2) we have,

logLn(µ, σ2) ≤ logLn(X̄n, σ
2),

showing that we can choose µ̂MLE = X̄n.

It then remains to maximize logLn(X̄n, σ
2) with respect to σ2 to find σ̂2

MLE.

Now,

logLn(X̄n, σ
2) = −n

2
log σ2 − 1

2σ2

n∑

i=1

(Xi − X̄n)2.

Differentiating the left-side w.r.t σ2 gives,

− n

2σ2
+

1

2(σ2)2
n σ̂2 = 0 ,

where σ̂2 = 1
n

∑n
i=1(Xi − X̄n)2. The above equation leads to,

σ̂2
MLE = σ̂2 =

1

n

n∑

i=1

(Xi − X̄)2 .

The fact that this actually gives a global maximizer follows from the fact that the
second derivative at σ̂2 is negative.

Note that, once again, the MOM estimates coincide with the MLEs.

Exercise 3: We now tweak the above situation a bit. Suppose now that we restrict
the parameter space, so that µ has to be non-negative, i.e., µ ≥ 0.

Thus we seek to maximize logLn(µ, σ2) but subject to the constraint that µ ≥ 0 and
σ2 > 0. Find the MLEs in this scenario.

Example 3.4 (non-uniqueness of MLE). Suppose that X1, . . . , Xn form a random
sample from the uniform distribution on the interval [θ, θ+1], where θ ∈ R is unknown.
We want to find the MLE of θ. Show that it is possible to select as an MLE any value
of θ in the interval [X(n) − 1, X(1)], and thus the MLE is not unique.
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Example 3.5 (MLEs might not exist). Consider a random variable X that can come
with equal probability either from a N(0, 1) or from N(µ, σ2), where both µ and σ are
unknown.

Thus, the p.d.f. f(·, µ, σ2) of X is given by

f(x, µ, σ2) =
1

2

[
1√
2π
e−x

2/2 +
1√
2πσ

e−(x−µ)2/(2σ2)

]
.

Suppose now that X1, . . . , Xn form a random sample from this distribution. As usual,
the likelihood function

Ln(µ, σ2) =
n∏

i=1

f(Xi, µ, σ
2).

We want to find the MLE of θ = (µ, σ2).

Let Xk denote one of the observed values. Note that

max
µ∈R,σ2>0

Ln(µ, σ2) ≥ Ln(Xk, σ
2) ≥ 1

2n

[
1√
2πσ

]∏

i 6=k

1√
2π
e−X

2
i /2.

Thus, if we let µ = Xk and let σ2 → 0 then the factor f(Xk, µ, σ
2) will grow large

without bound, while each factor f(Xi, µ, σ
2), for i 6= k, will approach the value

1

2
√

2π
e−X

2
i /2.

Hence, when µ = Xk and σ2 → 0, we find that Ln(µ, σ2)→∞.

Note that 0 is not a permissible estimate of σ2, because we know in advance that
σ > 0. Since the likelihood function can be made arbitrarily large by choosing µ = Xk

and choosing σ2 arbitrarily close to 0, it follows that the MLE does not exist.

3.1 Properties of MLEs

3.1.1 Invariance

Theorem 3.6 (Invariance property of MLEs). If θ̂n is the MLE of θ and if Ψ is any

function, then Ψ
(
θ̂n
)

is the MLE of Ψ(θ).

See Theorem 7.6.2 and Example 7.6.3 in the text book.

Thus if X1, . . . , Xn be i.i.d N(µ, σ2), then the MLE of µ2 is X̄2
n.
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3.1.2 Consistency

Consider an estimation problem in which a random sample is to be taken from a
distribution involving a parameter θ.

Then, under certain conditions, which are typically satisfied in practical problems,
the sequence of MLEs is consistent, i.e.,

θ̂n
P→ θ, as n→∞.

3.2 Computational methods for approximating MLEs

Example: Suppose that X1, . . . , Xn are i.i.d from a Gamma distribution for which
the p.d.f is as follows:

f(x, α) =
1

Γ(α)
xα−1e−x, for x > 0.

The likelihood function is

Ln(α) =
1

Γ(α)n

(
n∏

i=1

Xi

)α−1

e−
∑n

i=1Xi ,

and thus the log-likelihood is

`n(α) ≡ logLn(α) = −n log Γ(α) + (α− 1)
n∑

i=1

log(Xi)−
n∑

i=1

Xi,

The MLE of α will be the value of α that satisfies the equation

∂

∂α
`n(α) = −nΓ′(α)

Γ(α)
+

n∑

i=1

log(Xi) = 0

i.e.,
Γ′(α)

Γ(α)
=

1

n

n∑

i=1

log(Xi).

3.2.1 Newton’s Method

Let f(x) be a real-valued function of a real variable, and suppose that we wish to
solve the equation

f(x) = 0.

Let x1 be an initial guess at the solution.
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Newton’s method replaces the initial guess with the updated guess

x2 = x1 −
f(x1)

f ′(x1)
.

The rationale behind the Newton’s method is: approximate the curve by a line tangent
to the curve passing through the point (x1, f(x1)). The approximating line crosses
the horizontal axis at the revised guess x1. [Draw a figure!]

Typically, one replaces the initial guess with the revised guess and iterates Newton’s
method until the results stabilize (see e.g., http://en.wikipedia.org/wiki/Newton’s method).

3.2.2 The EM Algorithm

Read Section 7.6 of the text-book. I will cover this later, if time permits.
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4 Principles of estimation

Setup: Our data X1, X2, . . . Xn are i.i.d observations from the distribution Pθ where
θ ∈ Ω, the parameter space (Ω is assumed to be the k-dimensional Euclidean space).
We assume identifiability of the parameter, i.e. θ1 6= θ2 ⇒ Pθ1 6= Pθ2 .

Estimation problem: Consider now, the problem of estimating g(θ) where g is
some function of θ.

In many cases g(θ) = θ itself.

Generally g(θ) will describe some important aspect of the distribution Pθ.

Our estimator of g(θ) will be some function of our observed dataXn = (X1, X2, . . . , Xn).

In general there will be several different estimators of g(θ) which may all seem rea-
sonable from different perspectives — the question then becomes one of finding the
most optimal one.

This requires an objective measure of performance of an estimator.

If Tn estimates g(θ) a criterion that naturally suggests itself is the distance of Tn from
g(θ). Good estimators are those for which |Tn − g(θ)| is generally small.

Since Tn is a random variable no deterministic statement can be made about the
absolute deviation; however what we can expect of a good estimator is a high chance
of remaining close to g(θ).

Also as n, the sample size, increases we get hold of more information and hence expect
to be able to do a better job of estimating g(θ).

These notions when coupled together give rise to the consistency requirement for a
sequence of estimators Tn; as n increases, Tn ought to converge in probability to g(θ)
(under the probability distribution Pθ). In other words, for any ε > 0,

Pθ (|Tn − g(θ)| > ε)→ 0.

The above is clearly a large sample property; what it says is that with probability
increasing to 1 (as the sample size grows), Tn estimates g(θ) to any pre-determined
level of accuracy.

However, the consistency condition alone, does not tell us anything about how well
we are performing for any particular sample size, or the rate at which the above
probability is going to 0.
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4.1 Mean squared error

Question: For a fixed sample size n, how do we measure the performance of an
estimator Tn?

A way out of this difficulty is to obtain an average measure of the error, or in other
words, average out |Tn − g(θ)| over all possible realizations of Tn.

The resulting quantity is then still a function of θ but no longer random. It is called
the mean absolute error and can be written compactly (using acronym) as:

MAD := Eθ [|Tn − g(θ)|] .

However, it is more common to avoid absolute deviations and work with the square
of the deviation, integrated out as before over the distribution of Tn. This is called
the mean squared error (MSE) and is defined as

MSE(Tn, g(θ)) := Eθ
[
(Tn − g(θ))2

]
. (1)

Of course, this is meaningful, only if the above quantity is finite for all θ. Good
estimators are those for which the MSE is generally not too high, whatever be the
value of θ.

There is a standard decomposition of the MSE that helps us understand its compo-
nents. This is one of the most

Theorem 4.1. For any estimator Tn of g(θ), we have

MSE(Tn, g(θ)) = Varθ(Tn) + b(Tn, g(θ))2,

where b(Tn, g(θ)) = Eθ(Tn)− g(θ) is the bias of Tn as an estimator of g(θ).

Proof. We have,

MSE(Tn, g(θ)) = Eθ
[
(Tn − g(θ))2

]

= Eθ
[
(Tn − Eθ(Tn) + Eθ(Tn)− g(θ))2

]

= Eθ
[
(Tn − Eθ(Tn))2

]
+ (Eθ(Tn)− g(θ))2

+ 2 Eθ[(Tn − Eθ(Tn))(Eθ(Tn)− g(θ))]

= Varθ(Tn) + b(Tn, g(θ))2 ,

where
b(Tn, g(θ)) := Eθ(Tn)− g(θ)

is the bias of Tn as an estimator of g(θ).

The cross product term in the above display vanishes since Eθ(Tn)−g(θ) is a constant
and Eθ(Tn − Eθ(Tn)) = 0.
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Fig. 3.2. Risks for δ0, δ1, and δ2.

random, L
(
θ, δ(X)

)
is random and can be large if we are unlucky, even if δ

is an excellent estimator. Accordingly, an estimator δ is judged by its average
loss or risk function R, defined as

R(θ, δ) = EθL
(
θ, δ(X)

)
.

Here Eθ denotes expectation when X ∼ Pθ.
Example 3.1, continued. Suppose X ∼ Binomial(100, θ), δ(X) = X/100,

g(θ) = θ, and the loss function is given by L(θ, d) = (θ − d)2, called squared
error loss. Then the risk function for δ is

R(θ, δ) = Eθ(θ − X/100)2 =
θ(1 − θ)

100
, θ ∈ [0, 1].

A plot of this risk function is given in Figure 3.1.
A fundamental problem arises when one compares estimators using risk

functions: if the risk functions for two estimators cross, there is no clear deci-
sion which estimator is best. For instance, in our binomial example, if δ0(X) is
the original estimator X/100, δ1(X) = (X+3)/100, and δ2(X) = (X+3)/106,
then R(θ, δ0) = θ(1 − θ)/100, R(θ, δ1) =

(
9 + 100θ(1 − θ)

)
/1002, and

R(θ, δ2) = (9 − 8θ)(1 + 8θ)/1062. These functions are plotted together in
Figure 3.2. Looking at the graph, δ0 and δ2 are both better than δ1, but the
comparison between δ0 and δ2 is ambiguous. When θ is near 1/2, δ2 is the
preferable estimator, but if θ is near 0 or 1, δ0 is preferable. If θ were known,

Figure 3: The plot shows the mean squared error for three estimators δ1, δ2 and δ2.
Here R(θ, δi) = Eθ[(δi(X)− θ)2] where i = 0, 1, 2.

The bias measures, on an average, by how much Tn overestimate or underestimate
g(θ). If we think of the expectation Eθ(Tn) as the center of the distribution of Tn,
then the bias measures by how much the center deviates from the target.

The variance of Tn, of course, measures how closely Tn is clustered around its center.
Ideally one would like to minimize both simultaneously, but unfortunately this is
rarely possible.

4.2 Comparing estimators

Two estimators Tn and Sn can be compared on the basis of their MSEs. Under
parameter value θ, Tn dominates Sn as an estimator if

MSE(Tn, θ) ≤ MSE(Sn, θ) for all θ ∈ Ω.

In this situation we say that Sn is inadmissible in the presence of Tn.

The use of the term “inadmissible” hardly needs explanation. If, for all possible
values of the parameter, we incur less error using Tn instead of Sn as an estimate of
g(θ), then clearly there is no point in considering Sn as an estimator at all.

Continuing along this line of thought, is there an estimate that improves all others?
In other words, is there an estimator that makes every other estimator inadmissible?
The answer is no, except in certain pathological situations.

Example 4.2. Suppose that X ∼ Binomial(100, θ), where θ ∈ [0, 1]. The goal is
to estimate the unknown parameter θ. A natural estimator of θ in this problem is
δ0(X) = X/100 (which is also the MLE and the method of moments estimator).
Show that

R(θ, δ0) := MSE(δ0(X), θ) =
θ(1− θ)

100
, for θ ∈ [0, 1].

The MSE of δ0(X) as a function of θ is given in Figure 3.
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We can also consider two other estimators in this problem: δ1(X) = (X+ 3)/100 and
δ2(X) = (X + 3)/106. Figure 3 shows the MSEs of δ1 and δ2, which can be shown to
be (show this):

R(θ, δ1) := MSE(δ1(X), θ) =
9 + 100θ(1− θ)

1002
, for θ ∈ [0, 1],

and

R(θ, δ2) := MSE(δ2(X), θ) =
(9− 8θ)(1 + 8θ)

1062
, for θ ∈ [0, 1].

Looking at the plot, δ0 and δ2 are both better than δ1, but the comparison between δ0

and δ2 is ambiguous. When θ is near 1/2, δ2 is the preferable estimator, but if θ is
near 0 or 1, δ0 is preferable. If θ were known, we could choose between δ0 and δ2.
However, if θ were known, there would be no need to estimate its value.

As we have noted before, it is generally not possible to find a universally best esti-
mator.

One way to try to construct optimal estimators is to restrict oneself to a subclass of
estimators and try to find the best possible estimator in this subclass. One arrives at
subclasses of estimators by constraining them to meet some desirable requirements.
One such requirement is that of unbiasedness. Below, we provide a formal definition.

4.3 Unbiased estimators

An estimator Tn of g(θ) is said to be unbiased if Eθ(Tn) = g(θ) for all possible values
of θ; i.e.,

b(Tn, g(θ)) = 0 for all θ ∈ Ω.

Thus, unbiased estimators, on an average, hit the target, for all parameter values.
This seems to be a reasonable constraint to impose on an estimator and indeed
produces meaningful estimates in a variety of situations.

Note that for an unbiased estimator Tn, the MSE under θ is simply the variance of
Tn under θ.

In a large class of models, it is possible to find an unbiased estimator of g(θ) that
has the smallest possible variance among all possible unbiased estimators. Such an
estimate is called an minimum variance unbiased estimator (MVUE). Here is a
formal definition.

MVUE: We call Sn an MVUE of g(θ) if

(i) Eθ(Sn) = g(θ) for all θ ∈ Ω
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and (ii) if Tn is an unbiased estimate of g(θ), then Varθ(Sn) ≤ Varθ(Tn).

Here are a few examples to illustrate some of the various concepts discussed above.

(a) Consider X1, . . . , Xn i.i.d N(µ, σ2).

A natural unbiased estimator of g1(θ) = µ is X̄n, the sample mean. It is also
consistent for µ by the WLLN. It can be shown that this is also the MVUE of µ.

In other words, any other unbiased estimate of µ will have a larger variance
than X̄n. Recall that the variance of X̄n is simply σ2/n.

Consider now, the estimation of σ2. Two estimates of this that we have consid-
ered in the past are

(i) σ̂2 =
1

n

n∑

i=1

(Xi − X̄)2 and (ii) s2 =
1

n− 1

n∑

i=1

(Xi − X̄)2 .

Out of these σ̂2 is not unbiased for σ2 but s2 is. In fact s2 is the MVUE of σ2.

(b) Let X1, X2, . . . , Xn be i.i.d from some underlying density function or mass func-
tion f(x, θ). Let g(θ) = Eθ(X1).

Then the sample mean X̄n is always an unbiased estimate of g(θ). Whether it
is MVUE or not depends on the underlying structure of the model.

(c) Suppose that X1, X2, . . . , Xn be i.i.d Ber(θ). It can be shown that X̄n is the
MVUE of θ.

Now define g(θ) = θ/(1−θ). This is a quantity of interest because it is precisely
the odds in favor of Heads. It can be shown that there is no unbiased estimator
of g(θ) in this model (Why?).

However an intuitively appealing estimate of g(θ) is Tn ≡ X̄n/(1 − X̄n). It is
not unbiased for g(θ); however it does converge in probability to g(θ).

This example illustrates an important point — unbiased estimators may not al-
ways exist. Hence imposing unbiasedness as a constraint may not be meaningful
in all situations.

(d) Unbiased estimators are not always better than biased estimators.

Remember, it is the MSE that gauges the performance of the estimator and a
biased estimator may actually outperform an unbiased one owing to a signifi-
cantly smaller variance.
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Example 4.3. Consider X1, X2, . . . , Xn i.i.d Uniform([0, θ]); θ > 0. Here Ω =
(0,∞).

A natural estimate of θ is the maximum of the Xi’s, which we denote by X(n).

Another estimate of θ is obtained by observing that X̄n is an unbiased estimate of
θ/2, the common mean of the Xi’s; hence 2 X̄n is an unbiased estimate of θ.

Show that X(n) in the sense of MSE outperforms 2X̄n by an order of magnitude.

The best unbiased estimator (MVUE) of θ is (1 + n−1)X(n).

Solution: We can show that

MSE(2X̄n, θ) =
θ2

3n
= Var(2X̄n)

MSE((1 + n−1)X(n), θ) =
θ2

n(n+ 2)
= Var((1 + n−1)X(n))

MSE(X(n), θ) =
θ2

n(n+ 2)
· n2

(n+ 1)2
+

θ2

(n+ 1)2
,

where in the last equality we have two terms — the variance and the squared bias.

4.4 Sufficient Statistics

In some problems, there may not be any MLE, or there may be more than one. Even
when an MLE is unique, it may not be a suitable estimator (as in the Unif(0, θ)
example, where the MLE always underestimates the value of θ).

In such problems, the search for a good estimator must be extended beyond the
methods that have been introduced thus far.

In this section, we shall define the concept of a sufficient statistic, which can be
used to simplify the search for a good estimator in many problems.

Suppose that in a specific estimation problem, two statisticians A and B must estimate
the value of the parameter θ.

Statistician A can observe the values of the observations X1, X2, . . . , Xn in a random
sample, and statistician B cannot observe the individual values of X1, X2, . . . , Xn but
can learn the value of a certain statistic T = ϕ(X1, . . . , Xn).

In this case, statistician A can choose any function of the observations X1, X2, . . . , Xn

as an estimator of θ (including a function of T ). But statistician B can use only a
function of T . Hence, it follows that A will generally be able to find a better estimator
than will B.
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In some problems, however, B will be able to do just as well as A. In such a problem,
the single function T = ϕ(X1, . . . , Xn) will in some sense summarize all the informa-
tion contained in the random sample about θ, and knowledge of the individual values
of X1, . . . , Xn will be irrelevant in the search for a good estimator of θ.

A statistic T having this property is called a sufficient statistic.

A statistic is sufficient with respect to a statistical model Pθ and its associated un-
known parameter θ if it provides “all” the information on θ; e.g., if “no other statistic
that can be calculated from the same sample provides any additional information as
to the value of the parameter”. This intuition will be rigorized at the end of this
subsection.

Definition 13 (Sufficient statistic). Let X1, X2, . . . , Xn be a random sample from
a distribution indexed by a parameter θ ∈ Ω. Let T be a statistic. Suppose that,
for every θ ∈ Ω and every possible value t of T , the conditional joint distribution of
X1, X2, . . . , Xn given that T = t (at θ) depends only on t but not on θ.

That is, for each t, the conditional distribution of X1, X2, . . . , Xn given T = t is the
same for all θ. Then we say that T is a sufficient statistic for the parameter θ.

So, if T is sufficient, and one observed only T instead of (X1, . . . , Xn), one could,
at least in principle, simulate random variables (X ′1, . . . , X

′
n) with the same joint

distribution.

In this sense, T is sufficient for obtaining as much information about θ as one could
get from (X1, . . . , Xn).

Example 4.4. Suppose that X1, . . . , Xn are i.i.d Poisson(θ), where θ > 0. Show that
T =

∑n
i=1Xi is sufficient. Let X = (X1, . . . , Xn).

Note that

Pθ(X = x|T (X) = t) =
Pθ(X = x, T (X) = t)

Pθ(T = t)
.

But,

Pθ(X = x, T (X) = t) =

{
0 T (x) 6= t

Pθ(X = x) T (x) = t.

As

P(X = x) =
e−nθθT (x)

∏n
i=1 xi!

.
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Also,

Pθ(T (X) = t) =
e−nθ(nθ)t

t!
.

Hence,
Pθ(X = x)

Pθ(T (X) = t(x))
=

t!∏n
i=1 xi!n

t
,

which does not depend on θ. So T =
∑n

i=1Xi is a sufficient statistic for θ.

Other sufficient statistics are: T = 3.7
∑n

i=1 Xi, T = (
∑n

i=1 Xi, X4), and T =
(X1, . . . , Xn).

We shall now present a simple method for finding a sufficient statistic that can be
applied in many problems.

Theorem 4.5 (Factorization criterion). Let X1, X2, . . . , Xn form a random sample
from either a continuous distribution or a discrete distribution for which the p.d.f or
the p.m.f is f(x, θ), where the value of θ is unknown and belongs to a given parameter
space Ω.

A statistic T = r(X1, X2, . . . , Xn) is a sufficient statistic for θ if and only if the joint
p.d.f or the joint p.m.f fn(x, θ) of (X1, X2, . . . , Xn) can be factored as follows for all
values of x = (x1, . . . , xn) ∈ Rn and all values of θ ∈ Ω:

fn(x, θ) = u(x)ν(r(x), θ), where

• u and ν are both non-negative,

• the function u may depend on x but does not depend on θ,

• the function ν will depend on θ but depends on the observed value x only through
the value of the statistic r(x).

Example: Suppose that X1, . . . , Xn are i.i.d Poi(θ), θ > 0. Thus, for every non-
negative integers x1, . . . , xn, the joint p.m.f fn(x, θ) of (X1, . . . , Xn) is

fn(x, θ) =
n∏

i=1

e−θθxi

xi!
=

1∏n
i=1 xi!

e−nθθ
∑n

i=1 xi .

Thus, we can take u(x) = 1/(
∏n

i=1 xi!), r(x) =
∑n

i=1 xi, ν(t, θ) = e−nθθt. It follows
that T =

∑n
i=1Xi is a sufficient statistic for θ.
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Exercise: Suppose that X1, . . . , Xn are i.i.d Gamma(α, β), α, β > 0, where α is
known, and β is unknown. The joint p.d.f is

fn(x, β) =
{

[Γ(α)]n
( n∏

i=1

xi
)α−1

}−1

u(x)

×
{
βnα exp(−βt)

}

ν(t,β)

, where t =
n∑

i=1

xi.

The sufficient statistics is Tn =
n∑

i=1

Xi.

Exercise: Suppose that X1, . . . , Xn are i.i.d Gamma(α, β), α, β > 0, where α is
unknown, and β is known.

The joint p.d.f in this exercise is the same as that given in the previous exercise. How-
ever, since the unknown parameter is now α instead of β, the appropriate factorization
is now

fn(x, α) =
{

exp
(
− β

n∑

i=1

xi
)}

u(x)

×
{ βnα

[Γ(α)]n
tα−1

}
,

ν(t,α)

where t =
n∏

i=1

xi.

The sufficient statistics is Tn =
n∏

i=1

Xi.

Exercise: Suppose that X1, . . . , Xn are i.i.d Unif([0, θ]), θ > 0 is the unknown pa-
rameter. Show that T = max{X1, . . . , Xn} is the sufficient statistic.

Suppose that X = (X1, . . . , Xn) form a random sample from a distribution for which
the p.d.f or p.m.f. is f(·|θ), where the parameter θ must belong to some parameter
space Ω. Let T be a sufficient statistic for θ in this problem.

We show how to improve upon an estimator that is not a function of a sufficient
statistic by using an estimator that is a function of a sufficient statistic. Let δ(X)
be and estimator of g(θ). We define the estimator δ0(T ) by the following conditional
expectation:

δ0(T ) = Eθ[δ(X)|T ].

Since T is a sufficient statistic, the conditional expectation of the function δ(X) will
be the same for every value of θ ∈ Ω. It follows that the conditional expectation
above will depend on the value of T but will not actually depend on the value of θ.
In other words, the function δ0(T ) is indeed an estimator of g(θ) because it depends
only on the observations X and does not depend on the unknown value of θ.

We can now state the following theorem, which was established independently by
D. Blackwell and C. R. Rao in the late 1940s.
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Theorem 4.6 (Rao-Blackwell theorem). For every value of θ ∈ Ω,

MSE(δ0(T ), g(θ)) ≤ MSE(δ(X), g(θ)).

The above result is proved in Theorem 7.9.1 of the text book (see deGroot and
Schervish, Fourth Edition).
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5 Bayesian paradigm

Frequentist versus Bayesian statistics:

Frequentist:

• Data are a repeatable random sample — there is a frequency.

• Parameters are fixed.

• Underlying parameters remain constant during this repeatable process.

Bayesian:

• Parameters are unknown and described probabilistically.

• Analysis is done conditioning on the observed data; i.e., data is treated as fixed.

5.1 Prior distribution

Definition 14 (Prior distribution). Suppose that one has a statistical model with
parameter θ. If one treats θ as random, then the distribution that one assigns to θ
before observing the data is called its prior distribution.

Thus, now θ is random and will be denoted by Θ (note the change of notation).

We will assume that if the prior distribution of Θ is continuous, then its p.d.f is called
the prior p.d.f of Θ.

Example: Let Θ denote the probability of obtaining a head when a certain coin is
tossed.

• Case 1: Suppose that it is known that the coin either is fair or has a head
on each side. Then Θ only takes two values, namely 1/2 and 1. If the prior
probability that the coin is fair is 0.8, then the prior p.m.f of Θ is ξ(1/2) = 0.8
and ξ(1) = 0.2.

• Case 2: Suppose that Θ can take any value between (0, 1) with a prior distri-
bution given by a Beta distribution with parameters (1, 1).
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Suppose that the observable data X1, X2, . . . , Xn are modeled as random sample from
a distribution indexed by θ. Suppose f(·|θ) denote the p.m.f/p.d.f of a single random
variable under the distribution indexed by θ.

When we treat the unknown parameter Θ as random, then the joint distribution
of the observable random variables (i.e., data) indexed by θ is understood as the
conditional distribution of the data given Θ = θ.

Thus, in general we will have X1, . . . , Xn|Θ = θ are i.i.d with p.d.f/p.m.f f(·|θ), and
that Θ ∼ ξ, i.e.,

fn(x|θ) = f(x1|θ) . . . f(xn|θ),
where fn is the joint conditional distribution of X = (X1, . . . , Xn) given Θ = θ.

5.2 Posterior distribution

Definition 15 (Posterior distribution). Consider a statistical inference problem with
parameter θ and random variables X1, . . . , Xn to be observed. The conditional distri-
bution of Θ given X1, . . . , Xn is called the posterior distribution of θ.

The conditional p.m.f/p.d.f of Θ given X1 = x1, . . . , Xn = xn is called the posterior
p.m.f/p.d.f of θ and is usually denoted by ξ(·|x1, . . . , xn).

Theorem 5.1. Suppose that the n random variables X1, . . . , Xn form a random sam-
ple from a distribution for which the p.d.f/p.m.f is f(·|θ). Suppose also that the value
of the parameter θ is unknown and the prior p.d.f/p.m.f of θ is ξ(·). Then the poste-
rior p.d.f/p.m.f of θ is

ξ(θ|x) =
f(x1|θ) · · · f(xn|θ)ξ(θ)

gn(x)
, for θ ∈ Ω,

where gn is the marginal joint p.d.f/p.m.f of X1, . . . , Xn.

Example 5.2 (Sampling from a Bernoulli distribution). Suppose that X1, . . . , Xn

form a random sample from the Bernoulli distribution with mean θ > 0, where 0 <
θ < 1 is unknown. Suppose that the prior distribution of Θ is Beta(α, β), where
α, β > 0.

Then the posterior distribution of Θ given Xi = xi, for i = 1, . . . , n, is Beta(α +∑n
i=1 xi, β + n−∑n

i=1 xi).

Proof. The joint p.m.f of the data is

fn(x|θ) = f(x1|θ) · · · f(xn|θ) =
n∏

i=1

θxi(1− θ)1−xi = θ
∑n

i=1 xi(1− θ)n−
∑n

i=1 xi .
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Therefore the posterior density of Θ|X1 = x1, . . . , Xn = xn is given by

ξ(θ|x) ∝ θα−1(1− θ)β−1 · θ
∑n

i=1 xi(1− θ)n−
∑n

i=1 xi

= θ
∑n

i=1 xi+α−1(1− θ)β+n−
∑n

i=1 xi−1,

for θ ∈ (0, 1). Thus, Θ|X1 = x1, . . . , Xn = xn ∼ Beta(α +
∑n

i=1 xi, β + n−∑n
i=1 xi).

Example 5.3 (Sampling from a Poisson distribution). Suppose that X1, . . . , Xn form
a random sample from the Poisson distribution with mean θ > 0, where θ is unknown.
Suppose that the prior distribution of Θ is Gamma(α, β), where α, β > 0.

Then the posterior distribution of Θ given Xi = xi, for i = 1, . . . , n, is Gamma(α +∑n
i=1 xi, β + n).

Definition: LetX1, X2, . . . , be conditionally i.i.d given Θ = θ with common p.m.f/p.d.f
f(·|θ), where θ ∈ Ω.

Let Ψ be a family of possible distributions over the parameter space Ω. Suppose
that no matter which prior distribution ξ we choose from Ψ, no matter how many
observations X = (X1, . . . , Xn) we observe, and no matter what are their observed
values x = (x1, . . . , xn), the posterior distribution ξ(·|x) is a member of Ψ.

Then Ψ is called a conjugate family of prior distributions for samples from the distri-
butions f(·|θ).

Example 5.4 (Sampling from an Exponential distribution). Suppose that the distri-
bution of the lifetime of fluorescent tubes of a certain type is the exponential distribu-
tion with parameter θ. Suppose that X1, . . . , Xn is a random sample of lamps of this
type.

Also suppose that Θ ∼ Gamma(α, β), for known α, β.

Then

fn(x|θ) =
n∏

i=1

θe−θxi = θne−θ
∑n

i=1 xi .

Then the posterior distribution of Θ given the data is

ξ(θ|x) ∝ θne−θ
∑n

i=1 xi · θα−1e−βθ = θn+α−1e−(β+
∑n

i=1 xi)θ.

Therefore, Θ|Xn = x ∼ Gamma(α + n, β +
∑n

i=1 xi).
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5.3 Bayes Estimators

An estimator of a parameter is some function of the data that we hope is close to the
parameter, i.e., θ̂ ≈ θ.

Let X1, . . . , Xn be data whose joint distribution is indexed by a parameter θ ∈ Ω.

Let δ(X1, . . . , Xn) be an estimator of θ.

Definition: A loss function is a real-valued function of two variables, L(θ, a), where
θ ∈ Ω and a ∈ R.

The interpretation is that the statistician loses L(θ, a) if the parameter equals θ and
the estimate equals a.

Example: (Squared error loss) L(θ, a) = (θ − a)2.

(Absolute error loss) L(θ, a) = |θ − a|.

Suppose that ξ(·) is a prior p.d.f/p.m.f of θ ∈ Ω. Consider the problem of estimating
θ without being able to observe the data. If the statistician chooses a particular
estimate a, then her expected loss will be

E[L(θ, a)] =

∫

Ω

L(θ, a)ξ(θ)dθ.

It is sensible that the statistician wishes to choose an estimate a for which the expected
loss is minimum.

Definition: Suppose now that the statistician can observe the value x of a the data
Xn before estimating θ, and let ξ(·|x) denote the posterior p.d.f of θ ∈ Ω. For each
estimate a that the statistician might use, her expected loss in this case will be

E[L(θ, a)|x] =

∫

Ω

L(θ, a)ξ(θ|x)dθ. (2)

Hence, the statistician should now choose an estimate a for which the above expec-
tation is minimum.

For each possible value x of Xn, let δ∗(x) denote a value of the estimate a for which
the expected loss (2) is minimum. Then the function δ∗(Xn) is called the Bayes
estimator of θ.

Once Xn = x is observed, δ∗(x) is called the Bayes estimate of θ.

Thus, a Bayes estimator is an estimator that is chosen to minimize the posterior mean
of some measure of how far the estimator is from the parameter.

36



Corollary 5.5. Let θ ∈ Ω ⊂ R. Suppose that the squared error loss function is used
and the posterior mean of Θ, i.e., E(Θ|Xn), is finite. Then the Bayes estimator of θ
is

δ∗(Xn) = E(Θ|Xn).

Example 1: (Bernoulli distribution with Beta prior)

Suppose that X1, . . . , Xn form a random sample from the Bernoulli distribution with
mean θ > 0, where 0 < θ < 1 is unknown. Suppose that the prior distribution of Θ
is Beta(α, β), where α, β > 0.

Recall that Θ|X1 = x1, . . . , Xn = xn ∼ Beta(α +
∑n

i=1 xi, β + n−∑n
i=1 xi). Thus,

δ∗(X) =
α +

∑n
i=1Xi

α + β + n
.

5.4 Sampling from a normal distribution

Theorem 5.6. Suppose that X1, . . . , Xn form a random sample from N(θ, σ2), where
θ is unknown and the value of the variance σ2 > 0 is known. Suppose that Θ ∼
N(µ0, v

2
0). Then

Θ|X1 = x1, . . . , Xn = xn ∼ N(µ1, v
2
1),

where

µ1 =
σ2µ0 + nv2

0x̄n
σ2 + nv2

0

and v2
1 =

σ2v2
0

σ2 + nv2
0

.

Proof. The joint density has the form

fn(x|θ) ∝ exp

[
− 1

2σ2

n∑

i=1

(xi − θ)2

]
.

The method of completing the squares tells us that

n∑

i=1

(xi − θ)2 = n(θ − x̄n)2 +
n∑

i=1

(xi − x̄n)2.

Thus, by omitting the factor that involves x1, . . . , xn but does depend on θ, we may
rewrite fn(x|θ) as

fn(x|θ) ∝ exp
[
− n

2σ2
(θ − x̄n)2

]
.

Since the prior density has the form

ξ(θ) ∝ exp

[
− 1

2v2
0

(θ − µ0)2

]
,
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it follows that the posterior p.d.f ξ(θ|x) satisfies

ξ(θ|x) ∝ exp

[
− n

2σ2
(θ − x̄n)2 − 1

2v2
0

(θ − µ0)2

]
.

Completing the squares again establishes the following identity:

n

σ2
(θ − x̄n)2 +

1

v2
0

(θ − µ0)2 =
1

v2
1

(θ − µ1)2 +
n

σ2 + nv2
0

(x̄n − µ0)2.

The last term on the right side does not involve on θ. Thus,

ξ(θ|x) ∝ exp

[
− 1

2v2
1

(θ − µ1)2

]
.

Thus,

δ∗(X) =
σ2µ0 + nv2

0X̄n

σ2 + nv2
0

.

Corollary 5.7. Let θ ∈ Ω ⊂ R. Suppose that the absolute error loss function is used.
Then the Bayes estimator of θ δ∗(Xn) equals the median of the posterior distribution
of Θ.
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6 The sampling distribution of a statistic

A statistic is a function of the data, and hence is itself a random variable with a
distribution.

This distribution is called its sampling distribution. It tells us what values the
statistic is likely to assume and how likely is it to take these values.

Formally, suppose thatX1, . . . , Xn are i.i.d with p.d.f/p.m.f fθ(·), where θ ∈ Ω ⊂ Rk.

Let T be a statistic, i.e., suppose that T = ϕ(X1, . . . , Xn). Assume that T ∼ Fθ,
where Fθ is the c.d.f of T (possibly dependent on θ).

The distribution of T (with θ fixed) is called the sampling distribution of T . Thus,
the sampling distribution of T has c.d.f Fθ.

Example: Suppose that X1, . . . , Xn are i.i.d N(µ, σ2). Then we know that

X̄n ∼ N

(
µ,
σ2

n

)
.

6.1 The gamma and the χ2 distributions

6.1.1 The gamma distribution

The gamma function is a real-valued non-negative function defined on (0,∞) in the
following manner

Γ(α) =

∫ ∞

0

xα−1 e−x dx , α > 0 .

The Gamma function enjoys some nice properties. Two of these are listed below:

(a) Γ(α + 1) = αΓ(α) , (b) Γ(n) = (n− 1)! (n integer) .

Property (b) is an easy consequence of Property (a). Start off with Γ(n) and use
Property (a) recursively along with the fact that Γ(1) = 1 (why?). Another important
fact is that Γ(1/2) =

√
π (Prove this at home!).

The gamma distribution with parameters α > 0, λ > 0 (denoted by Gamma(α, λ)) is
defined through the following density function:

f(x|α, λ) =
λα

Γ(α)
e−λx xα−1I(0,∞)(x).
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The first parameter α is called the shape parameter and the second parameter λ is
called the scale parameter.

For fixed λ the shape parameter regulates the shape of the gamma density.

Here is a simple exercise that justifies the term “scale parameter” for λ.

Exercise: Let X be a random variable following Gamma(α, λ). Then show that
Y = λX (thus X is Y scaled by λ) follows the Gamma(α, 1) distribution. What is
the distribution of cX for some arbitrary positive constant c? You can use the change
of variable theorem in one-dimension to work this out.

Reproductive Property of the gamma distribution:

Let X1, X2, . . . , Xn be independent random variables with Xi ∼ Gamma(αi, λ), for
i = 1, . . . , n. Then,

Sn := X1 +X2 + . . .+Xn ∼ Gamma

(
n∑

i=1

αi, λ

)
.

If X follows the Gamma(α, λ) distribution, the mean and variance of X can be
explicitly expressed in terms of the parameters:

E(X) =
α

λ
and Var(X) =

α

λ2
.

We outline the computation of a general moment E(Xk), where k is a positive integer.
We have,

E(Xk) =

∫ ∞

0

xk
λα

Γ(α)
e−λx xα−1 dx

=
λα

Γ(α)

∫ ∞

0

e−λx xk+α−1 dx

=
λα

Γ(α)

Γ(α + k)

λα+k

=
(α + k − 1) · · · (α) Γ(α)

λk Γ(α)

=
Πk
i=1 (α + i− 1)

λk
.

The formulae for the mean and the variance should follow directly from the above
computation. Note that in the above derivation, we have used the fact that

∫ ∞

0

e−λx xk+α−1 dx =
Γ(α + k)

λα+k
.
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This is an immediate consequence of the fact that the gamma density with parameters
(α + k, λ) integrates to 1.

Exercise: Here is an exercise that should follow from the discussion above. Let Sn ∼
Gamma(n, λ), where λ > 0. Show that for large n, the distribution of Sn is well
approximated by a normal distribution (with parameters that you need to identify).

6.1.2 The Chi-squared distribution

We now introduce an important family of distributions, called the chi-squared family.
To do so, we first define the chi-squared distribution with 1 degree of freedom (for
brevity, we call it “chi-squared one” and write it as χ2

1).

The χ2
1 distribution: Let Z ∼ N(0, 1). Then the distribution of W := Z2 is called

the χ2
1 distribution, and W itself is called a χ2

1 random variable.

Exercise: Show that W follows a Gamma(1/2, 1/2) distribution. (You can do this
by working out the density function of W from that of Z).

For any integer d > 0 we can now define the χ2
d distribution (chi-squared d distribu-

tion, or equivalently, the chi-squared distribution with d degrees of freedom).

The χ2
d distribution: Let Z1, Z2, . . . , Zd be i.i.d N(0, 1) random variables. Then

the distribution of
Wd := Z2

1 + Z2
2 + . . .+ Z2

d

is called the χ2
d distribution and Wd itself is called a χ2

d random variable.

Exercise: Using the reproductive property of the Gamma distribution, show that
Wd ∼ Gamma(d/2, 1/2).

Thus, it follows that the sum of k i.i.d χ2
1 random variables is a χ2

k random variable.

Exercise: Let Z1, Z2, Z3 be i.i.d N(0, 1) random variables. Consider the vector
(Z1, Z2, Z3) as a random point in 3-dimensional space. Let R be the length of the
radius vector connecting this point to the origin. Find the density functions of (a) R
and (b) R2.

Theorem 6.1. If X ∼ χ2
m then E(X) = m and Var(X) = 2m.

Theorem 6.2. Suppose that X1, . . . , Xk are independent and Xi ∼ χ2
mi

then the sum

X1 + · · ·+Xk ∼ χ2∑k
i=1mi

.
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6.2 Sampling from a normal population

Let X1, X2, . . . , Xn be i.i.d N(µ, σ2), where µ ∈ R, σ > 0 are unknown.

You could think of the Xi’s for example as a set of randomly sampled SAT scores
from the entire population of SAT scores. Then µ is the average SAT score of the
entire population and σ2 is the variance of SAT scores in the entire population. We
are interested in estimating µ and σ2 based on the data. Note that SAT scores are
actually discrete in nature — N(µ, σ2) provides a good approximation to the actual
population distribution. In other words, N(µ, σ2) is the model that we use for the
SAT scores.

In statistics as in any other science, models are meant to provide insightful approxi-
mations to the true underlying nature of reality.

Natural estimates of the mean and the variance are given by:

µ̂ = Xn =
X1 +X2 + . . .+Xn

n
and σ̂2 =

1

n

n∑

i=1

(Xi −Xn)2 .

These are the sample mean and sample variance (biased version). In what follows,
we will use a slightly different estimator of σ2 than the one proposed above. We will
use

s2 =
1

n− 1

n∑

i=1

(Xi −Xn)2 .

One reason for using s2 is that it has a natural interpretation as the multiple of a χ2

random variable; further s2 is an unbiased estimator of σ2 whereas σ̂2 is not, i.e.,

E(s2) = σ2 but E(σ̂2) 6= σ2 .

For the sake of notational simplicity we will let S2 denote the residual sum of squares
about the mean, i.e., S2 :=

∑n
i=1 (Xi −Xn)2.

Here is an interesting (and fairly profound) proposition.

Proposition 6.3. Let X1, X2, . . . , Xn be an i.i.d sample from some distribution F
with mean µ and variance σ2. Then F is the N(µ, σ2) distribution if and only if for
all n, Xn and s2 are independent random variables. Moreover, when F is N(µ, σ2),
then

Xn ∼ N(µ,
σ2

n
), and s2 ∼ σ2

n− 1
χ2
n−1.

The “if” part is the profound part. It says that the independence of the natural
estimates of the mean and the variance for any sample size forces the underlying
distribution to be normal.

We will sketch a proof of the only if part, i.e., we will assume that F is N(µ, σ2) and
show that Xn and s2 are independent.
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Proof. To this end, define new random variables Y1, Y2, . . . , Yn where for each i,

Yi = (Xi − µ)/σ.

These are the standardized versions of the Xi’s and are i.i.d. N(0, 1) random variables.
Now, note that:

X = Y σ + µ and s2 =
σ2
∑n

i=1 (Yi − Y )2

n− 1
.

From the above display, we see that it suffices to show the independence of Y and∑n
i=1 (Yi − Y )2.

The way this proceeds is outlined below: Let Y denote the n × 1 column vector
(Y1, Y2, . . . , Yn)> and let P be an n × n orthogonal matrix with the first row of P
(which has length n) being (1/

√
n, 1/

√
n, . . . , 1/

√
n).

Recall that an orthogonal matrix satisfies

P>P = PP> = I

where I is the identity matrix.

Using standard linear algebra techniques it can be shown that such a P can always
be constructed. Now define a new random vector

W = PY .

Then it can be established that the random vector W = (W1,W2, . . . ,Wn)> has the
same distribution as (Y1, Y2, . . . , Yn)>; in other words, W1,W2, . . . ,Wn are i.i.d N(0, 1)
random variables.

Theorem 6.4. Suppose that Z1, . . . , Zn are i.i.d N(0, 1). Suppose that A is an or-
thogonal matrix and

V = AZ.

Then the random variables V1, . . . , Vn are i.i.d N(0, 1). Also,
∑n

i=1 V
2
i =

∑n
i=1 Z

2
i .

Note that
W>W = (PY )>PY = Y >P>PY = Y >Y

by the orthogonality of P ; in other words,
∑n

i=1 W
2
i =

∑n
i=1 Y

2
i . Also,

W1 = Y1/
√
n+ Y2/

√
n+ . . .+ Yn/

√
n =
√
nY .

Note that W1 is independent of W 2
2 +W 2

3 + . . .+W 2
n . But

n∑

i=2

W 2
i =

n∑

i=1

W 2
i −W 2

1 =
n∑

i=1

Y 2
i − nY

2
=

n∑

i=1

(Yi − Y )2 .
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It therefore follows that
√
nY and

∑n
i=1(Yi−Y )2 are independent, which implies that

Y and
∑n

i=1(Yi − Y )2 are independent.

Note that Y ∼ N(0, 1/n). Deduce that X follows N(µ, σ2/n). Since
∑n

i=1(Yi−Y )2 =
W 2

2 +W 2
3 + . . .+W 2

n , it follows that

S2

σ2
=

n∑

i=1

(Yi − Y )2 ∼ χ2
n−1 .

Thus,

s2 =
S2

n− 1
∼ σ2

n− 1
χ2
n−1. (3)

In the case n = 2, it is easy to check the details of the transformation leading from
Y to W . Set W = PY with

P =

(
1√
2

1√
2

1√
2
− 1√

2

)
.

Thus W1 = (Y1 + Y2)/
√

2 and W2 = (Y1 − Y2)/
√

2.

Exercise: Use the change of variable theorem to deduce that W1 and W2 are i.i.d
N(0, 1).

Proof of Theorem 6.4: The joint p.d.f of Z = (Z1, . . . Zn) is

fn(z) =
1

(2π)n/2
exp

(
−1

2

n∑

i=1

z2
i

)
, for z ∈ Rn.

Note that as Z 7→ AZ is a linear transformation. The joint p.d.f of V = AZ is

gn(v) =
1

| detA|fn(A−1v), for v ∈ Rn.

Let z = A−1v. Since A is orthogonal, | detA| = 1 and v>v =
∑n

i=1 v
2
i = z>z =∑n

i=1 z
2
i . So,

gn(v) =
1

(2π)n/2
exp

(
−1

2

n∑

i=1

v2
i

)
, for v ∈ Rn.

Thus, V has the same joint p.d.f as Z.
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6.3 The t-distribution

Definition: Let Z ∼ N(0, 1) and let V ∼ χ2
n, independent of each other. Then,

T =
Z√
V/n

is said to follow the t-distribution on n degrees of freedom. We write T ∼ tn.

The density of the t-distribution is derived in the text book (see Chapter 8.4). With
a little bit of patience, you can also work it out, using the change of variable theorem
appropriately (I won’t go into the computational details here).

Exercise: Let X be a random variable that is distributed symmetrically about 0, i.e.,
X and−X have the same distribution function (and hence the same density function).
If f denotes the density, show that it is an even function, i.e. f(x) = f(−x) for all x.

Conversely, if the random variable X has a density function f that is even, then it is
symmetrically distributed about 0, i.e X =d −X.

Here are some important facts about the t-distribution. Let T ∼ tn.

(a) T and −T have the same distribution. Thus, the distribution of T is symmetric
about 0 and it has an even density function.

From definition,

−T =
−Z√
V/n

=
Z̃√
V/n

,

where Z̃ ≡ −Z follows N(0, 1), and is independent of V where V follows χ2
n.

Thus, by definition, −T also follows the t-distribution on n degrees of freedom.

(b) As n→∞, the tn distribution converges to the N(0, 1) distribution; hence the
quantiles of the t-distribution are well approximated by the quantiles of the
normal distribution.

This follows from the law of large numbers. Consider the term V/n in the
denominator of T for large n. As V follows χ2

n it has the same distribution as
K1 +K2 + . . .+Kn where Ki’s are i.i.d χ2

1 random variables. But by the WLLN
we know that

K1 +K2 + . . .+Kn

n

P→ E(K1) = 1 (check!).

Thus V/n converges in probability to 1; hence the denominator in T converges
in probability to 1 and T consequently, converges in distribution to Z, where Z
is N(0, 1).
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Theorem 6.5. Suppose that X1, . . . , Xn form a random sample from the normal
distribution with mean µ and variance σ2. Let Xn denote the sample mean, and
define s2 = 1

n−1

∑n
i=1(Xi −Xn)2. Then

√
n(Xn − µ)

s
∼ tn−1.

7 Confidence intervals

Confidence intervals (CIs) provide a method of quantifying uncertainty to an estima-
tor θ̂ when we wish to estimate an unknown parameter θ.

We want to find an interval (A,B) that we think has high probability of containing
θ.

Definition: Suppose thatXn = (X1, . . . , Xn) is a random sample from a distribution
Pθ, θ ∈ Ω ⊂ Rk (that depends on a parameter θ).

Suppose that we want to estimate g(θ), a real-valued function of θ.

Let A ≤ B be two statistics that have the property that for all values of θ,

Pθ(A ≤ g(θ) ≤ B) ≥ 1− α,

where α ∈ (0, 1).

Then the random interval (A,B) is called a confidence interval for g(θ) with level
(coefficient) (1− α).

If the inequality “≥ 1− α” is an equality for all θ, the the CI is called exact.

Example 1: Find a level (1 − α) CI for µ from data X1, X2, . . . , Xn which are
i.i.d. N(µ, σ2) where σ is known. Here θ = µ and g(θ) = µ.

Step 1: We want to construct Ψ(X1, X2, . . . , Xn, µ) such that the distribution of this
object is known to us.

How do we proceed here?

The usual way is to find some decent estimator of µ and combine it along with µ in
some way to get a “pivot”, i.e., a random variable whose distribution does not depend
on θ.

The most intuitive estimator of µ here is the sample mean Xn. We know that

Xn ∼ N(µ, σ2/n).
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The standardized version of the sample mean follows N(0, 1) and can therefore act
as a pivot. In other words, construct,

Ψ(Xn, µ) =
X − µ
σ/
√
n

=

√
n (X − µ)

σ
∼ N(0, 1)

for every value of θ.

With zβ denoting the upper β-th quantile of N(0, 1) (i.e., P(Z > zβ) = β where Z
follows N(0, 1)) we can write:

Pµ
(
−zα/2 ≤

√
n(X − µ)

σ
≤ zα/2

)
= 1− α.

From the above display we can find limits for µ such that the above inequalities are
simultaneously satisfied. On doing the algebra, we get:

Pµ
(
X − σ√

n
zα/2 ≤ µ ≤ X +

σ√
n
zα/2

)
= 1− α.

Thus our level (1− α) CI for µ is given by

[
X − σ√

n
zα/2, X +

σ√
n
zα/2

]
.

Often a standard method of constructing CIs is the following method of pivots which
we describe below.

(1) Construct a function Ψ using the data Xn and g(θ), say Ψ(Xn, g(θ)), such
that the distribution of this random variable under parameter value θ does not
depend on θ and is known.

Such a Ψ is called a pivot.

(2) Let G denote the distribution function of the pivot. The idea now is to get a
range of plausible values of the pivot. The level of confidence 1 − α is to be
used to get the appropriate range.

This can be done in a variety of ways but the following is standard. Denote by
q(G; β) the β’th quantile of G. Thus,

Pθ[Ψ(Xn, g(θ)) ≤ q(G; β)] = β.

(3) Choose 0 ≤ β1, β2 ≤ α such that β1 + β2 = α. Then,

Pθ[q(G; β1) ≤ Ψ(Xn, g(θ)) ≤ q(G; 1− β2)] = 1− β2 − β1 = 1− α .
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(4) Vary θ across its domain and choose your level 1 − α confidence interval (set)
as the set of all g(θ) such that the two inequalities in the above display are
simultaneously satisfied.

Example 2: The data are the same as in Example 1 but now σ2 is no longer known.
Thus, the parameter of unknowns θ = (µ, σ2) and we are interested in finding a CI
for g(θ) = µ.

Clearly, setting

Ψ(Xn, µ) =

√
n(X − µ)

σ

will not work smoothly here. This certainly has a known (N(0, 1)) distribution but
involves the nuisance parameter σ making it difficult get a CI for µ directly.

However, one can replace σ by s, where s2 is the natural estimate of σ2 introduced
before. So, set:

Ψ(Xn, µ) =

√
n(X − µ)

s
.

This only depends on the data and g(θ) = µ. We claim that this is indeed a pivot.

To see this write √
n(X − µ)

s
=

√
n(X−µ)
σ√
s2/σ2

.

The numerator on the extreme right of the above display follows N(0, 1) and the
denominator is independent of the numerator and is the square root of a χ2

n−1 random
variable over its degrees of freedom (from display (3)).

It follows from definition that Ψ(Xn, µ) ∼ tn−1 distribution.

Thus, G here is the tn−1 distribution and we can choose the quantiles to be q(tn−1;α/2)
and q(tn−1; 1 − α/2). By symmetry of the tn−1 distribution about 0, we have,
q(tn−1;α/2) = −q(tn−1; 1− α/2). It follows that,

Pµ,σ2

[
−q(tn−1; 1− α/2) ≤

√
n(X − µ)

s
≤ q(tn−1; 1− α/2)

]
= 1− α .

As with Example 1, direct algebraic manipulations show that this is the same as the
statement:

Pµ,σ2

[
X − s√

n
q(tn−1; 1− α/2) ≤ µ ≤ X +

s√
n
q(tn−1; 1− α/2)

]
= 1− α .

This gives a level 1− α confidence set for µ.
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Food for thought: In each of the above examples there are innumerable ways of
decomposing α as β1 + β2. It turns out that when α is split equally the level 1 − α
CIs obtained in Examples 1 and 2 are the shortest.

What are desirable properties of confidence sets? On one hand, we require high levels
of confidence; in other words, we would like α to be as small as possible.

On the other hand we would like our CIs to be shortest possible.

Unfortunately, we cannot simultaneously make the confidence levels of our CIs go up
and the lengths of our CIs go down.

In Example 1, the length of the level (1− α) CI is

2σ
zα/2√
n
.

As we reduce α (for higher confidence), zα/2 increases, making the CI wider.

However, we can reduce the length of our CI for a fixed α by increasing the sample
size.

If my sample size is 4 times yours, I will end up with a CI which has the same level
as yours but has half the length of your CI.

Can we hope to get absolute confidence, i.e. α = 0? That is too much of an ask.
When α = 0, zα/2 = ∞ and the CIs for µ are infinitely large. The same can be
verified for Example 2.

Asymptotic pivots using the central limit theorem: The CLT allows us to
construct an approximate pivot for large sample sizes for estimating the population
mean µ for any underlying distribution F .

Let X1, X2, . . . , Xn be i.i.d observations from some common distribution F and let

E(X1) = µ and Var(X1) = σ2.

We are interested in constructing an approximate level (1− α) CI for µ.

By the CLT we have X ∼appx N(µ, σ2/n) for large n; in other words,

√
n(X − µ)

σ
∼appx N(0, 1) .

If σ is known the above quantity is an approximate pivot and following Example 1,
we can therefore write,

Pµ
(
−zα/2 ≤

√
n (X − µ)

σ
≤ zα/2

)
≈ 1− α .
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As before, this translates to

Pµ
(
X − σ√

n
zα/2 ≤ µ ≤ X +

σ√
n
zα/2

)
≈ 1− α.

This gives an approximate level (1− α) CI for µ when σ is known.

The approximation will improve as the sample size n increases.

Note that the true coverage of the above CI may be different from 1 − α and can
depend heavily on the nature of F and the sample size n.

Realistically however σ is unknown and is replaced by s. Since we are dealing with
large sample sizes, s is with very high probability close to σ and the interval

(
X − s√

n
zα/2 , X +

s√
n
zα/2

)
,

still remains an approximate level (1− α) CI.

Exercise: Suppose X1, X2, . . . , Xn are i.i.d Bernoulli(θ). The sample size n is large.

Thus
E(X1) = θ and Var(X1) = θ(1− θ).

We want to find a level (1− α) CI (approximate) for θ.

Note that both mean and variance are unknown.

Show that if θ̂ is natural estimate of θ obtained by computing the sample proportion
of 1’s, then 

θ̂ −

√
θ̂ (1− θ̂)
n− 1

zα/2 , θ̂ +

√
θ̂ (1− θ̂)
n− 1

zα/2




is an approximate level (1− α) CI for θ.

See http://www.rossmanchance.com/applets/ConfSim.html and
http://www.ruf.rice.edu/∼lane/stat sim/conf interval/ for illustrations of confidence
intervals.

Interpretation of confidence intervals: Let (A,B) be a coefficient γ confidence
interval for a parameter θ. Let (a, b) be the observed value of the interval.

It is NOT correct to say that “θ lies in the interval (a, b) with probability γ”.

50



It is true that “θ will lie in the random intervals having endpoints A(X1, . . . , Xn) and
B(X1, . . . , Xn) with probability γ”.

After observing the specific values A(X1, . . . , Xn) = a and B(X1, . . . , Xn) = b, it is
not possible to assign a probability to the event that θ lies in the specific interval
(a, b) without regarding θ as a random variable.

We usually say that there is confidence γ that θ lies in the interval (a, b).

8 The (Cramer-Rao) Information Inequality

We saw in the last lecture that for a variety of different models one could differentiate
the log-likelihood function with respect to the parameter θ and set this equal to 0 to
obtain the MLE of θ.

In these examples, the log-likelihood as a function of θ is strictly concave (looks like
an inverted bowl) and hence solving for the stationary point gives us the unique
maximizer of the log-likelihood.

We start this section by introducing some notation. Let X be a random variable with
p.d.f f(·, θ), where θ ∈ Ω, and

`(x, θ) = log f(x, θ) and ˙̀(x, θ) =
∂

∂θ
`(x, θ).

As before, Xn denotes the vector (X1, X2, . . . , Xn) and x denotes a particular value
(x1, x2, . . . , xn) assumed by the random vector Xn.

We denote by fn(x, θ) the value of the density of Xn at the point x. Then,

fn(x, θ) =
n∏

i=1

f(xi, θ).

Thus,

Ln(θ,Xn) =
n∏

i=1

f(Xi, θ) = fn(Xn, θ)

and

`n(Xn, θ) = logLn(θ,Xn) =
n∑

i=1

`(Xi, θ).

Differentiating with respect to θ yields

˙̀
n(Xn, θ) =

∂

∂θ
log fn(Xn, θ) =

n∑

i=1

˙̀(Xi, θ).
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We call ˙̀(x, θ) the score function and

˙̀
n(Xn, θ) = 0

the score equation. If differentiation is permissible for the purpose of obtaining the
MLE, then θ̂n, the MLE, solves the equation

˙̀
n(Xn, θ) ≡

n∑

i=1

˙̀(Xi, θ) = 0.

In this section, our first goal is to find a (nontrivial) lower bound on the variance
of unbiased estimators of g(θ) where g : Ω→ R is some differentiable function.

If we can indeed find such a bound (albeit under some regularity conditions) and
there is an unbiased estimator of g(θ) that attains this lower bound, we can conclude
that it is the MVUE of g(θ).

We now impose the following restrictions (regularity conditions) on the model.

(A.1) The set Aθ = {x : f(x, θ) > 0} actually does NOT depend on θ and is subse-
quently denoted by A.

(A.2) If W (Xn) is a statistic such that Eθ(|W (Xn)|) <∞ for all θ, then,

∂

∂θ
Eθ[W (Xn)] =

∂

∂θ

∫

An

W (x) fn(x, θ) dx =

∫

An

W (x)
∂

∂θ
fn(x, θ)dx.

(A.3) The quantity ∂
∂θ

log f(x, θ) exists for all x ∈ A and all θ ∈ Ω as a well-defined
finite quantity.

The first condition says that the set of possible values of the data vector on which the
distribution of Xn is supported does not vary with θ; this therefore rules out families
of distribution like the uniform.

The second assumption is a “smoothness assumption” on the family of densities and
is generally happily satisfied for most parametric models we encounter in statistics.

There are various types of simple sufficient conditions that one can impose on f(x, θ)
to make the interchange of integration and differentiation possible — we shall however
not bother about these for the moment.

For most of the sequel, for notational simplicity, we will assume that the parameter
space Ω ⊂ R. We define the information about the parameter θ in the model,
namely I(θ), by

I(θ) := Eθ[ ˙̀2(X, θ)],
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provided it exists as a finite quantity for every θ ∈ Ω.

We then have the following theorem.

Theorem 8.1 (Cramer-Rao inequality). All notation being as above, if T (Xn) is an
unbiased estimator of g(θ), then

Varθ(T (Xn)) ≥ [g′(θ)]2

nI(θ)
,

provided assumptions A.1, A.2 and A.3 hold, and I(θ) exists and is finite for all θ.

The above inequality is the celebrated Cramer-Rao inequality (or the informa-
tion inequality) and is one of the most well-known inequalities in statistics and has
important ramifications in even more advanced forms of inference.

Notice that if we take g(θ) = θ then n−1I(θ)−1 gives us a lower bound on the variance
of unbiased estimators of θ in the model.

If I(θ) is small, the lower bound is large, so unbiased estimators are doing a poor job
in general — in other words, the data is not that informative about θ (within the
context of unbiased estimation).

On the other hand, if I(θ) is big, the lower bound is small, and so if we have a best
unbiased estimator of θ that actually attains this lower bound, we are doing a good
job. That is why I(θ) is referred to as the information about θ.

Proof of Theorem 8.1: Let ρθ denote the correlation between T (Xn) and ˙̀
n(Xn, θ).

Then ρ2
θ ≤ 1 which implies that

Cov2
θ

(
T (Xn), ˙̀

n(Xn, θ)
)
≤ Varθ(T (Xn)) · Varθ( ˙̀

n(Xn, θ)). (4)

As,

1 =

∫
fn(x, θ) dx, for all θ ∈ Ω,

on differentiating both sides of the above identity with respect to θ and using A.2
with W (x) ≡ 1 we obtain,

0 =

∫
∂

∂θ
fn(x, θ)dx =

∫ (
∂

∂θ
fn(x, θ)

)
1

fn(x, θ)
fn(x, θ)dx

=

∫ (
∂

∂θ
log fn(x, θ)

)
fn(x, θ)dx.

The last expression in the above display is precisely Eθ[ ˙̀
n(Xn, θ)] which therefore is

equal to 0. Note that,

Eθ[ ˙̀
n(Xn, θ)] = Eθ

(
n∑

i=1

˙̀(Xi, θ)

)
= nEθ

[
˙̀(X, θ)

]
,
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since the ˙̀(Xi, θ)’s are i.i.d. Thus, we have Eθ
(

˙̀(X1, θ)
)

= 0. This implies that

I(θ) = Varθ( ˙̀(X, θ)).

Further, let In(θ) := Eθ[ ˙̀2
n(Xn, θ)]. Then

In(θ) = Varθ( ˙̀
n(Xn, θ)) = Varθ

(
n∑

i=1

˙̀(Xi, θ)

)

=
n∑

i=1

Varθ( ˙̀(Xi, θ)) = nI(θ).

We will refer to In(θ) as the information based on n observations. Since Eθ[ ˙̀
n(Xn, θ)] =

0, it follows that

Covθ

(
T (Xn), ˙̀

n(Xn, θ)
)

=

∫
T (x) ˙̀

n(x, θ)fn(x, θ)dx

=

∫
T (x)

(
∂

∂θ
fn(x, θ)

)
dx

=
∂

∂θ

∫
T (x)fn(x, θ)dx (by A.2)

=
∂

∂θ
g(θ) = g′(θ).

Using the above in conjunction in (4) we get,

[g′(θ)]2 ≤ Varθ(T (Xn)) In(θ)

which is equivalent to what we set out to prove. 2

There is an alternative expression for the information I(θ) in terms of the second
derivative of the log-likelihood with respect to θ. If

῭(x, θ) :=
∂2

∂θ2
log f(x, θ)

exists for all x ∈ A and for all θ ∈ Θ then, we have the following identity:

I(θ) = Eθ
(

˙̀(X, θ)2
)

= −Eθ
(

῭(X, θ)
)
,

provided we can differentiate twice under the integral sign; more concretely, if
∫

∂2

∂θ2
f(x, θ)dx =

∂2

∂θ2

∫
f(x, θ)dx = 0 (?).

To prove the above identity, first note that,

˙̀(x, θ) =
1

f(x, θ)

[
∂

∂θ
f(x, θ)

]
.
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Now,

῭(x, θ) =
∂

∂θ

(
˙̀(x, θ)

)
=

∂

∂θ

(
1

f(x, θ)

∂

∂θ
f(x, θ)

)

=
∂2

∂θ2
f(x, θ)

1

f(x, θ)
− 1

f 2(x, θ)

(
∂

∂θ
f(x, θ)

)2

=
∂2

∂θ2
f(x, θ)

1

f(x, θ)
− ˙̀(x, θ)2.

Thus,

Eθ[῭(X, θ)] =

∫
῭(x, θ)f(x, θ)dx

=

∫
∂2

∂θ2
f(x, θ)dx− Eθ[ ˙̀2(X, θ)]

= 0− Eθ[ ˙̀2(X, θ)],

where the first term on the right side vanishes by virtue of (?). This establishes the
desired equality. It follows that,

In(θ) = Eθ[−῭
n(Xn, θ)],

where ῭
n(Xn, θ) is the second partial derivative of `n(Xn, θ) with respect to θ. To

see this, note that,

῭
n(Xn, θ) =

∂2

∂θ2

(
n∑

i=1

`(Xi, θ)

)
=

n∑

i=1

῭(Xi, θ),

so that

Eθ[῭n(Xn, θ)] =
n∑

i=1

Eθ[῭(Xi, θ)] = nEθ[῭(X, θ)] = −n I(θ).

We now look at some applications of the Cramer-Rao inequality.

Example 1: Let X1, X2, . . . , Xn be i.i.d Pois(θ), θ > 0. Then

Eθ(X1) = θ and Varθ(X1) = θ.

Let us first write down the likelihood of the data. We have,

fn(x, θ) =
n∏

i=1

e−θ θxi

xi!
= e−n θ θ

∑n
i=1 xi

(
n∏

i=1

xi!

)−1

.

Thus,

`n(x, θ) = −nθ + log θ

(
n∑

i=1

xi

)
− log

n∏

i=1

xi!

˙̀
n(x, θ) = −n+

1

θ

n∑

i=1

xi.
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Thus the information about θ based on n observations is given by,

In(θ) = Varθ

(
−n+

1

θ

n∑

i=1

Xi

)
=

1

θ2
Varθ

(
n∑

i=1

Xi

)
=
nθ

θ2
=
n

θ
.

The assumptions needed for the Cramer-Rao inequality to hold are all satisfied for
this model, and it follows that for any unbiased estimator T (Xn) of g(θ) = θ we have,

Varθ(T (Xn)) ≥ 1

In(θ)
=
θ

n
.

Since Xn is unbiased for θ and has variance θ/n we conclude that Xn is the best
unbiased estimator (MVUE) of θ.

Example 2: Let X1, X2, . . . , Xn be i.i.d N(0, V ). Consider once again, the joint
density of the n observations:

fn(x, V ) =
1

(2πV )n/2
exp

(
− 1

2V

n∑

i=1

x2
i

)
.

Now,

˙̀
n(x, V ) =

∂

∂V

(
−n

2
log 2π − n

2
log V − 1

2V

n∑

i=1

x2
i

)

= − n

2V
+

1

2V 2

n∑

i=1

x2
i .

Differentiating yet again we obtain,

῭
n(x, V ) =

n

2V 2
− 1

V 3

n∑

i=1

x2
i .

Then, the information for V based on n observations is,

In(V ) = −EV
(

n

2V 2
− 1

V 3

n∑

i=1

X2
i

)
=

n

2V 2
+

1

V 3
nV =

n

2V 2
.

Now consider the problem of estimating g(V ) = V . For any unbiased estimator
S(Xn) of V , the Cramer-Rao inequality tells us that

VarV (S(Xn)) ≥ In(V )−1 =
2V 2

n
.

Consider,
∑n

i=1X
2
i /n as an estimator of V . This is clearly unbiased for V and the

variance is given by,

VarV

(
1

n

n∑

i=1

X2
i

)
=

1

n
VarV (X2

1 ) =
V 2

n
VarV

(
X2

1

V

)
=

2V 2

n
,

since X2
1/V ∼ χ2

1 which has variance 2. It follows that
∑

X2
i /n is the best unbiased

estimator of V in this model.
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9 Large Sample Properties of the MLE

In this section we study some of the large sample properties of the MLE in standard
parametric models and how these can be used to construct confidence sets for θ or
a function of θ. We will see in this section that in the long run MLEs are the best
possible estimators in a variety of different models.

We will stick to models satisfying the restrictions (A1, A2 and A3) imposed in the
last section. Hence our results will not apply to the uniform distribution (or ones
similar to the uniform).

Let us throw our minds back to the Cramer-Rao inequality. When does an unbiased
estimator T (Xn) of g(θ) attain the bound given by this inequality? This requires:

Varθ(T (Xn)) =
(g′(θ))2

n I(θ)
.

But this is equivalent to the assertion that the correlation between T (Xn) and
˙̀
n(Xn, θ) is equal to 1 or -1.

This means that ˙̀
n(Xn, θ) can be expressed as a linear function of T (Xn).

In fact, this is a necessary and sufficient condition for the information bound to be
attained by the variance of T (Xn).

It turns out that this is generally difficult to achieve. Thus, there will be many differ-
ent functions of θ, for which best unbiased estimators will exist but whose variance
will not hit the information bound. The example below will illustrate this point.

Example: Let X1, X2, . . . , Xn be i.i.d Ber(θ). We have,

f(x, θ) = θx(1− θ)1−x for x = 0, 1.

Thus,
`(x, θ) = x log θ + (1− x) log(1− θ) ,

˙̀(x, θ) =
x

θ
− 1− x

1− θ
and

῭(x, θ) = − x
θ2
− 1− x

(1− θ)2
.

Thus,

˙̀
n(Xn, θ) =

n∑

i=1

˙̀(Xi, θ) =

∑n
i=1 Xi

θ
− n−∑n

i=1 Xi

1− θ .

Recall that the MLE solves ˙̀
n(Xn, θ) = 0.

Check that in this situation, this gives you precisely Xn as your MLE.
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Let us compute the information I(θ). We have,

I(θ) = −Eθ[῭(X1, θ)] = Eθ
(
X1

θ2
+

1−X1

(1− θ)2

)
=

1

θ
+

1

1− θ =
1

θ (1− θ) .

Thus,

In(θ) = nI(θ) =
n

θ(1− θ) .

Consider unbiased estimation of Ψ(θ) = θ based on Xn. Let T (Xn) be an unbiased
estimator of θ. Then, by the information inequality,

Varθ(T (Xn)) ≥ θ(1− θ)
n

.

Note that the variance of X is precisely θ(1−θ)/n, so that it is the MVUE of θ. Note
that,

˙̀
n(Xn, θ) =

nX

θ
− n(1−X)

1− θ =

(
n

θ
+

n

1− θ

)
X − n

1− θ .

Thus, Xn is indeed linear in ˙̀
n(Xn, θ).

Consider now estimating a different function of θ, say g(θ) = θ2.

This is the probability of getting two consecutive heads. Suppose we try to find an
unbiased estimator of this parameter.

Then S(Xn) = X1X2 is an unbiased estimator (Eθ(X1X2) = Eθ(X1)Eθ(X2) = θ2),
but then so is XiXj for any i 6= j.

We can find the best unbiased estimator of θ2 in this model by using techniques
beyond the scope of this course — it can be shown that any estimator T (Xn) that
can be written as a function of X and is unbiased for θ2 is an MVUE (and indeed
there is one such).

Verify that,

T ∗(Xn) =
nX

2 −X
n− 1

is unbiased for θ2 and is therefore an (in fact the) MVUE.

However, the variance of T ∗(Xn) does not attain the information bound for estimating
g(θ) which is 4θ3(1− θ)/n (Exercise).

Exercise: Verify, in the Bernoulli example above in this section, that
√
n (g(Xn)− g(θ))→d N(0, 4θ3(1− θ)).

This can be checked by direct (somewhat tedious) computation or by noting that
T ∗(Xn) is not a linear function of ˙̀

n(Xn, θ).
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The question then is whether we can propose an estimator of θ2 that does achieve
the bound, at least approximately, in the long run.

It turns out that this is actually possible. Since the MLE of θ is X, the MLE of g(θ)

is proposed as the plug-in value g(X) = X
2
.

This is not an unbiased estimator of g(θ) in finite samples, but has excellent behavior
in the long run. In fact,

√
n (g(Xn)− g(θ))→d N(0, 4θ3(1− θ)).

Thus for large values of n, g(X) behaves approximately like a normal random variable
with mean g(θ) and variance 4θ3(1− θ)/n.

In this sense, g(Xn) is asymptotically (in the long run) unbiased and asymptotically
efficient (in the sense that it has minimum variance).

Here is an important proposition that establishes the limiting behavior of the MLE.

Proposition 9.1. If θ̂n is the MLE of θ obtained by solving

n∑

i=1

˙̀(Xi, θ) = 0,

then the following representation for the MLE is valid:

√
n(θ̂n − θ) =

1√
n

n∑

i=1

I(θ)−1 ˙̀(Xi, θ) + rn,

where rn converges to 0 in probability. It follows by a direct application of the CLT
that, √

n(θ̂n − θ)→d N(0, I(θ)−1).

The above result shows MLE θ̂ is (asymptotically) the best possible estimator: Not
only does its long term distribution center around θ, the quantity of interest, its
distribution is also less spread out than that of any “reasonable” estimator of θ. If
Sn is a “reasonable” estimator of θ, with

√
n (Sn − θ)→d N(0, ξ2(θ)) ,

then ξ2(θ) ≥ I(θ)−1.

Recall the delta method.
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Proposition 9.2 (Delta method). Suppose Tn is an estimator of θ (based on i.i.d
observations, X1, X2, . . . , Xn from Pθ) that satisfies:

√
n(Tn − θ)→d N(0, σ2(θ)).

Here σ2(θ) is the limiting variance and depends on the underlying parameter θ. Then,
for a continuously differentiable function h such that h′(g(θ)) 6= 0, we have:

√
n (g(Tn)− g(θ))→d N(0, (g′(θ))2 σ2(θ)) .

We can now deduce the limiting behavior of the MLE of g(θ) given by g(θ̂n) for any
smooth function g such that g′(θ) 6= 0.

Combining Proposition 9.1 with Proposition 9.2 yields (take Tn = θ̂n)

√
n(g(θ̂n)− g(θ))→d N(0, g′(θ)2 I(θ)−1).

Thus, for large n,
g(θ̂n) ∼appx N(g(θ), g′(θ)2 (n I(θ))−1) .

Thus g(θ̂n) is asymptotically unbiased for g(θ) (unbiased in the long run) and its
variance is approximately the information bound for unbiased estimators of g(θ).

Constructing confidence sets for θ: Suppose that, for simplicity, θ takes values
in a subset of R. Since, √

n(θ̂ − θ)→d N(0, I(θ)−1),

it follows that √
n I(θ)(θ̂ − θ)→d N(0, 1).

Thus, the left side acts as an approximate pivot for θ. We have,

Pθ
(
−zα/2 ≤

√
nI(θ)(θ̂ − θ) ≤ zα/2

)
≈ 1− α.

An approximate level 1− α confidence set for θ is obtained as

{
θ : −zα/2 ≤

√
nI(θ)(θ̂ − θ) ≤ zα/2

}
.

To find the above confidence set, one needs to solve for all values of θ satisfying
the inequalities in the above display; this can however be a potentially complicated
exercise depending on the functional form for I(θ).
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However, if the sample size n is large I(θ̂) can be expected to be close to I(θ) with
high probability and hence the following is also valid:

Pθ

[
−zα/2 ≤

√
n I(θ̂)(θ̂ − θ) ≤ zα/2

]
≈ 1− α. (? ?)

This immediately gives an approximate level 1− α CI for θ as:

θ̂ − 1√

nI(θ̂)
zα/2, θ̂ +

1√
nI(θ̂)

zα/2


 .

Let’s see what this implies for the Bernoulli example discussed above. Recall that
I(θ) = (θ (1− θ))−1 and θ̂ = X. The approximate level 1− α CI is then given by,


X −

√
X (1−X)

n
zα/2, X +

√
X (1−X)

n
zα/2


 .

Exercise: Find explicitly
{
θ : −zα/2 ≤

√
n I(θ)(θ̂ − θ) ≤ zα/2

}

in the following cases (a) X1, X2, . . . , Xn are i.i.d Bernoulli(θ). (b) X1, X2, . . . , Xn are
i.i.d Pois(θ).

You will see that this involves solving for the roots of a quadratic equation. As in the
Bernoulli example, one can also get an approximate CI for θ in the Poisson setting
on using (? ?). Verify that this yields the following level 1− α CI for θ:


X −

√
X

n
zα/2, X +

√
X

n
zα/2


 .

The recipe (? ?) is somewhat unsatisfactory because it involves one more level of
approximation in that I(θ) is replaced by I(θ̂) (note that there is already one level
of approximation in that the pivots being considered are only approximately N(0, 1)
by the CLT).

10 Hypothesis Testing

10.1 Principles of Hypothesis Testing

We are given data (say X1, . . . , Xn i.i.d Pθ) from a model that is parametrized by θ.
We consider a statistical problem involving θ whose value is unknown but must lie in
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a certain space Ω. We consider the testing problem

H0 : θ ∈ Ω0 versus H1 : θ ∈ Ω1, (5)

where Ω0 ∩ Ω1 = ∅ and Ω0 ∪ Ω1 = Ω.

Here the hypothesis H0 is called the null hypothesis and H1 is called the alterna-
tive hypothesis.

Question: Is there enough evidence in the data against the null hypothesis (in which
case we reject it) or should we continue to stick to it?

Such questions arise very naturally in many different fields of application.

Definition 16 (One-sided and two-sided hypotheses). Let θ be a one-dimensional
parameter.

• one-sided hypotheses

– H0 : θ ≤ θ0, and H1 : θ > θ0, or

– H0 : θ ≥ θ0, and H1 : θ < θ0

• two-sided hypotheses H0 : θ = θ0, and H1 : θ 6= θ0.

H0 is simple if Ω0 is a set with only one point; otherwise, H0 is composite.

Testing for a normal mean: Suppose that X1, X2, . . . , Xn is a sample from a
N(µ, σ2) distribution and let, initially, σ2 be known.

We want to test the null hypothesis H0 : µ = µ0 against the alternative H1 : µ 6= µ0.

Example: For concreteness, X1, X2, . . . , Xn could be the heights of n individuals in
some tribal population. The distribution of heights in a (homogeneous) population
is usually normal, so that a N(µ, σ2) model is appropriate. If we have some a-priori
reason to believe that the average height in this population is around 60 inches, we
could postulate a null hypothesis of the form H0 : µ = µ0 ≡ 60; the alternative
hypothesis is H1 : µ 6= 60.

10.2 Critical regions and test statistics

Consider a problem in which we wish to test the following hypotheses:

H0 : θ ∈ Ω0, and H1 : θ ∈ Ω1. (6)
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Question: How do we do the test?

The statistician must decide, after observing data, which of the hypothesis H0 or H1

appears to be true.

A procedure for deciding which hypothesis to choose is called a test procedure of
simply a test. We will denote a test by δ.

Suppose we can observe a random sample X = (X1, . . . , Xn) drawn from a distribution
that involves the unknown parameter θ, e.g., suppose that X1, . . . , Xn are i.i.d Pθ,
θ ∈ Ω.

Let S denote the set of all possible values of the n-dimensional random vector X.

We specify a test procedure by partitioning S into two subsets: S = S0 ∪ S1, where

– the rejection region (sometimes also called the critical region) S1 contains
the values of X for which we will reject H0, and

– the other subset S0 (usually called the acceptance region) contains the values
of X for which we will not reject H0.

A test procedure is determined by specifying the critical region S1 of the test.

In most hypothesis-testing problems, the critical region is defined in terms of a statis-
tic, T = ϕ(X).

Definition 17 (Test statistic/rejection region). Let X be a random sample from a
distribution that depends on a parameter θ. Let T = ϕ(X) be a statistic, and let R be
a subset of the real line. Suppose that a test procedure is of the form:

reject H0 if T ∈ R.

Then we call T a test statistic, and we call R the rejection region of the test:

S1 = {x : ϕ(x) ∈ R}.

Typically, the rejection region for a test based on a test statistic T will be some fixed
interval or the complement of some fixed interval.

If the test rejects H0 when T ≥ c, the rejection region is the interval [c,∞). Indeed,
most of the tests can be written in the form:

reject H0 if T ≥ c.
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Example: Suppose that X1, . . . , Xn are i.i.d N(µ, σ2) where µ ∈ R is unknown, and
σ > 0 is assumed known.

Suppose that we want to test H0 : µ = µ0 versus H1 : µ 6= µ0.

Some of these procedures can be justified using formal paradigms. Under the null
hypothesis the Xi’s are i.i.d N(µ0, σ

2) and the sample mean X follows N(µ0, σ
2/n).

Thus, it is reasonable to take T = ϕ(X) = |X − µ0|.

Large deviations of the observed value of X from µ0 would lead us to suspect that
the null hypothesis might not be true.

Thus, a reasonable test can be to reject H0 if T = |X − µ0| > c, for some “large”
constant c.

But how large is large? We will discuss this soon...

Associated with the test procedure δ are two different kinds of error that we can
commit. These are called Type 1 error and Type 2 error (Draw the 2× 2 table!).

Decision Fail to reject H0 Reject H0

State

H0 True Correct Type 1 error
H1 True Type 2 error Correct

Table 1: Hypothesis test.

Type 1 error occurs if we reject the null hypothesis when actually H0 is true.

Type 2 error occurs if we do not reject the null hypothesis when actually H0 is false.

10.3 Power function and types of error

Let δ be a test procedure. If S1 denotes the critical region of δ, then the power
function of the test δ, π(θ|δ), is defined by the relation

π(θ|δ) = Pθ(X ∈ S1) for θ ∈ Ω.

Thus, the power function π(θ|δ) specifies for each possible value of θ, the probability
that δ will reject H0. If δ is described in terms of a test statistic T and rejection
region R, the power function is

π(θ|δ) = Pθ(T ∈ R) for θ ∈ Ω.
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Example: Suppose that X1, . . . , Xn are i.i.d Uniform(0, θ), where θ > 0 is unknown.

Suppose that we are interested in the following hypotheses:

H0 : 3 ≤ θ ≤ 4, versus H1 : θ < 3, or θ > 4.

We know that the MLE of θ is X(n) = max{X1, . . . , Xn}.

Note that X(n) < θ.

Suppose that we use a test δ given by the critical region

S1 = {x ∈ Rn : x(n) ≤ 2.9 or x(n) ≥ 4}.

Question: Find the power function π(θ|δ)?

Solution: The power function of δ is

π(θ|δ) = Pθ(X(n) ≤ 2.9 or X(n) > 4) = Pθ(X(n) ≤ 2.9) + Pθ(X(n) ≥ 4).

Case (i): Suppose that θ ≤ 2.9. Then

π(θ|δ) = Pθ(X(n) ≤ 2.9) = 1.

Case (ii): Suppose that 2.9 < θ < 4. Then

π(θ|δ) = Pθ(X(n) ≤ 2.9) =

(
2.9

θ

)n
.

Case (iii): Suppose that θ > 4. Then

π(θ|δ) =

(
2.9

θ

)n
+

[
1−

(
4

θ

)n]
.

The ideal power function would be one for which

• π(θ|δ) = 0 for every value of θ ∈ Ω0, and

• π(θ|δ) = 1 for every value of θ ∈ Ω1.

If the power function of a test δ actually had these values, then regardless of the
actual value of θ, δ would lead to the correct decision with probability 1.

In a practical problem, however, there would seldom exist any test procedure having
this ideal power function.
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• Type-I error: rejecting H0 given that θ ∈ Ω0. It occurs with probability π(θ|δ).

• Type-II error: not rejecting H0 given that θ ∈ Ω1. It occurs with probability
1− π(θ|δ).

Ideal goals: we would like the power function π(θ|δ) to be low for values of θ ∈ Ω0,
and high for θ ∈ Ω1.

Generally, these two goals work against each other. That is, if we choose δ to make
π(θ|δ) small for θ ∈ Ω0, we will usually find that π(θ|δ) is small for θ ∈ Ω1 as well.

Examples:

• The test procedure δ0 that never rejects H0, regardless of what data are ob-
served, will have π(θ|δ0) = 0 for all θ ∈ Ω0. However, for this procedure
π(θ|δ0) = 0 for all θ ∈ Ω1 as well.

• Similarly, the test δ1 that always rejects H0 will have π(θ|δ1) = 1 for all θ ∈ Ω1,
but it will also have π(θ|δ1) = 1 for all θ ∈ Ω0.

Hence, there is a need to strike an appropriate balance between the two goals of

low power in Ω0 and high power in Ω1.

1. The most popular method for striking a balance between the two goals is to
choose a number α0 ∈ (0, 1) and require that

π(θ|δ) ≤ α0, for all θ ∈ Ω0. (7)

This α0 will usually be a small positive fraction (historically .05 or .01) and will
be called the level of significance or simply level.

Then, among all tests that satisfy (7), the statistician seeks a test whose power
function is as high as can be obtained for θ ∈ Ω1.

2. Another method of balancing the probabilities of type I and type II errors is to
minimize a linear combination of the different probabilities of error.

10.4 Significance level

Definition 18 (level/size). (of the test)
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• A test that satisfies (7) is called a level α0 test, and we say that the test has
level of significance α0.

• The size α(δ) of a test δ is defined as follows:

α(δ) = sup
θ∈Ω0

π(θ|δ).

It follows from Definition 18 that:

• A test δ is a level α0 test iff α(δ) ≤ α0.

• If the null hypothesis is simple (that is, H0 : θ = θ0), then α(δ) = π(θ0|δ).

Making a test have a specific significance level

Suppose that we wish to test the hypotheses

H0 : θ ∈ Ω0, versus H1 : θ ∈ Ω1.

Let T be a test statistic, and suppose that our test will reject the null hypothesis if
T ≥ c, for some constant c. Suppose also that we desire our test to have the level of
significance α0. The power function of our test is π(θ|δ) = Pθ(T ≥ c), and we want
that

sup
θ∈Ω0

Pθ(T ≥ c) ≤ α0. (8)

Remarks:

1. It is clear that the power function, and hence the left side of (8), are non-
increasing functions of c.

Hence, (8) will be satisfied for large values of c, but not for small values.

If T has a continuous distribution, then it is usually simple to find an appropriate
c.

2. Whenever we choose a test procedure, we should also examine the power func-
tion. If one has made a good choice, then the power function should generally
be larger for θ ∈ Ω1 than for θ ∈ Ω0.

Example: Suppose that X1, . . . , Xn are i.i.d N(µ, σ2) where µ ∈ R is unknown, and
σ > 0 is assumed known. We want to test H0 : µ = µ0 versus H1 : µ 6= µ0.

Suppose that the null hypothesis H0 is true.
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If the variance of the sample mean is, say, 100, a deviation of X from µ0 by 15 is not
really unusual.

On the other hand if the variance is 10, then a deviation of the sample mean from µ0

by 15 is really sensational.

Thus the quantity |X −µ0| in itself is not sufficient to formulate a decision regarding
rejection of the null hypothesis.

We need to adjust for the underlying variance. This is done by computing the so-
called z-statistic,

Z :=
X − µ0

σ/
√
n
≡
√
n(X − µ0)

σ

and rejecting the null hypothesis for large absolute values of this statistic.

Under the null hypothesis Z follows N(0, 1); thus an absolute Z-value of 3.5 is quite
unlikely. Therefore if we observe an absolute Z-value of 3.5 we might rule in favor of
the alternative hypothesis.

You can see now that we need a threshold value, or in other words a critical point
such that if the Z-value exceeds that point we reject. Our test procedure δ then looks
like,

reject H0 if

∣∣∣∣
√
n(X − µ0)

σ

∣∣∣∣ > cn,α0

where cn,α0 is the critical value and will depend on α0 which is the tolerance for the
Type 1 error, i.e., the level that we set beforehand.

The quantity cn,α0 is determined using the relation

Pµ0
(∣∣∣∣
√
n(X − µ0)

σ

∣∣∣∣ > cn,α0

)
= α0.

Straightforward algebra then yields that

Pµ0

(
−cn,α0

σ√
n
≤ X − µ0 ≤ cn,α0

σ√
n

)
= 1− α0,

whence we can choose cn,α0 = zα0/2, the α0

2
-th quantile of the N(0, 1) distribution.

The acceptance region A (or S0) for the null hypothesis is therefore

A =

{
x = (x1, x2, . . . , xn) : µ0 −

σ√
n
zα0/2 ≤ x ≤ µ0 +

σ√
n
zα0/2

}
.

So we accept whenever X lies in a certain window of µ0, the postulated value under
the null, and reject otherwise which is in accordance with intuition.

The length of the window is determined by the tolerance level α0, the underlying
variance σ2 and of course the sample size n.
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Figure 4: The power function π(µ|δ) for µ0 = 0, σ = 1 and n = 25.

10.5 P -value

The p-value is the smallest level α0 such that we would reject H0 at level α0 with
the observed data.

For this reason, the p-value is also called the observed level of significance.

Example: If the observed value of Z was 2.78, and that the corresponding p-value =
0.0054. It is then said that the observed value of Z is just significant at the level of
significance 0.0054.

Advantages:

1. No need to select beforehand an arbitrary level of significance α0 at which to
carry out the test.

2. When we learn that the observed value of Z was just significant at the level of
significance 0.0054, we immediately know that H0 would be rejected for every
larger value of α0 and would not be rejected for any smaller value.

10.6 Testing simple hypotheses: optimal tests

Let the random vector X = (X1, . . . , Xn) come from a distribution for which the joint
p.m.f/p.d.f is either f0(x) or f1(x). Let Ω = {θ0, θ1}. Then,

• θ = θ0 stands for the case in which the data have p.m.f/p.d.f f0(x),
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• θ = θ1 stands for the case in which the data have p.m.f/p.d.f f1(x).

We are then interested in testing the following simple hypotheses:

H0 : θ = θ0 versus H1 : θ = θ1.

In this case, we have special notation for the probabilities of type I and type II errors:

α(δ) = Pθ0(Rejecting H0),

β(δ) = Pθ1(Not rejecting H0).

10.6.1 Minimizing the P(Type-II error)

Suppose that the probability α(δ) of an error of type I is not permitted to be greater
than a specified level of significance, and it is desired to find a procedure δ for which
β(δ) will be a minimum.

Theorem 10.1 (Neyman-Pearson lemma). Suppose that δ′ is a test procedure that
has the following form for some constant k > 0:

• H0 is not rejected if f1(x) < kf0(x),

• H0 is rejected if f1(x) > kf0(x), and

• H0 can be either rejected or not if f1(x) = kf0(x).

Let δ be another test procedure. Then,

if α(δ) ≤ α(δ′), then it follows that β(δ) ≥ β(δ′)

if α(δ) < α(δ′), then it follows that β(δ) > β(δ′).

Example: Suppose that X = (X1, . . . , Xn) is a random sample from the normal
distribution with unknown mean θ and known variance 1. We are interested in testing:

H0 : θ = 0 versus H1 : θ = 1.

We want to find a test procedure for which β(δ) will be a minimum among all test
procedures for which α(δ) ≤ 0.05.

We have,

f0(x) =
1

(2π)n/2
exp

(
−1

2

n∑

i=1

x2
i

)
and f1(x) =

1

(2π)n/2
exp

[
−1

2

n∑

i=1

(xi − 1)2

]
.
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After some algebra, the likelihood ratio f1(x)/f0(x) can be written in the form

f1(x)

f0(x)
= exp

[
n

(
x̄− 1

2

)]
.

Thus, rejecting H0 when the likelihood ratio is greater than a specified positive
constant k is equivalent to rejecting H0 when the sample mean X̄ is greater than
k′ := 1/2 + log k/n, another constant. Thus, we want to find, k′ such that

P0(X̄ > k′) = 0.05.

Now,

P0(X̄ > k′) = P0(
√
nX̄ >

√
nk′) = P0(Z >

√
nk′) = 0.05

⇒ √
nk′ = 1.645.

10.7 Uniformly most powerful (UMP) tests

Let the null and/or alternative hypothesis be composite

• H0 : θ ≤ θ0 and H1 : θ > θ0, or

• H0 : θ ≥ θ0 and H1 : θ < θ0

We suppose that Ω0 and Ω1 are disjoint subsets of Ω, and the hypotheses to be tested
are

H0 : θ ∈ Ω0 versus H1 : θ ∈ Ω1. (9)

• The subset Ω1 contains at least two distinct values of θ, in which case the
alternative hypothesis H1 is composite.

• The null hypothesis H0 may be either simple or composite.

We consider only procedures in which

Pθ(RejectingH0) ≤ α0 ∀ θ ∈ Ω0.

that is
π(θ|δ) ≤ α0 ∀ θ ∈ Ω0

or
α(δ) ≤ α0. (10)

Finally, among all test procedures that satisfy the requirement (10), we want to find
one such that
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• the probability of type II error is as small as possible for every θ ∈ Ω1, or

• the value of π(θ|δ) is as large as possible for every value of θ ∈ Ω1.

There might be no single test procedure δ that maximizes the power function π(θ|δ)
simultaneously for every value of θ ∈ Ω1.

In some problems, however, there will exist a test procedure that satisfies this crite-
rion. Such a procedure, when it exists, is called a UMP test.

Definition 19 (Uniformly most powerful (UMP) test). A test procedure δ∗ is a uni-
formly most powerful (UMP) test of the hypotheses (9) at the level of significance α0

if
α(δ∗) ≤ α0

and, for every other test procedure δ such that α(δ) ≤ α0, it is true that

π(θ|δ) ≤ π(θ|δ∗)

for every value of θ ∈ Ω1.

Usually no test will uniformly most powerful against ALL alternatives, except in the
special case of “monotone likelihood ratio” (MLR).

Example: Suppose that X1, . . . , Xn form a random sample from a normal distribution
for which the mean µ (unknown) and the variance σ2 (known). Consider testing
H0 : µ = µ0 versus H1 : µ 6= µ0. Even in this simple example, there is no UMP test.

10.8 The t-test

10.8.1 Testing hypotheses about the mean with unknown variance

• Problem: testing hypotheses about the mean of a normal distribution when
both the mean and the variance are unknown.

• The random variables X1, . . . , Xn form a random sample from a normal distri-
bution for which the mean µ and the variance σ2 are unknown.

• The parameter space Ω in this problem comprises every two-dimensional vector
(µ, σ2), where −∞ < µ <∞ and σ2 > 0.

• H0 : µ = µ0 versus H1 : µ 6= µ0

• Define

Un =
X̄n − µ0

sn/
√
n
, (11)

where sn =
√

1
n−1

∑n
i=1

(
Xi − X̄n

)2
.
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• We reject H0 if

|Un| ≥ T−1
n−1

(
1− α0

2

)
,

the (1− α0/2)-quantile of the t-distribution with n− 1 degrees of freedom and
Un is defined in (11).

• p-values for t-tests: The p-value from the observed data and a specific test is the
smallest α0 such that we would reject the null hypothesis at level of significance
α0.

Let u be the observed value of the statistic Un. Thus the p-value of the test is

P(|Un| > |u|),

where Un ∼ Tn−1, under H0.

• The p-value is 2[1 − Tn−1(|u|)], where u be the observed value of the statistic
Un.

The Complete power function

Before we study the case when σ > 0 is unknown, let us go back to the case when σ
is known.

Our test δ is “reject H0 if
∣∣∣
√
n(X−µ0)

σ

∣∣∣ > zα/2”.

Thus we have,

π(µ|δ) = Pµ
(∣∣∣∣
√
n(X − µ0)

σ

∣∣∣∣ > zα/2

)
,

which is just,

Pµ
(∣∣∣∣
√
n(X − µ)

σ
+

√
n(µ− µ0)

σ

∣∣∣∣ > zα/2

)
.

But when µ is the population mean,
√
n(X − µ)/σ is N(0, 1). If Z denotes a N(0, 1)

variable then,

π(µ|δ) = Pµ
(∣∣∣∣Z +

√
n(µ− µ0)

σ

∣∣∣∣ > zα/2

)

= Pµ
(
Z +

√
n(µ− µ0)

σ
> zα/2

)
+ P

(
Z +

√
n(µ− µ0)

σ
< −zα/2

)

= 1− Φ

(
zα/2 −

√
n(µ− µ0)

σ

)
+ Φ

(
−zα/2 −

√
n(µ− µ0)

σ

)

= Φ

(
−zα/2 +

√
n(µ− µ0)

σ

)
+ Φ

(
−zα/2 −

√
n(µ− µ0)

σ

)
.
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Check from the above calculations that π(µ0|δ) = α, the level of the test δ.

Notice that the test function δ depends on the value µ0 under the null but it does
not depend on any value in the alternative.

The power increases as the true value µ deviates further from µ0.

It is easy to check that π(µ|δ) diverges to 1 as µ diverges to ∞ or −∞.

Moreover the power function is symmetric around µ0. In other words, π(µ0 + ∆|δ) =
π(µ0 −∆|δ) where ∆ > 0.

To see this, note that

π(µ0 + ∆|δ) = Φ

(
−zα/2 +

√
n∆

σ

)
+ Φ

(
−zα/2 −

√
n∆

σ

)
.

Check that you get the same expression for π(µ0 −∆|δ).

Exercise: What happens when σ > 0 is unknown?

We can rewrite Un as

Un =

√
n
(
X̄n − µ0

)
/σ

sn/σ
,

• The numerator has the normal distribution with mean
√
n(µ− µ0)/σ and vari-

ance 1.

• The denominator is the square-root of a χ2-random variable divided by its
degrees of freedom, n− 1.

• When the mean of the numerator is not 0, Un has a non-central t-distribution.

Definition 20 (Noncentral t-distributions). Let W and Ym be independent random
variables W ∼ N (ψ, 1) and Y ∼ χ2

m. Then the distribution of

X :=
W√
Ym/m

is called the non-central t-distribution with m degrees of freedom and non-centrality
parameter ψ. We define

Tm(t|ψ) = P(X ≤ t)

as the c.d.f of this distribution.

• The non-central t-distribution with m degrees of freedom and non-centrality
parameter ψ = 0 is also the t-distribution with m degrees of freedom.
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• The distribution of the statistic Un in (11) is the non-central t-distribution with
n− 1 degrees of freedom and non-centrality parameter

ψ :=
√
n

(µ− µ0)

σ
.

• The power function of δ (see Figure 9.14) is

π(µ, σ2|δ) = Tn−1(−c|ψ) + 1− Tn−1(c|ψ),

where c := T−1
n−1(1− α0/2).

Exercise: Prove this result.

10.8.2 One-sided alternatives

We consider testing the following hypotheses:

H0 : µ ≤ µ0, versus H1 : µ > µ0. (12)

• When µ = µ0, Un ∼ tn−1, regardless of the value of σ2.

• The test rejects H0 if
Un ≥ c,

where c := T−1
n−1(1− α0) (the (1− α0)-quantile) of the t-distribution with n− 1

degrees of freedom.

• π(µ, σ2|δ) = 1− Tn−1(c|ψ).

Power function of the t-test

Let δ be the test that rejects H0 in (12) if Un ≥ c.

The p-value for the hypotheses in (12) is 1− Tn−1(u), where u is the observed value
of the statistic Un.

The power function π(µ, σ2|δ) has the following properties:

1. π(µ, σ2|δ) = α0 when µ = µ0,

2. π(µ, σ2|δ) < α0 when µ < µ0,

3. π(µ, σ2|δ) > α0 when µ > µ0,
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4. π(µ, σ2|δ)→ 0 as µ→ −∞,

5. π(µ, σ2|δ)→ 1 as µ→∞,

6. supθ∈Ω0
π(θ|δ) = α0.

When we want to test

H0 : µ ≥ µ0 versus H1 : µ < µ0. (13)

the test rejects H0 if Un ≤ c, where c = T−1
n−1(α0) (the α0-quantile) of the t-distribution

with n− 1 degrees of freedom.

Power function of the t test

Let δ be the test that rejects H0 in (13) if Un ≤ c.

The p-value for the hypotheses in (13) is Tn−1(u). Observe that π(µ, σ2|δ) = Tn−1(c|ψ).

The power function π(µ, σ2|δ) has the following properties:

1. π(µ, σ2|δ) = α0 when µ = µ0,

2. π(µ, σ2|δ) > α0 when µ < µ0,

3. π(µ, σ2|δ) < α0 when µ > µ0,

4. π(µ, σ2|δ)→ 1 as µ→ −∞,

5. π(µ, σ2|δ)→ 0 as µ→∞,

6. supθ∈Ω0
π(θ|δ) = α0.

10.9 Comparing the means of two normal distributions (two-
sample t test)

10.9.1 One-sided alternatives

Random samples are available from two normal distributions with common unknown
variance σ2, and it is desired to determine which distribution has the larger mean.
Specifically,

• X = (X1, . . . , Xm) random sample of m observations from a normal distribution
for which both the mean µ1 and the variance σ2 are unknown, and
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• Y = (Y1, . . . , Yn) form an independent random sample of n observations from
another normal distribution for which both the mean µ2 and the variance σ2

are unknown.

• We shall assume that the variance σ2 is the same for both distributions, even
though the value of σ2 is unknown.

If we are interested in testing hypotheses such as

H0 : µ1 ≤ µ2 versus H1 : µ1 > µ2, (14)

We reject H0 in (14) if the difference between the sample means is large. For all
values of θ = (µ1, µ2, σ

2) such that µ1 = µ2, the test statistics

Um,n =

√
m+ n− 2

(
X̄m − Ȳn

)
√(

1
m

+ 1
n

)
(S2

X + S2
Y

)

follows the t-distribution with m+ n− 2 degrees of freedom, where

S2
X =

m∑

i=1

(
Xi − X̄m

)2
, and S2

Y =
n∑

j=1

(
Yj − Ȳn

)2
.

We reject H0 if
Um,n ≥ T−1

m+n−2(1− α0).

The p-value for the hypotheses in (14) is 1−Tm+n−2(u), where u is the observed value
of the statistic Um,n.

If we are interested in testing hypotheses such as

H0 : µ1 ≥ µ2 versus H1 : µ1 < µ2, (15)

we reject H0 if
Um,n ≤ −T−1

m+n−2(1− α0) = T−1
m+n−2(α0).

The p-value for the hypotheses in (15) is Tm+n−2(u), where u is the observed value of
the statistic Um,n.

10.9.2 Two-sided alternatives

If we are interested in testing hypotheses such as

H0 : µ1 = µ2 versus H1 : µ1 6= µ2, (16)
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we reject H0 if
|Um,n| ≥ T−1

m+n−2(1− α0

2
).

The p-value for the hypotheses in (16) is 2[1− Tm+n−2(|u|)], where u is the observed
value of the statistic Um,n.

The power function of the two-sided two-sample t test is based on the non-central
t-distribution in the same way as was the power function of the one-sample two-sided
t-test. The test δ that rejects H0 when |Um,n| ≥ c has power function

π(µ1, µ2, σ
2|δ) = Tm+n−2(−c|ψ) + 1− Tm+n−2(c|ψ),

where Tm+n−2(·|ψ) is the c.d.f of the non-central t-distribution with m+n−2 degrees
of freedom and non-centrality parameter ψ given by

ψ =
µ1 − µ2√
σ2
(

1
m

+ 1
n

) .

10.10 Comparing the variances of two normal distributions
(F -test)

• X = (X1, . . . , Xm) random sample of m observations from a normal distribution
for which both the mean µ1 and the variance σ2

1 are unknown, and

• Y = (Y1, . . . , Yn) form an independent random sample of n observations from
another normal distribution for which both the mean µ2 and the variance σ2

2

are unknown.

Suppose that we want to test the hypothesis of equality of the population variances,
i.e., H0 : σ2

1 = σ2
2.

Definition 21 (F -distribution). Let Y and W be independent random variables such
that Y ∼ χ2

m and W ∼ χ2
n. Then the distribution of

X =
Y/m

W/n

is called the F -distribution with m and n degrees of freedom.

78



The test statistic

V ∗m,n =

S2
X

σ2
1
/(m−1)

S2
Y

σ2
2
/(n−1)

=
σ2

2S
2
X/(m− 1)

σ2
1S

2
Y /(n− 1)

follows the F -distribution with m− 1 and n− 1 degrees of freedom. In particular, if
σ2

1 = σ2
2, then the distribution of

Vm,n =
S2
X/(m− 1)

S2
Y /(n− 1)

is the F -distribution with m− 1 and n− 1 degrees of freedom.

Let ν be the observed value of the statistic Vm,n below, and let Gm−1,n−1(·) be the
c.d.f of the F -distribution with m− 1 and n− 1 degrees of freedom.

10.10.1 One-sided alternatives

If we are interested in testing hypotheses such as

H0 : σ2
1 ≤ σ2

2 versus H1 : σ2
1 > σ2

2, (17)

we reject H0 if
Vm,n ≥ G−1

m−1,n−1(1− α0).

The p-value for the hypotheses in (17) when Vm,n = ν is observed equals 1 −
Gm−1,n−1(ν).

10.10.2 Two-sided alternatives

If we are interested in testing hypotheses such as

H0 : σ2
1 = σ2

2, versus H1 : σ2
1 6= σ2

2, (18)

we reject H0 if either Vm,n ≤ c1 or Vm,n ≥ c2, where c1 and c2 are constants such that

P(Vm,n ≤ c1) + P(Vm,n ≥ c2) = α0

when σ2
1 = σ2

2. The most convenient choice of c1 and c2 is the one that makes

P(Vm,n ≤ c1) = P(Vm,n ≥ c2) =
α0

2
,

that is,
c1 = G−1

m−1,n−1(α0/2) and c2 = G−1
m−1,n−1(1− α0/2).
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10.11 Likelihood ratio test

A very popular form of hypothesis test is the likelihood ratio test.

Suppose that we want to test

H0 : θ ∈ Ω0, and H1 : θ ∈ Ω1. (19)

In order to compare these two hypotheses, we might wish to see whether the likelihood
function is higher on Ω0 or on Ω1.

The likelihood ratio statistic is defined as

Λ(X) =
supθ∈Ω0

Ln(θ,X)

supθ∈Ω Ln(θ,X)
, (20)

where Ω = Ω0 ∪ Ω1.

A likelihood ratio test of the hypotheses (19) rejects H0 when

Λ(x) ≤ k,

for some constant k.

Interpretation: we reject H0 if the likelihood function on Ω0 is sufficiently small
compared to the likelihood function on all of Ω.

Generally, k is to be chosen so that the test has a desired level α0.

Exercise: Suppose that Xn = (X1, . . . , Xn) is a random sample from a normal
distribution with unknown mean µ and known variance σ2. We wish to test the
hypotheses

H0 : µ = µ0 versus Ha : µ 6= µ0

at the level α0. Show that the likelihood ratio test is equivalent to the z-test.

Exercise: Suppose that X1, . . . , Xn from a normal distribution N(µ, σ2) where both
µ and σ2 are unknown. We wish to test the hypotheses

H0 : σ2 = σ2
0 versus Ha : σ2 6= σ2

0

at the level α. Show that the likelihood ratio test is equivalent to the χ2-test. [Hint:

Show that Λ(Xn) = en/2
(
σ̂2

σ2
0

)n/2
exp

(
−n

2
σ̂2

σ2
0

)
where σ̂2 = n−1

∑n
i=1(Xi − X̄n)2. Note

that as Λ(Xn) is a function of σ̂2

σ2
0
, the inequality Λ(Xn) ≤ c holds if and only if σ̂2

σ2
0

is

too big or too small; show this plotting the graph of log x− x.]
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Exercise: Suppose that X1, . . . , Xn from a normal distribution N(µ, σ2) where both
µ and σ2 are unknown. We wish to test the hypotheses

H0 : µ = µ0 versus Ha : µ 6= µ0

at the level α. Show that the likelihood ratio test is equivalent to the t-test [Hint:

Show that Λ(Xn) =
(
σ̂2

σ̂2
0

)n/2
where σ̂2 = n−1

∑n
i=1(Xi−X̄n)2 and σ̂2

0 = n−1
∑n

i=1(Xi−
µ0)2. Thus, Λ(Xn) ≤ c ⇔ (X̄n − µ0)2/s2 ≥ c′, for a suitable c′ where s2 = (n −
1)−1

∑n
i=1(Xi − X̄n)2.]

Theorem 10.2. Let Ω be a open set of a p-dimensional space, and suppose that H0

specifies that k coordinates of θ are equal to k specific values. Assume that H0 is true
and that the likelihood function satisfies the conditions needed to prove that the MLE
is asymptotically normal and asymptotically efficient. Then, as n→∞,

−2 log Λ(X)
d→ χ2

k.

Exercise: Let X1, . . . , Xn be a random sample from the p.d.f

fθ(x) = e−(x−θ)1[θ,∞)(x).

Consider testing H0 : θ ≤ θ0 versus H1 : θ > θ0, where θ0 is a fixed value specified by
the experimenter.

Show that the likelihood ratio test statistic is

Λ(X) =

{
1 X(1) ≤ θ0

e−n(X(1)−θ0) X(1) > θ0.

10.12 Equivalence of tests and confidence sets

Example: Suppose that X1, . . . , Xn are i.i.d N(µ, σ2) where µ is unknown and σ2 is
known.

We now illustrate how the testing procedure ties up naturally with the CI construction
problem.

Consider testing H0 : µ = µ0 versus H1 : µ 6= µ0.

First note that the acceptance region of the derived test δ can be written as:

S0 = Aµ0 =

{
x = (x1, x2, . . . , xn) : x− σ√

n
zα0/2 ≤ µ0 ≤ x+

σ√
n
zα0/2

}
.
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Now, consider a fixed data set (X1, X2, . . . , Xn) and based on this consider testing a
family of null hypotheses:

{H0,µ̃ : µ = µ̃ : µ̃ ∈ R}.
We can now ask the following question: Based on the observed data and the above
testing procedure, what values of µ̃ would fail to be rejected by the level α0 test? This
means that µ̃ would have to fall in the interval

X − σ√
n
zα0/2 ≤ µ̃ ≤ X +

σ√
n
zα0/2 .

Thus, the set of µ̃’s for which the null hypothesis would fail to be rejected by the
level α0 test is the set:

[
X − σ√

n
zα0/2, X +

σ√
n
zα0/2

]
.

But this is precisely the level 1− α0 CI that we obtained before!

Thus, we obtain a level 1−α0 CI for µ, the population mean, by compiling all possible
µ̃’s for which the null hypothesis H0,µ̃ : µ = µ̃ fails to be rejected by the level α0 test.

From hypothesis testing to CIs: Let X1, X2, . . . , Xn be i.i.d observations from
some underlying distribution Fθ; here θ is a “parameter” indexing a family of distri-
butions. The goal is to construct a CI for θ using hypothesis testing.

For each θ̃ consider testing the null hypothesis H0,θ̃ : θ = θ̃. Suppose, there exists a
level α0 test δθ̃(X) for this problem with

Aθ̃ = {x : Tθ̃(x) ≤ cα0}

being the acceptance region of δθ̃ and

Pθ̃(X ∈ Aθ̃) ≥ 1− α0.

Then a level 1− α confidence set for θ is:

S(X) = {θ̃ : X ∈ Aθ̃}.

We need to verify that for any θ,

Pθ[θ ∈ S(X)] ≥ 1− α.

But
Pθ(θ ∈ S(X)) = Pθ(X ∈ Aθ) ≥ 1− α0.
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Theorem 10.3. For each θ0 ∈ Ω, let A(θ0) be the acceptance region of a level α test
of H0 : θ = θ0. For each x ∈ X (X is the space of all data values), define a set S(x)
in the parameter space by

S(x) = {θ0 : x ∈ A(θ0)}.

Then the random set S(X) is a 1−α confidence set. Conversely, let S(X) be a 1−α
confidence set. For any θ0 ∈ Ω, define

A(θ0) = {x : θ0 ∈ S(x)}.

Then A(θ0) is the acceptance region of a level α test of H0 : θ = θ0.

Proof. The first part is essentially done above!

For the second part, the type I error probability for the test of H0 : θ = θ0 with
acceptance region A(θ0) is

Pθ0(X /∈ Aθ0) = Pθ0 [θ0 /∈ S(X)] ≤ α.

Remark: The more useful part of the theorem is the first part, i.e., given a level α
test (which is usually easy to construct) we can get a confidence set by inverting the
family of tests.

Example: Suppose that X1, . . . , Xn are i.i.d Exp(λ). We want to test H0 : λ = λ0

versus H1 : λ 6= λ0.

Find the LRT.

The acceptance region is given by

A(λ0) =

{
x :

(∑
xi

λ0

)n
e−

∑
xi/λ0 ≥ k∗

}
,

where k∗ is a constant chosen to satisfy

Pλ0(X ∈ A(λ0)) = 1− α.

Inverting this acceptance region gives the 1− α confidence set

S(x) =

{
λ :

(∑
xi
λ

)n
e−

∑
xi/λ0 ≥ k∗

}
.

This can be shown to be an interval in the parameter space.
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11 Linear regression

• We are often interested in understanding the relationship between two or more
variables.

• Want to model a functional relationship between a “predictor” (input, indepen-
dent variable) and a “response” variable (output, dependent variable, etc.).

• But real world is noisy, no f = ma (Force = mass × acceleration). We have
observation noise, weak relationship, etc.

Examples:

• How is the sales price of a house related to its size, number of rooms and
property tax?

• How does the probability of surviving a particular surgery change as a function
of the patient’s age and general health condition?

• How does the weight of an individual depend on his/her height?

11.1 Method of least squares

Suppose that we have n data points (x1, Y1), . . . , (xn, Yn). We want to predict Y given
a value of x.

• Yi is the value of the response variable for the i-th observation.

• xi is the value of the predictor (covariate/explanatory variable) for the i-th
observation.

• Scatter plot: Plot the data and try to visualize the relationship.

• Suppose that we think that Y is a linear function (actually here a more appro-
priate term is “affine”) of x, i.e.,

Yi ≈ β0 + β1xi,

and we want to find the “best” such linear function.

• For the correct parameter values β0 and β1, the deviation of the observed values
to its expected value, i.e.,

Yi − β0 − β1xi,

should be small.
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• We try to minimize the sum of the n squared deviations, i.e., we can try to
minimize

Q(b0, b1) =
n∑

i=1

(Yi − b0 − b1xi)
2

as a function of b0 and b1. In other words, we want to minimize the sum of the
squares of the vertical deviations of all the points from the line.

• The least squares estimators can be found by differentiating Q with respect to
b0 and b1 and setting the partial derivatives equal to 0.

• Find b0 and b1 that solve:

∂Q

∂b0

= −2
n∑

i=1

(Yi − b0 − b1xi) = 0

∂Q

∂b1

= −2
n∑

i=1

xi(Yi − b0 − b1xi) = 0.

11.1.1 Normal equations

• The values of b0 and b1 that minimize Q are given by the solution to the normal
equations:

n∑

i=1

Yi = nb0 + b1

n∑

i=1

xi (21)

n∑

i=1

xiYi = b0

n∑

i=1

xi + b1

n∑

i=1

x2
i . (22)

• Solving the normal equations gives us the following point estimates:

b1 =

∑n
i=1(xi − x̄)(Yi − Ȳ )∑n

i=1(xi − x̄)2
=

∑n
i=1(xi − x̄)Yi∑n
i=1(xi − x̄)2

, (23)

b0 = Ȳ − b1x̄, (24)

where x̄ =
∑n

i=1 xi/n and Ȳ =
∑n

i=1 Yi/n.

In general, if we can parametrize the form of the functional dependence between Y
and x in a linear fashion (linear in the parameters), then the method of least squares
can be used to estimate the function. For example,

Yi ≈ β0 + β1xi + β2x
2
i

is still linear in the parameters.
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11.2 Simple linear regression

The model for simple linear regression can be stated as follows:

Yi = β0 + β1xi + εi, i = 1, . . . , n.

• Observations: {(xi, Yi) : i = 1, . . . , n}.

• β0, β1 and σ2 are unknown parameters.

• εi is a (unobserved) random error term whose distribution is unspecified:

E(εi) = 0, Var(εi) = σ2, Cov(εi, εj) = 0 for i 6= j.

• xi’s will be treated as known constants. Even if the xi’s are random, we condition
on the predictors and want to understand the conditional distribution of Y
given X.

• Regression function: Conditional mean on Y given x, i.e.,

m(x) := E(Y |x) = β0 + β1x.

• The regression function shows how the mean of Y changes as a function of x.

• E(Yi) = E(β0 + β1xi + εi) = β0 + β1xi

• Var(Yi) = Var(β0 + β1xi + εi) = Var(εi) = σ2.

11.2.1 Interpretation

• The slope β1 has units “y-units per x-units”.

– For every 1 inch increase in height, the model predicts a β1 pounds increase
in the mean weight.

• The intercept term β0 is not always meaningful.

• The model is only valid for values of the explanatory variable in the domain of
the data.
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11.2.2 Estimated regression function

• After formulating the model we use the observed data to estimate the unknown
parameters.

• Three unknown parameters: β0, β1 and σ2.

• We are interested in finding the estimates of these parameters that best fit the
data.

• Question: Best in what sense?

• The least squares estimators of β0 and β1 are those values b0 and b1 that
minimize:

Q(b0, b1) =
n∑

i=1

(Yi − b0 − b1xi)
2.

• Solving the normal equations gives us the following point estimates:

β̂1 =

∑n
i=1(xi − x̄)(Yi − Ȳ )∑n

i=1(xi − x̄)2
=

∑n
i=1(xi − x̄)Yi∑n
i=1(xi − x̄)2

, (25)

β̂0 = Ȳ − β̂1x̄, (26)

where x̄ =
∑n

i=1 xi/n and Ȳ =
∑n

i=1 Yi/n.

• We estimate the regression function:

E(Y ) = β0 + β1x

using
Ŷ = β̂0 + β̂1x.

• The term
Ŷi = β̂0 + β̂1xi, i = 1, . . . , n,

is called the fitted or predicted value for the i-th observation, while Yi is the
observed value.

• The residual, denoted ei, is the difference between the observed and the pre-
dicted value of Yi, i.e.,

ei = Yi − Ŷi.

• The residuals show how far the individual data points fall from the regression
function.
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11.2.3 Properties

1. The sum of the residuals
∑n

i=1 ei is zero.

2. The sum of the squared residuals is a minimum.

3. The sum of the observed values equal the sum of the predicted values, i.e.,∑n
i=1 Yi =

∑n
i=1 Ŷi.

4. The following sums of weighted residuals are equal to zero:

n∑

i=1

xiei = 0
n∑

i=1

ei = 0.

5. The regression line always passes through the point (x̄, Ȳ ).

11.2.4 Estimation of σ2

• Recall: σ2 = Var(εi).

• We might have used σ̂2 =
∑n

i=1(εi−ε̄)2
n−1

. But εi’s are not observed!

• Idea: Use ei’s, i.e., s2 =
∑n

i=1(ei−ē)2
n−2

=
∑n

i=1 e
2
i

n−2
.

• The divisor n− 2 in s2 is the number of degrees of freedom associated with
the estimate.

• To obtain s2, the two parameters β0 and β1 must first be estimated, which
results in a loss of two degrees of freedom.

• Using n− 2 makes s2 an unbiased estimator of σ2, i.e., E(s2) = σ2.

11.2.5 Gauss-Markov theorem

The least squares estimators β̂0, β̂1 are unbiased (why?), i.e.,

E(β̂0) = β0, E(β̂1) = β1.

A linear estimator of βj (j = 0, 1) is an estimator of the form

β̃j =
n∑

i=1

ciYi,

where the coefficients c1, . . . , cn are only allowed to depend on xi.
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Note that β̂0, β̂1 are linear estimators (show this!).

Result: No matter what the distribution of the error terms εi, the least squares
method provides unbiased point estimates that have minimum variance among all
unbiased linear estimators.

The Gauss-Markov theorem states that in a linear regression model in which the
errors have expectation zero and are uncorrelated and have equal variances,
the best linear unbiased estimator (BLUE) of the coefficients is given by the ordinary
least squares estimators.

11.3 Normal simple linear regression

To perform inference we need to make assumptions regarding the distribution of εi.

We often assume that εi’s are normally distributed.

The normal error version of the model for simple linear regression can be written:

Yi = β0 + β1xi + εi, i = 1, . . . , n.

Here εi’s are independent N(0, σ2), σ2 unknown.

Hence, Yi’s are independent normal random variables with mean β0+β1xi and variance
σ2.

Picture?

11.3.1 Maximum likelihood estimation

When the probability distribution of Yi is specified, the estimates can be obtained
using the method of maximum likelihood.

This method chooses as estimates those values of the parameter that are most con-
sistent with the observed data.

The likelihood is the joint density of the Yi’s viewed as a function of the unknown
parameters, which we denote L(β0, β1, σ

2).

Since the Yi’s are independent this is simply the product of the density of individual
Yi’s.

We seek the values of β0, β1 and σ2 that maximize L(β0, β1, σ
2) for the given x and

Y values in the sample.

According to our model:

Yi ∼ N(β0 + β1xi, σ
2), for i = 1, 2, . . . , n.
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The likelihood function for the n independent observations Y1, . . . , Yn is given by

L(β0, β1, σ
2) =

n∏

i=1

1√
2πσ2

exp

{
− 1

2σ2
(Yi − β0 − β1xi)

2

}
(27)

=
1

(2πσ2)n/2
exp

{
− 1

2σ2

n∑

i=1

(Yi − β0 − β1xi)
2

}
.

The value of (β0, β1, σ
2) that maximizes the likelihood function are called maximum

likelihood estimates (MLEs).

The MLE of β0 and β1 are identical to the ones obtained using the method of least
squares, i.e.,

β̂0 = Ȳ − β̂1x̄, β̂1 =

∑n
i=1(xi − x̄)Yi

S2
x

,

where S2
x =

∑n
i=1(xi − x̄)2.

The MLE of σ2: σ̂2 =
∑n

i=1(Yi−Ŷi)2
n

.

11.3.2 Inference

Our model describes the linear relationship between the two variables x and Y .

Different samples from the same population will produce different point estimates of
β0 and β1.

Hence, β̂0 and β̂1 are random variables with sampling distributions that describe what
values they can take and how often they take them.

Hypothesis tests about β0 and β1 can be constructed using these distributions.

The next step is to perform inference, including:

• Tests and confidence intervals for the slope and intercept.

• Confidence intervals for the mean response.

• Prediction intervals for new observations.

Theorem 11.1. Under the assumptions of the normal linear model,

(
β̂0

β̂1

)
∼ N2

((
β0

β1

)
, σ2

(
1
n

+ x̄2

S2
x
− x̄
S2
x

− x̄
S2
x

1
S2
x

))

where S2
x =

∑n
i=1(xi − x̄)2. Also, if n ≥ 3, σ̂2 is independent of (β̂0, β̂1) and nσ̂2/σ2

has a χ2-distribution with n− 2 degrees of freedom.
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Note that if the xi’s are random, the above theorem is still valid if we condition on
the values of the predictor xi’s.

Exercise: Compute the variances and covariance of β̂0, β̂1.

11.3.3 Inference about β1

We often want to perform tests about the slope:

H0 : β1 = 0 versus H1 : β1 6= 0.

Under the null hypothesis there is no linear relationship between Y and x – the means
of probability distributions of Y are equal at all levels of x, i.e., E(Y |x) = β0, for all
x.

The sampling distribution of β̂1 is given by

β̂1 ∼ N

(
β1,

σ2

S2
x

)
.

Need to show that: β̂1 is normally distributed,

E(β̂1) = β1, Var(β̂1) =
σ2

S2
x

.

Result: When Z1, . . . , Zk are independent normal random variables, the linear com-
bination

a1Z1 + . . .+ akZk

is also normally distributed.

Since β̂1 is a linear combination of the Yi’s and each Yi is an independent normally
distributed random variable, then β̂1 is also normally distributed.

We can write β̂1 =
∑n

i=1wiYi where

wi =
xi − x̄
S2
x

, for i = 1, . . . , n.

Thus,
n∑

i=1

wi = 0,
n∑

i=1

xiwi = 1,
n∑

i=1

w2
i =

1

S2
x

.

• Variance for the estimated slope: There are three aspects of the scatter
plot that affect the variance of the regression slope:
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– The spread around the regression line (σ2) – less scatter around the line
means the slope will be more consistent from sample to sample.

– The spread of the x values (
∑n

i=1(xi−x̄)2/n) – a large variance of x provides
a more stable regression.

– The sample size n – having a larger sample size n, gives more consistent
estimates.

• Estimated variance: When σ2 is unknown we replace it with the

σ̃2 =

∑n
i=1(Yi − Ŷi)2

n− 2
=

∑n
i=1 e

2
i

n− 2
.

Plugging this into the equation for Var(β̂1) we get

se2(β̂1) =
σ̃2

S2
x

.

Recall: Standard error se(θ̂) of an estimator θ̂ is used to refer to an estimate of
its standard deviation.

Result: For the normal error regression model:

SSE

σ2
=

∑n
i=1(Yi − Ŷi)2

σ2
∼ χ2

n−2,

and is independent of β̂0 and β̂1.

• (Studentized statistic:) Since β̂1 is normally distributed, the standardized
statistic:

β̂1 − β1√
Var(β̂1)

∼ N(0, 1).

If we replace Var(β̂1) by its estimate we get the studentized statistic:

β̂1 − β1

se(β̂1)
∼ tn−2.

Recall: Suppose that Z ∼ N(0, 1) and W ∼ χ2
p where Z and W are independent.

Then,
Z√
W/p

∼ tp,

the t-distribution with p degrees of freedom.
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• Hypothesis testing: To test

H0 : β1 = 0 versus Ha : β1 6= 0

use the test-statistic

T =
β̂1

se(β̂1)
.

We reject H0 when the observed value of |T | i.e., |tobs|, is large!

Thus, given level (1− α), we reject H0 if

|tobs| > t1−α/2,n−2

where t1−α/2,n−2 denotes the (1− α/2)-quantile of the tn−2-distribution, i.e.,

1− α

2
= P(T ≤ t1−α/2,n−2).

• P -value: p-value is the probability of obtaining a test statistic at least as
extreme as the one that was actually observed, assuming that the null hypothesis
is true.

The p-value depends on H1 (one-sided/two-sided).

In our case, we compute p-values using a tn−2-distribution. Thus,

p-value = PH0(|T | > |tobs|).

If we know the p-value then we can decide to accept/reject H0 (versus H1) at
any given α.

• Confidence interval: A confidence interval (CI) is a kind of interval estimator
of a population parameter and is used to indicate the reliability of an estimator.

Using the sampling distribution of β̂1 we can make the following probability
statement:

P

(
tα/2,n−2 ≤

β̂1 − β1

se(β̂1)
≤ t1−α/2,n−2

)
= 1− α

P
(
β̂1 − t1−α/2,n−2se(β̂1) ≤ β1 ≤ β̂1 − tα/2,n−2se(β̂1)

)
= 1− α.

Thus, a (1− α) confidence interval for β1 is

[
β̂1 − t1−α/2,n−2 · se(β̂1), β̂1 + t1−α/2,n−2 · se(β̂1)

]

as t1−α/2,n−2 = −tα/2,n−2.
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11.3.4 Sampling distribution of β̂0

The sampling distribution of β̂0 is

N

(
β0, σ

2

(
1

n
+
x̄2

S2
x

))
.

Verify at home using the same procedure as used for β̂1.

Hypothesis testing: In general, let c0, c1 and c∗ be specified numbers, where at least
one of c0 and c1 is nonzero. Suppose that we are interested in testing the following
hypotheses:

H0 : coβ0 + c1β1 = c∗, versus H0 : coβ0 + c1β1 6= c∗. (28)

We should use a scalar multiple of

c0β̂0 + c1β̂1 − c∗
as the test statistic. Specifically, we use

U01 =

[
c2

0

n
+

(c0x̄− c1)2

S2
x

]−1/2
(
c0β̂0 + c1β̂1 − c∗

σ̃

)
,

where

σ̃2 =
S2

n− 2
, S2 =

n∑

i=1

(Yi − β̂0 − β̂1xi)
2 =

n∑

i=1

e2
i .

Note that σ̃2 is an unbiased estimator of σ2.

For each α ∈ (0, 1), a level α test of the hypothesis (28) is to reject H0 if

|U01| > T−1
n−2

(
1− α

2

)
.

The above result follows from the fact that c0β̂0 + c1β̂1 − c∗ is normally distributed
with mean c0β0 + c1β1 − c∗ and variance

Var(c0β̂0 + c1β̂1 − c∗) = c2
0Var(β̂0) + c2

1Var(β̂1) + 2c0c1Cov(β̂0, β̂1)

= c2
0σ

2

(
1

n
+
x̄2

S2
x

)
+ c2

1σ
2 1

S2
x

− 2c0c1
σ2x̄

S2
x

= σ2

[
c2

0

n
+
c2

0x̄
2

S2
x

− 2c0c1
x̄

S2
x

+ c2
1

1

S2
x

]

= σ2

[
c2

0

n
+

(c0x̄− c1)2

S2
x

]
.
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Confidence interval: We can give a 1 − α confidence interval for the parameter
c0β0 + c1β1 as

c0β̂0 + c1β̂1 ∓ σ̃
[
c2

0

n
+

(c0x̄− c1)2

S2
x

]1/2

T−1
n−2

(
1− α

2

)
.

11.3.5 Mean response

We often want to estimate the mean of the probability distribution of Y for some
value of x.

• The point estimator of the mean response

E(Y |xh) = β0 + β1xh

when x = xh is given by
Ŷh = β̂0 + β̂1xh.

Need to:

– Show that Ŷh is normally distributed.

– Find E(Ŷh).

– Find Var(Ŷh).

• The sampling distribution of Ŷh is given by

Ŷh ∼ N

(
β0 + β1xh, σ

2

(
1

n
+

(xh − x̄)2

S2
x

))
.

Normality:

Both β̂0 and β̂1 are linear combinations of independent normal random variables
Yi.

Hence, Ŷh = β̂0 + β̂1xh is also a linear combination of independent normally
distributed random variables.

Thus, Ŷh is also normally distributed.

Mean and variance of Ŷh:

Find the expected value of Ŷh:

E(Ŷh) = E(β̂0 + β̂1xh) = E(β̂0) + E(β̂1)xh = β0 + β1xh.
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Note that Ŷh = Ȳ − β̂1x̄+ β̂1xh = Ȳ + β̂1(xh − x̄).

Note that β̂1 and Ȳ are uncorrelated:

Cov

(
n∑

i=1

wiYi,

n∑

i=1

1

n
Yi

)
=

n∑

i=1

wi
n
σ2 =

σ2

n

n∑

i=1

wi = 0.

Therefore,

Var(Ŷh) = Var(Ȳ ) + (xh − x̄)2Var(β̂1)

=
σ2

n
+ (xh − x̄)2 σ

2

S2
x

.

When we do not know σ2 we estimate it using σ̃2. Thus, the estimated variance
of Ŷh is given by

se2(Ŷh) = σ̃2

(
1

n
+

(xh − x̄)2

S2
x

)
.

The variance of Ŷh is smallest when xh = x̄.

When xh = 0, the variance of reduces to the variance of β̂0.

• The sampling distribution for the studentized statistic:

Ŷh − E(Ŷh)

se(Ŷh)
∼ tn−2.

All inference regarding E(Ŷh) are carried out using the t-distribution. A (1−α)
CI for the mean response when x = xh is

Ŷh ∓ t1−α/2,n−2 se(Ŷh).

11.3.6 Prediction interval

A CI for a future observation is called a prediction interval.

Consider the prediction of a new observation Y corresponding to a given level
x of the predictor.

Suppose x = xh and the new observation is denoted Yh(new).

Note that E(Ŷh) is the mean of the distribution of Y |X = xh.

Yh(new) represents the prediction of an individual outcome drawn from the dis-
tribution of Y |X = xh, i.e.,

Yh(new) = β0 + β1xh + εnew,

where εnew is independent of our data.
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• The point estimate will be the same for both.

However, the variance is larger when predicting an individual outcome due to
the additional variation of an individual about the mean.

• When constructing prediction limits for Yh(new) we must take into consideration
two sources of variation:

– Variation in the mean of Y .

– Variation around the mean.

• The sampling distribution of the studentized statistic:

Yh(new) − Ŷh
se(Yh(new) − Ŷh)

∼ tn−2.

All inference regarding Yh(new) are carried out using the t-distribution:

Var(Yh(new) − Ŷh) = Var(Yh(new)) + Var(Ŷh) = σ2

{
1 +

1

n
+

(xh − x̄)2

S2
x

}
.

Thus, sepred = se(Yh(new) − Ŷh) = σ̃2
{

1 + 1
n

+ (xh−x̄)2

S2
x

}
.

Using this result, (1− α) prediction interval for a new observation Yh(new) is

Ŷh ∓ t1−α/2,n−2 sepred.

11.3.7 Inference about both β0 and β1 simultaneously

Suppose that β∗0 and β∗1 are given numbers and we are interested in testing the
following hypothesis:

H0 : β0 = β∗0 and β1 = β∗1 versus H1 : at least one is different (29)

We shall derive the likelihood ratio test for (29).

The likelihood function (27), when maximized under the unconstrained space yields
the MLEs β̂1, β̂1, σ̂

2.

Under the constrained space, β0 and β1 are fixed at β∗0 and β∗1 , and so

σ̂2
0 =

1

n

n∑

i=1

(Yi − β∗0 − β∗1xi)2.
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The likelihood statistic reduces to

Λ(Y,x) =
supσ2 L(β∗0 , β

∗
1 , σ

2)

supβ0,β1,σ2 L(β0, β1, σ2)
=

(
σ̂2

σ̂2
0

)n/2
=

[∑n
i=1(Yi − β̂0 − β̂1xi)

2

∑n
i=1(Yi − β∗0 − β∗1xi)2

]n/2
.

The LRT procedure specifies rejecting H0 when

Λ(Y,x) ≤ k,

for some k, chosen given the level condition.

Exercise: Show that
n∑

i=1

(Yi − β∗0 − β∗1xi)2 = S2 +Q2,

where

S2 =
n∑

i=1

(Yi − β̂0 − β̂1xi)
2

Q2 = n(β̂0 − β∗0)2 +

(
n∑

i=1

x2
i

)
(β̂1 − β∗1)2 + 2nx̄(β̂0 − β∗0)(β̂1 − β∗1).

Thus,

Λ(Y,x) =

[
S2

S2 +Q2

]n/2
=

[
1 +

Q2

S2

]−n/2
.

It can be seen that this is equivalent to rejecting H0 when Q2/S2 ≥ k′ which is
equivalent to

U2 :=
1
2
Q2

σ̃2
≥ γ.

Exercise: Show that, under H0, Q
2

σ2 ∼ χ2
2. Also show that Q2 and S2 are independent.

We know that S2/σ2 ∼ χ2
n−2. Thus, under H0,

U2 ∼ F2,n−2,

and thus γ = F−1
2,n−2(1− α).

12 Linear models with normal errors

12.1 Basic theory

This section concerns models for independent responses of the form

Yi ∼ N(µi, σ
2), where µi = x>i β

98



for some known vector of explanatory variables x>i = (xi1, . . . , xip) and unknown
parameter vector β = (β1, . . . , βp)

>, where p < n.

This is the linear model and is usually written as

Y = Xβ + ε

(in vector notation) where

Yn×1 =




Y1
...
Yn


 , Xn×p =




x>1
...
x>n


 , βp×1 =




β1
...
βp


 , εn×1 =




ε1
...
εn


 , εi

i.i.d.∼ N(0, σ2).

Sometimes this is written in the more compact notation

Y ∼ Nn(Xβ, σ2I),

where I is the n× n identity matrix.

It is usual to assume that the n× p matrix X has full rank p.

12.2 Maximum likelihood estimation

The log–likelihood (up to a constant term) for (β, σ2) is

`(β, σ2) = −n
2

log σ2 − 1

2σ2

n∑

i=1

(Yi − x>i β)2

= −n
2

log σ2 − 1

2σ2

n∑

i=1

(
Yi −

p∑

j=1

xijβj

)2

.

An MLE (β̂, σ̂2) satisfies

0 =
∂

∂βj
`(β̂, σ̂2) =

1

σ̂2

n∑

i=1

xij(yi − x>i β̂), for j = 1, . . . , p,

i.e.,
n∑

i=1

xijx
>
i β̂ =

n∑

i=1

xijyi for j = 1, . . . , p,

so
(X>X)β̂ = X>Y.

Since X>X is non-singular if X has rank p, we have

β̂ = (X>X)−1X>Y.
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The least squares estimator of β minimizes

‖Y −Xβ‖2.

Check that this estimator coincides with the MLE when the errors are normally
distributed.

Thus the estimator β̂ = (X>X)−1X>Y may be justified even when the normality
assumption is uncertain.

Theorem 12.1. We have

1.
β̂ ∼ Np(β, σ

2(X>X)−1), (30)

2.

σ̂2 =
1

n
‖Y −Xβ̂‖2 =

1

n

n∑

i=1

(yi − x>i β̂)2

and that σ̂2 ∼ σ2

n
χ2
n−p.

3. Show that β̂ and σ̂2 are independent.

Recall: Suppose that U is an n-dimensional random vector for which the mean
vector E(U) and the covariance matrix Cov(U) exist. Suppose that A is a q × n
matrix whose elements are constants. Let V = AU. Then

E(V) = AE(U) and Cov(V) = ACov(U)A>.

Proof of 1: The MLE of β is given by β̂ = (X>X)−1X>Y, and we have that the
model can be written in vector notation as Y ∼ Nn(Xβ, σ2I).

Let M = (X>X)−1X> so that MY = β̂. Therefore,

MY ∼ Np(MXβ,M(σ2I)M>).

We have that

MXβ = (X>X)−1X>Xβ and MM> = (X>X)−1X>X(X>X)−1

= β = (X>X)−1

since X>X is symmetric, and then so is it’s inverse.
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Therefore,
β̂ = MY ∼ Np(β, σ

2(X>X)−1).

These results can be used to obtain an exact (1 − α)-level confidence region for β:
the distribution of β̂ implies that

1

σ2
(β̂ − β)>(X>X)(β̂ − β) ∼ χ2

p.

Let

σ̃2 =
1

n− p‖Y −Xβ̂‖2 ∼ σ2

n− pχ
2
n−p,

so that β̂ and σ̃2 are still independent.

Then, letting Fp,n−p(α) denote the upper α-point of the Fp,n−p distribution,

1− α = Pβ,σ2

(
1
p
(β̂ − β)>(X>X)(β̂ − β)

σ̃2
≤ Fp,n−p(α)

)
.

Thus, {
β ∈ Rp :

1
p
(β̂ − β)>(X>X)(β̂ − β)

σ̃2
≤ Fp,n−p(α)

}

is a (1− α)-level confidence set for β.

12.2.1 Projections and orthogonality

The fitted values Ŷ = Xβ̂ under the model satisfy

Ŷ = X(X>X)−1X>Y ≡ PY,

say, where P is an orthogonal projection matrix (i.e., P = P> and P2 = P) onto the
column space of X.

Since P2 = P, all of the eigenvalues of P are either 0 or 1 (Why?).

Therefore,

rank(P) = tr(P) = tr(X(X>X)−1X>) = tr((X>X)−1X>X) = tr(Ip) = p

by the cyclic property of the trace operation.
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Some authors denote P by H, and call it the hat matrix because it “puts the hat on
Y”. In fact, P is an orthogonal projection. Note that in the standard linear model
above we may express the fitted values

Ŷ = Xβ̂

as Ŷ = PY.

Example 12.2 (Problem 1).

1. Show that P represents an orthogonal projection.

2. Show that P and I−P are positive semi-definite.

3. Show that I−P has rank n− p and P has rank p.

Solution: To see that P represents a projection, notice that X>X is symmetric, so its
inverse is also, so

P> = {X(X>X)−1X>}> = X(X>X)−1X> = P

and
P2 = X(X>X)−1X>X(X>X)−1X> = X(X>X)−1X> = P.

To see that P is an orthogonal projection, we must show that PY and Y −PY
are orthogonal. But from the results above,

(PY)>(Y −PY) = Y>P>(Y −PY) = Y>PY −Y>PY = 0.

I−P is positive semi-definite since

x>(I−P)x = x>(I−P)>(I−P)x = ‖x−Px‖2 ≥ 0.

Similarly, P is positive semi-definite.

Theorem 12.3 (Cochran’s theorem). Let Z ∼ Nn(0, σ2I), and let A1, . . . ,Ak be
n× n positive semi–definite matrices with rank(Ai) = ri, such that

‖Z‖2 = Z>A1Z + . . .+ Z>AkZ.

If r1 + · · ·+ rk = n, then Z>A1Z, . . . ,Z
>AkZ are independent, and

Z>AiZ

σ2
∼ χ2

ri
, i = 1, . . . , k.
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Example 12.4 (Problem 2). In the standard linear model above, find the maximum
likelihood estimator σ̂2 of σ2, and use Cochran’s theorem to find its distribution.

Solution: Differentiating the log-likelihood

`(β, σ2) = −n
2

log σ2 − 1

2σ2
‖Y −Xβ‖2,

we see that an MLE (β̂, σ̂2) satisfies

0 =
∂`

∂σ2

∣∣∣∣
(β̂,σ̂2)

= − n

2σ̂2
+

1

2σ̂4
‖Y −Xβ̂‖2,

so

σ̂2 =
1

n
‖Y −Xβ̂‖2 ≡ 1

n
‖Y −PY‖2,

where P = X(X>X)−1X>. Observe that

‖Y −PY‖2 = Y>(I−P)>(I−P)Y = Y>(I−P)Y,

and from the previous question we know that I−P and P are positive semi-
definite and of rank n − p and p, respectively. We cannot apply Cochran’s
theorem directly since Y does not have mean zero. However, Y − Xβ does
have mean zero and

(Y−Xβ)>(I−P)(Y −Xβ)

= Y>(I−P)Y − 2β>X>(I−X(X>X)−1X>)Y + β>X>(I−X(X>X)−1X>)Xβ

= Y>(I−P)Y.

Since

‖Y −Xβ‖2 = (Y −Xβ)>(I−P)(Y −Xβ) + (Y −Xβ)>P(Y −Xβ)

we may therefore apply Cochran’s theorem to deduce that

Y>(I−P)Y = (Y −Xβ)>(I−P)(Y −Xβ) ∼ σ2χ2
n−p,

and hence

σ̂2 =
1

n
‖Y −PY‖2 =

1

n
(Y −Xβ)>(I−P)(Y −Xβ) ∼ σ2

n
χ2
n−p.
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12.2.2 Testing hypotheis

Suppose that we want to test

H0 : βj = β∗j versus H0 : βj 6= β∗j

for some j ∈ {1, . . . , p}, where β∗j is a fixed number. We know that

β̂j ∼ N(βj, ζjjσ
2),

where (X>X)−1 = ((ζij))p×p. Thus, we know that

T =
β̂j − β∗j√
σ̃2ζjj

∼ tn−p under H0,

where we have used Theorem 12.1.

12.3 Testing for a component of β – not included in the final
exam

Now partition X and β as

X︸︷︷︸ = ( X0︸︷︷︸ X1︸︷︷︸) and

(
β0

β1

)
lp0
lp−p0

.

n×p n×p0 n×(p−p0)

Suppose that we are interested in testing

H0 : β1 = 0, against H1 : β1 6= 0.

Then, under H0, the MLEs of β0 and σ2 are

ˆ̂
β0 = (X>0 X0)−1X>0 Y, ˆ̂σ2 =

1

n
‖Y −X0

ˆ̂
β0‖2.

ˆ̂
β0 and ˆ̂σ2 are independent. The fitted values under H0 are

ˆ̂
Y = X0

ˆ̂
β0 = X0(X>0 X0)−1X>0 Y = P0Y

where P0 = X0(X>0 X0)−1X>0 is an orthogonal projection matrix of rank p0.

The likelihood ratio statistic is

−2 log Λ = 2
{
−n

2
log
(
‖Y −Xβ̂‖2

)
− n

2
+
n

2
log
(
‖Y −X0

ˆ̂
β0‖2

)
+
n

2

}

= n log

(
‖Y −X0

ˆ̂
β0‖2

‖Y −Xβ̂‖2

)
= n log

(‖Y −P0Y‖2

‖Y −PY‖2

)
.
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We therefore reject H0 if the ratio of the residual sum of squares under H0 to the
residual sum of squares under H1 is large.

Rather than use Wilks’ theorem to obtain the asymptotic “null distribution” of the
test statistic [which anyway depends on unknown σ2], we can work out the exact
distribution in this case.

Since (Y −PY)>(PY −P0Y) = 0, Pythagorean theorem gives that

‖Y −PY‖2 + ‖PY −P0Y‖2 = ‖Y −P0Y‖2. (31)

Using (31),

‖Y −P0Y‖2

‖Y −PY‖2
=
‖Y −PY‖2

‖Y −PY‖2
+
‖PY −P0Y‖2

‖Y −PY‖2

= 1 +
‖PY −P0Y‖2

‖Y −PY‖2.

Consider the decomposition:

‖Y‖2 = ‖Y −PY‖2 + ‖PY −P0Y‖2 + ‖P0Y‖2

and a similar one for Z = Y −X0β0.

Under H0, Z ∼ N(0, σ2I). This allows the use of Cochran’s theorem to ultimately
conclude that ‖PY −P0Y‖2 and ‖Y −PY‖2 are independent σ2χ2

p−p0 and σ2χ2
n−p

random variables, respectively.

Example 12.5 (Problem 3). Let Y = Xβ + ε, where X and β are partitioned as
X = (X0| X1) and βT = (βT0 |βT1 ) respectively (where β0 has p0 components and β1

has p− p0 components).

1. Show that
‖Y‖2 = ‖P0Y‖2 + ‖(P−P0)Y‖2 + ‖Y −PY‖2.

2. Recall that the likelihood ratio statistic for testing

H0 : β1 = 0 against H1 : β1 6= 0

is a strictly increasing function of ‖(P−P0)Y‖2/‖Y −PY‖2.

Use Cochran’s theorem to find the joint distribution of ‖(P − P0)Y‖2 and
‖Y −PY‖2 under H0. How would you perform the hypothesis test?

[Hint: rank(P ) = p, and rank(I−P) = n − p. Similar arguments give that
rank(P0) = p0.
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Solution: 1. Recall that since (Y −PY)>(PY−P0Y) = 0 Pythagorean theorem gives
that

‖Y −PY‖2 + ‖PY −P0Y‖2 = ‖Y −P0Y‖2

= (Y −P0Y)>(Y −P0Y)

= Y>Y − 2Y>P0Y + Y>P>0 P0Y

= Y>Y −Y>P0P
>
0 Y

= ‖Y‖2 − ‖P0Y‖2

giving that

‖Y −PY‖2 + ‖PY −P0Y‖2 + ‖P0Y‖2 = ‖Y‖2

as desired.

2. Under H0, the response vector Y has mean X0β0, and so Z = Y −X0β0

satisfies

‖Z‖2 = ‖Z−PZ‖2 + ‖PZ−P0Z‖2 + ‖P0Z‖2

= Z>Z− 2Z>PZ + Z>P>PZ + Z>(P−P0)>(P−P0)Z + Z>P>0 P0Z

= Z>(I−P)Z + Z>(P−P0)Z + Z>P0Z.

But

Z>(P−P0)Z = (Y −X0β0)>(P−P0)(Y −X0β0)

= Y>(P−P0)Y − 2β>0 X>0 (P−P0)Y + β>0 X>0 (P−P0)X0β0.

Since X0β0 ∈ U0 and (P − P0)Y ∈ U⊥0 , and U0 and U⊥0 are mutually
orthogonal, and moreover PX0β0 = P0X0β0 = X0β0, this gives

Z>(P−P0)Z = Y>(P−P0)Y,

Similarly,

Z>(I−P)Z = (Y −X0β0)>(I−P)(Y −X0β0)

= Y>(I−P)Y − 2β>0 X>0 (I−P)Y + β>0 X>0 (I−P)X0β0

= Y>(I−P)Y,

since X0β0 ∈ U0 and (I−P)Y ∈ U⊥ ⊆ U⊥0 , while (I−P)X0β0 = X0β0−
X0β0 = 0. Since

rank(I−P) + rank(P−P0) + rank(P0) = n− p+ p− p0 + p0 = n

we may therefore apply Cochran’s theorem to deduce that under H0, ‖(P−
P0)Y‖2 and ‖Y −PY‖2 are independent with

‖(P−P0)Y‖2 = Y>(P−P0)Y = Z>(P−P0)Z ∼ σ2χ2
p−p0 ,
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and
‖(I−P)Y‖2 = Y>(I−P)Y = Z>(I−P)Z ∼ σ2χ2

n−p.

It follows that under H0,

F =

1
p−p0‖(P−P0)Y‖2

1
n−p‖(I−P)Y‖2

∼ Fp−p0,n−p,

so we may reject H0 if F > Fp−p0,n−p(α), where Fp−p0,n−p(α) is the upper
α-point of the Fp−p0,n−p distribution.

Thus under H0,

F =

1
p−p0‖PY −P0Y‖2

1
n−p‖Y −PY‖2

∼ Fp−p0,n−p.

When X0 has one less column than X, say column k, we can leverage the normality
of the MLE β̂k in (30) to perform a t-test based on the statistic

T =
β̂k√

σ̃2diag[(X>X)−1]k
∼ tn−p under H0 [i.e., βk = 0].

[This is what R uses, though the more general F–statistic can also be used in this
case.]

The above theory also shows that under H1, 1
n−p‖Y −Xβ̂||2 is an unbiased estimator

of σ2. This is usually used in preference to the MLE, σ̂2.

Example 12.6. 1. Multiple linear regression:

For countries i = 1, . . . , n, consider how the fertility rate Yi (births per 1000
females in a particular year) depends on

• the gross domestic product per capita xi1

• and the percentage of urban dwellers xi2.

The model

log Yi = β0 + β1 log xi1 + β2xi2 + εi, i = 1, . . . , n
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with εi
i.i.d.∼ N(0, σ2), is of linear model form Y = Xβ + ε with

Y =




log Y1
...

log Yn


 , X =




1 log x11 x12
...

...
...

1 log xn1 xn2


 , β =




β0

β1

β2


 , ε =




ε1
...
εn


 .

On the original scale of the response, this model becomes

Y = exp(β0) exp(β1 log x1) exp(β2x2)ε

Notice how the possibility of transforming variables greatly increases the flexi-
bility of the linear model. [But see how using a log response assumes that the
errors enter multiplicatively.]

12.4 One-way analysis of variance (ANOVA)

Consider measuring yields of plants under a control condition and J − 1 different
treatment conditions.

The explanatory variable (factor) has J levels, and the response variables at level j
are Yj1, . . . , Yjnj

. The model that the responses are independent with

Yjk ∼ N(µj, σ
2), j = 1, . . . , J ; k = 1, . . . , nj

is of linear model form, with

Y =




Y11
...

Y1n1

Y21
...

Y2n2

...
YJ1

...
YJnJ




X =




1 0 · · · · · · 0
...

...
. . . . . .

...
1 0 · · · · · · 0
0 1 0 · · · 0
...

...
...

. . .
...

0 1 0 · · · 0
...

0 · · · · · · 0 1
...

. . . . . .
...

...
0 · · · · · · 0 1






 n1



 n2



 nJ

β =




µ1

µ2
...
µJ


 .

An alternative parameterization, emphasizing the differences between treatments, is

Yjk = µ+ αj + εjk, j = 1, . . . , J ; k = 1, . . . , nj

where
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• µ is the baseline or mean effect

• αj is the effect of the jth treatment (or the control j = 1).

Notice that the parameter vector (µ, α1, α2, . . . , αJ)> is not identifiable, since re-
placing µ with µ+ 10 and αj by αj − 10 gives the same model. Either a

• corner point constraint α1 = 0 is used to emphasise the differences from the
control, or the

• sum–to–zero constraint
∑J

j=1 njαj = 0

can be used to make the model identifiable. R uses corner point constraints.

If nj = K, say, for all j, the data are said to be balanced.

We are usually interested in comparing the null model

H0 : Yjk = µ+ εjk

with that given above, which we call H1, i.e., we wish to test whether the treatment
conditions have an effect on the plant yield:

H0 : α = 0, where α = (α1, . . . , αJ), against H1 : α 6= 0.

Check that the MLE fitted values are

Ŷjk = Ȳj ≡
1

nj

nj∑

k=1

Yjk

under H1, whatever parameterization is chosen, and are

ˆ̂
Yjk = Ȳ ≡ 1

n

J∑

j=1

njȲj, where n =
J∑

j=1

nj,

under H0.

Theorem 12.7. (Partitioning the sum of squares) We have

SStotal = SSwithin + SSbetween,

where

SStotal =
J∑

j=1

nj∑

k=1

(Yjk−Ȳ )2, SSwithin =
J∑

j=1

nj∑

k=1

(Yjk−Ȳj)2, SSbetween =
J∑

j=1

nj(Ȳj−Ȳ )2.

Furthermore, SSwithin has σ2χ2-distribution with (n − J) degrees of freedom and is
independent of SSbetween. Also, under H0, SSbetween ∼ σ2χ2

J−1.
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Our linear model theory says that we should test H0 by referring

F =
1

J−1

∑J
j=1 nj(Ȳj − Ȳ )2

1
n−J

∑J
j=1

∑nj

k=1(Yjk − Ȳj)2
≡

1
J−1

S2

1
n−JS1

to FJ−1,n−J , where S1 is the “within groups” sum of squares and S2 is the “between
groups” sum of squares. We have the following ANOVA table.

Source of variation Degrees of freedom Sum of squares F–statistic

Between groups J − 1 S2 F =
1

J−1S2

1
n−JS1

Within groups n− J S1

Total n− 1 S1 + S2 =

J∑

j=1

nj∑

k=1

(Yjk − Ȳ )2

13 Nonparametrics

13.1 The sample distribution function

Let X1, . . . , Xn be i.i.d F , where F is an unknown distribution function.

Question: We want to estimate F without assuming any specific parametric form
for F .

Empirical distribution function (EDF): For each x ∈ R, we define Fn(x) as the
proportion of observed values in the sample that are less than of equal to x, i.e.,

Fn(x) =
1

n

n∑

i=1

I(−∞,x](Xi).

The function Fn defined in this way is called the sample/empirical distribution func-
tion.
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Idea: Note that
F (x) = P(X ≤ x) = E[I(−∞,x](X)].

Thus, given a random sample, we can find an unbiased estimator of F (x) by looking
at the proportion of times, among the Xi’s, we observe a value ≤ x.

By the WLLN, we know that

Fn(x)
p→ F (x), for every x ∈ R.

Theorem 13.1. Glivenko-Cantelli Theorem. Let Fn be the sample c.d.f from an
i.i.d sample X1, . . . , Xn from the c.d.f F . Then,

Dn := sup
x∈R
|Fn(x)− F (x)| p→ 0.

By the CLT, we have

√
n(Fn(x)− F (x))

d→ N(0, F (x)(1− F (x))), for every x ∈ R.

−2 −1 0 1 2

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

ecdf(x)

n=100

F
n(

x)

●● ●●
●●

●●
● ●●

●● ●●
●●●

● ●●
●●
● ●●

●●●
●●
●●
●●●●●

●●
●●
●●
●●
●●●

●●
●●●

●●
●●

●●
●●
●●●

●●
●●

●●●
●●

●●
●●

●●
●●

●●
● ●●

●●
●●
● ● ●●

●●
●●

●

111



−4 −2 0 2
0.

0
0.

2
0.

4
0.

6
0.

8
1.

0

ecdf(x)

n=1000

F
n(

x)

As Fn(x)
p→ F (x) for all x ∈ R, we can also say that

√
n(Fn(x)− F (x))√
Fn(x)(1− Fn(x))

d→ N(0, 1), for every x ∈ R.

Thus, an asymptotic (1− α) CI for F (x) is
[
Fn(x)− zα/2√

n

√
Fn(x)(1− Fn(x)), Fn(x) +

zα/2√
n

√
Fn(x)(1− Fn(x))

]
.

Likewise, we can also test the hypothesis H0 : F (x) = F0(x) versus H1 : F (x) 6= F0(x)
for some known fixed c.d.f F0, and x ∈ R.

13.2 The Kolmogorov-Smirnov goodness-of-fit test

Suppose that we wish to test the simple null hypothesis that the unknown c.d.f F
is actually a particular continuous c.d.f F ∗ against the alternative that the actual
c.d.f is not F ∗, i.e.,

H0 : F (x) = F ∗(x) for x ∈ R, H0 : F (x) 6= F ∗(x) for some x ∈ R.

This is a nonparametric (“infinite” dimensional) problem.

Let
D∗n = sup

x∈R
|Fn(x)− F ∗(x)|.

D∗n is the maximum difference between the sample c.d.f Fn and the hypothesized c.d.f
F ∗.

We should reject H0 when
n1/2D∗n ≥ cα.

This is called the Kolmogorov-Smirnov test.
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How do we find cα?

When H0 is true, the distribution of D∗n will have a certain distribution that is the
same for every possible continuous c.d.f F . (Why?)

Note that, under H0,

D∗n = sup
x∈R

∣∣∣∣∣
1

n

n∑

i=1

I(Xi ≤ x)− F ∗(x)

∣∣∣∣∣

= sup
x∈R

∣∣∣∣∣
1

n

n∑

i=1

I(F ∗(Xi) ≤ F ∗(x))− F ∗(x)

∣∣∣∣∣

= sup
F ∗(x)∈R

∣∣∣∣∣
1

n

n∑

i=1

I(Ui ≤ F ∗(x))− F ∗(x)

∣∣∣∣∣ = sup
t∈[0,1]

∣∣∣∣∣
1

n

n∑

i=1

I(Ui ≤ t)− t
∣∣∣∣∣

= sup
t∈[0,1]

|Fn,U(t)− t| ,

where Ui := F ∗(Xi) ∼ Uniform(0, 1) (i.i.d) and Fn,U is the EDF of the Ui’s. Thus,
D∗n is distribution-free.

Theorem 13.2. (Distribution-free property) Under H0, the distribution of D∗n is the
same for all continuous distribution functions F .

We also have the following theorem.

Theorem 13.3. Under H0, as n→∞,

n1/2D∗n
d→ H, (32)

where H is a valid c.d.f.

In fact, the exact sampling distribution of the KS statistic, under H0, can be ap-
proximated by simulations, i.e., we can draw n data points from a Uniform(0,1)
distribution and recompute the test statistic multiple times.

13.2.1 The Kolmogorov-Smirnov test for two samples

Consider a problem in which a random sample of m observations X1, . . . , Xm is taken
from the unknown c.d.f F , and an independent random sample of n observations
Y1, . . . , Yn is taken from another distribution with unknown c.d.f G.

It is desired to test the hypothesis that both these functions, F and G, are identical,
without specifying their common form. Thus the hypotheses we want to test are:

H0 : F (x) = G(x) for x ∈ R, H0 : F (x) 6= G(x) for some x ∈ R.
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We shall denote by Fm the EDF of the observed sample X1, . . . , Xm, and by Gn the
EDF of the sample Y1, . . . , Yn.

We consider the following statistic:

Dm,n = sup
x∈R
|Fm(x)−Gn(x)|.

When H0 holds, the sample EDFs Fm and Gn will tend to be close to each other. In
fact, when H0 is true, it follows from the Glivenko-Cantelli lemma that

Dm,n
p→ 0 as m,n→∞.

Dm,n is also distribution-free (why?)

Theorem 13.4. Under H0,

(
mn

m+ n

)1/2

Dm,n
d→ H,

where H is a the same c.d.f as in (32).

A test procedure that rejects H0 when

(
mn

m+ n

)1/2

Dm,n ≥ cα,

where cα (is the (1−α)-quantile ofH) is an appropriate constant, is called a Kolmogorov-
Smirnov two sample test.

Exercise: Show that this test statistic is also distribution-free under H0. Thus, the
critical of the test can be obtained via simulations.
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13.3 Bootstrap

Example 1: Suppose that we model our data X = (X1, . . . , Xn) as coming from
some distribution with c.d.f F having median θ.

Suppose that we are interested in using the sample median M as an estimator of θ.

We would like to estimate the MSE (mean squared error) of M (as an estimator of
θ), i.e., we would like to estimate

E[(M − θ)2].

We may also be interested in finding a confidence interval for θ.

Example 2: Suppose that (X1, Y1), . . . , (Xn, Yn) is a random sample from a distri-
bution F . We are interested in the distribution of the sample correlation coefficient:

R =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

[∑n
i=1(Xi − X̄)2

∑n
i=1(Yi − Ȳ )2

]1/2 .

We might be interested in the variance of R, or the bias of R, or the distribution of
R as an estimator of the correlation ρ between X and Y .

Question: How do we get a handle on these problems?

How would we do it if an oracle told us F?

Bootstrap: The bootstrap is a method of replacing (plug-in) an unknown distribu-
tion function F with a known distribution in probability/expectation calculations.

If we have a sample of data from the distribution F , we first approximate F by F̂
and then perform the desired calculation.

If F̂ is a good approximation of F , then bootstrap can be successful.

13.3.1 Bootstrap in general

Let η(X, F ) be a quantity of interest that possibly depends on both the distribution
F and a sample X drawn from F .

In general, we might wish to estimate the mean or a quantile or some other proba-
bilistic feature or the entire distribution of η(X, F ).

The bootstrap estimates η(X, F ) by η(X∗, F̂ ), where X∗ is a random sample drawn
from the distribution F̂ , where F̂ is some distribution that we think is close to F .
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How do we find the distribution of η(X∗, F̂ )?

In most cases, the distribution of η(X∗, F̂ ) is difficult to compute, but we can approx-
imate it easily by simulation.

The bootstrap can be broken down in the following simple steps:

• Find a “good” estimator F̂ of F .

• Draw a large number (say, v) of random samples X(1), . . . ,X(v) from the distri-
bution F̂ and then compute T (i) = η(X∗(i), F̂ ), for i = 1, . . . , v.

• Finally, compute the desired feature of η(X∗, F̂ ) using the sample c.d.f of the
values T (1), . . . , T (v).

13.3.2 Parametric bootstrap

Example 1: (Estimating the standard deviation of a statistic)

Suppose that X1, . . . , Xn is random sample from N(µ, σ2).

Suppose that we are interested in the parameter

θ = P(X ≤ c) = Φ

(
c− µ
σ

)
,

where c is a given known constant.

What is the MLE of θ?

The MLE of θ is

θ̂ = Φ

(
c− X̄
σ̂

)
.

Question: How do we calculate the standard deviation of θ̂? There is no easy closed
form expression for this.

Solution: We can bootstrap!

Draw many (say v) bootstrap samples of size n from N(X̄, σ̂2). For the i-th sample
we compute a sample average X̄∗(i), a sample standard deviation σ̂∗(i).

Finally, we compute

θ̂∗(i) = Φ

(
c− X̄∗(i)
σ̂∗(i)

)
.
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We can estimate the mean of θ̂ by

θ̄∗ =
1

v

v∑

i=1

θ̂∗(i).

The standard deviation of θ̂ can then be estimated by the sample standard deviation
of the θ̂∗(i) values, i.e., [

1

v

v∑

i=1

(θ̂∗(i) − θ̄∗)2

]1/2

.

Example 2: (Comparing means when variances are unequal) Suppose that we have
two samples X1, . . . , Xm and Y1, . . . , Yn from two possibly different normal popula-
tions. Suppose that

X1, . . . , Xm are i.i.d N(µ1, σ
2
1) and Y1, . . . , Yn are i.i.d N(µ2, σ

2
2).

Suppose that we want to test

H0 : µ1 = µ2 versus H1 : µ1 6= µ2.

We can use the test statistic

U =
(m+ n− 2)1/2(X̄m − Ȳn)
(

1
m

+ 1
n

)1/2
(S2

X + S2
Y )1/2

.

Note that as σ2
1 6= σ2

2, U does not necessarily follow a t-distribution.

How do we find the cut-off value of the test?

The parametric bootstrap can proceed as follows:

First choose a large number v, and for i = 1, . . . , v, simulate (X̄
∗(i)
m , Ȳ

∗(i)
n , S

2∗(i)
X , S

2∗(i)
Y ),

where all four random variables are independent with the following distributions:

• X̄∗(i)m ∼ N(0, σ̂2
1/m).

• Ȳ ∗(i)n ∼ N(0, σ̂2
2/n).

• S2∗(i)
X ∼ σ̂2

1 χ
2
m−1.

• S2∗(i)
Y ∼ σ̂2

2 χ
2
n−1.

Then we compute

U∗(i) =
(m+ n− 2)1/2(X̄

∗(i)
m − Ȳ ∗(i)n )

(
1
m

+ 1
n

)1/2
(S

2∗(i)
X + S

2∗(i)
Y )1/2
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for each i.

We approximate the null distribution of U by the distribution of the U∗(i)’s.

Let c∗ be the
(
1− α

2

)
-quantile of the distribution of U∗(i)’s. Thus we reject H0 if

|U | > c∗.

13.3.3 The nonparametric bootstrap

Back to Example 1: Let X1, . . . , Xn be a random sample from a distribution F .

Suppose that we want a CI for the median θ of F .

We can base a CI on the sample median M .

We want the distribution of M − θ!

Let η(X, F ) = M − θ.

We approximate the α/2 and the 1− α/2 quantiles of the distribution of η(X, F ) by
that of η(X∗, F̂ ).

We may choose F̂ = Fn, the empirical distribution function. Thus, our method can
be broken in the following steps:

• Choose a large number v and simulate many samples X∗(i), for i = 1, . . . , n,
from Fn. This reduces to drawing with replacement sampling from X.

• For each sample we compute the sample median M∗(i) and then find the sample
quantiles of {M∗(i) −M}vi=1.

Back to Example 2: Suppose that (X1, Y1), . . . , (Xn, Yn) is a random sample from
a distribution F . We are interested in the distribution of the sample correlation
coefficient:

R =

∑n
i=1(Xi − X̄)(Yi − Ȳ )

[∑n
i=1(Xi − X̄)2

∑n
i=1(Yi − Ȳ )2

]1/2 .

We might be interested in the bias of R, i.e., η(X,Y, F ) = R− ρ.

Let Fn be the discrete distribution that assigns probability 1/n to each of the n data
points.

Thus, our method can be broken in the following steps:
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• Choose a large number v and simulate many samples from Fn. This reduces to
drawing with replacement sampling from the original paired data.

• For each sample we compute the sample correlation coefficient R∗(i) and then
find the sample quantiles of {T ∗(i) = R∗(i) −R}vi=1.

• We estimate the mean of R− ρ by the average 1
n

∑v
i=1 T

∗(i).
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14 Review

14.1 Statistics

• Estimation: Maximum likelihood estimation (MLE); large sample properties of
the MLE; Information matrix; method of moments.

• Consistency of estimators; Mean squared error and its decomposition; unbiased
estimation; minimum variance unbiased estimator; sufficiency.

• Bayes estimators: prior distribution; posterior distribution.

• Sampling distribution of an estimator; sampling from a normal distribution;
t-distribution.

Exercise: Suppose that X1, . . . , Xn form a random sample from a normal distribution
with mean 0 and unknown variance σ2. Determine the asymptotic distribution

of the statistic T =
(

1
n

∑n
i=1X

2
i

)−1
.

Solution: We know that X2
i ’s are i.i.d with mean E(X2

1 ) = σ2 and Var(X2
1 ) = E(X4

1 ) −
[E(X2

1 )]2 = 2σ4. Note that X2
i ’s have a χ2

1 distribution. Thus, by the CLT, we
have

√
n

(
1

n

n∑

i=1

X2
i − σ2

)
d→ N(0, 2σ4).

Let g(x) = x−1. Thus, g′(x) = −x−2. Therefore,

√
n(T − σ−2)

d→ N(0, 2σ4 · σ−8).

Exercise: Consider i.i.d observations X1, . . . , Xn where each Xi follows a normal distribu-
tion with mean and variance both equal to 1/θ, where θ > 0. Thus,

fθ(x) =

√
θ√

2π
exp

[
−(x− θ−1)2

2θ−1

]
.

Show that the MLE is one of the solutions to the equation:

θ2W − θ − 1 = 0,

where W = n−1
∑n

i=1X
2
i . Determine which root it is and compute its approxi-

mate variance in large samples.
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Solution: We have the log-likelihood (up to a constant) as

`(θ) =
n

2
log θ − θ

2

n∑

i=1

X2
i + nX̄ − n

2θ
.

Therefore, the score equation is

∂`

∂θ
=

n

2θ
− 1

2

n∑

i=1

X2
i +

n

2θ2
= 0

i.e.,
1

2θ
− 1

2
W +

1

2θ2
= 0

i.e., Wθ2 − θ − 1 = 0

The two roots are given by
1±
√

1 + 4W

2W
and the admissible root is

θ̂MLE =
1 +
√

1 + 4W

2W
.

We know that

θ̂MLE ∼ N

(
θ,

1

nI(θ)

)
(approximately).

Thus the approximate variance of θ̂MLE is 1
nI(θ)

, where

I(θ) = −Eθ
[
∂2

∂θ2
log fθ(X1)

]
=

1

2θ2
+

1

θ3
.

• Confidence intervals; Cramer-Rao information inequality.

Exercise: A biologist is interested in measuring the ratio of mean weight of animals of
two species. However, the species are extremely rare and after much effort she
succeeds in measuring the weight of one animal from the first species and one
from the second. Let X1 and X2 denote these weights. It is assumed that
Xi ∼ N(θi, 1), for i = 1, 2. Interest lies in estimating θ1/θ2.

Compute the distribution of

h(X1, X2, θ1, θ2) =
θ2X1 − θ1X2√

θ2
1 + θ2

2

.

Is
X1 − (θ1/θ2)X2√

(θ1/θ2)2 + 1

a pivot? Discuss how you can construct a confidence set for the ratio of mean
weights.
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Solution: Note that θ2X1 − θ1X2 ∼ N(0, θ2
1 + θ2

2) as

E(θ2X1 − θ1X2) = θ2θ1 − θ1θ2 = 0

and
Var(θ2X1 − θ1X2) = Var(θ2X1) + Var(θ1X2) = θ2

2 + θ2
1.

Thus,

h(X1, X2, θ1, θ2) =
θ2X1 − θ1X2√

θ2
1 + θ2

2

∼ N(0, 1).

Now,
X1 − (θ1/θ2)X2√

(θ1/θ2)2 + 1
=
θ2X1 − θ1X2√

θ2
1 + θ2

2

∼ N(0, 1)

and is thus indeed a pivot.

To get a confidence set for η := θ1/θ2, we know that

P

[
−zα/2 ≤

X1 − ηX2√
η2 + 1

≤ zα/2

]
= 1− α

i.e., P

[
|X1 − ηX2|√

η2 + 1
≤ zα/2

]
= 1− α

i.e., P
[
(X1 − ηX2)2 − (η2 + 1)2zα/2 ≤ 0

]
= 1− α.

Thus,
{η : (X1 − ηX2)2 − (η2 + 1)2zα/2 ≤ 0}

gives a level (1 − α) confidence set for η. This can be expressed explicitly in
terms of the roots of the quadratic equation involved.

• Hypothesis testing: Null and the alternative hypothesis; rejection region; Type
I and II errorx; power function; size (level) of a test; equivalence of tests and
confidence sets; p-value; Neyman-Pearson lemma; uniformly most powerful test.

• t-test; F -test; likelihood ratio test

• Linear models: method of least squares; regression; Simple linear regression;
inference on β0 and β1; mean response; prediction interval;

• General linear model; MLE; projection; one-way ANOVA

Exercise: Processors usually preserve cucumbers by fermenting them in a low-salt brine
(6% to 9% sodium chloride) and then storing them in a high-salt brine until
they are used by processors to produce various types of pickles. The high-salt
brine is needed to retard softening of the pickles and to prevent freezing when
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Weeks (X) in Storage at 72o F 0 4 14 32 52
Firmness (Y) in pounds 19.8 16.5 12.8 8.1 7.5

they are stored outside in northern climates. Data showing the reduction in
firmness of pickles stored over time in a low-salt brine (2% to 3%) are given in
the following table.

(a) Fit a least-squares line to the data.

(b) Compute R2 to evaluate the goodness of the fit to the data points?

(c) Use the least-squares line to estimate the mean firmness of pickles stored
for 20 weeks.

(d) Determine the 95% CI for β1.

(e) Test the null hypothesis that Y does not depend on X linearly.

Solution: (a) Fit a least-squares line to the data.

β̂1 =
Sxy
Sxx

=
−425.48

1859.2
= −0.229

β̂0 = y − β̂1x = 12.94− (−0.229)(20.4) = 17.612

ŷ = 17.612− 0.229x.

(b) Compute R2 to evaluate the goodness of the fit to the data points?

R2 = 1− SSE

SST
= 1− 15.4

112.772
= 0.863.

(c) Use the least-squares line to estimate the mean firmness of pickles stored
for 20 weeks.

ŷ(20) = 17.612− (0.229)(20) = 13.0

(d) Determine the 95% CI for β1.

The 95% CI for β1 is given by

β̂1 ± t0.025,3SE(β̂1) where SE(β̂1) =
s√
Sxx

.

We have s =
√
SSE/3 =

√
(15.4)/3 = 2.266, thus SE(β̂1) = 2.66√

1859.2
=

0.052. Thus the 95% CI for β1 is

−0.229± (3.18)(0.052) = [−0.396,−0.062]
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(e) Test the null hypothesis that Y does not depend on X linearly.

We test the hypothesis

H0 : β1 = 0 vs. Ha : β1 6= 0

with level at α = 0.05. This can be tested with t-statistic

T =
β̂1

SE(β̂1)
and RR : |t| > t0.025,3 = 3.18.

The observed t =
−0.229

0.052
= −4.404, which is in the rejection region. Thus

we reject the hypothesis that β1 = 0. This means based on the data we
reject H0.
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Exercise: A manager wishes to determine whether the mean times required to complete a
certain task differ for the three levels of employee training. He randomly selected
10 employees with each of the three levels of training (Beginner, Intermediate
and Advanced). Do the data provide sufficient evidence to indicate that the
mean times required to complete a certain task differ for at least two of the
three levels of training? The data is summarized in the following table. Use the
level α = 0.05.

xi s2
i

Advanced 24.2 21.54
Intermediate 27.1 18.64

Beginner 30.2 17.76

Solution: Let αi denote the mean effect of ith training level; advanced=1, intermediate=2
and beginner=3. We test the hypothesis

H0 : α1 = α2 = α3 vs. Ha : αi 6= αj for some i and j

We have

x1· = 24.2 x2· = 27.1 x3· = 30.2

x·· =
1

3
(24.2 + 27.1 + 30.2) = 27.17

SSB = 10
(
(24.2− 27.17)2 + (27.1− 27.17)2 + (30.2− 27.17)2

)
= 180.1

SSW = 9(21.54 + 18.64 + 17.76) = 521.46

Thus we have the following ANOVA-table:

Source of variations df SS MS F
Treatments 2 180.1 90.03 4.67

Errors 27 521.46 19.31
Total 29 683.52

Since the observed f = 4.67 is in RR : f > f0.05,2,27 = 3.35, we reject the H0.
Thus the levels of training appear to have different effects on the mean times
required to complete the task.

• The empirical distribution function; goodness-of-fit-tests; Kolmogorov-Smirnov
tests.

Read the following sections from the text book for the final:
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– Chapter 6 excluding 6.4

– Chapter 7 excluding 7.8, 7.9

– Chapter 8 excluding 8.6

– Chapter 9 excluding 9.3, 9.8, 9.9

– Chapter 11 excluding 11.4, 11.7, 11.8

Thank you!

Please complete course evaluations!

Questions?
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