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Abstract

This lecture note arose from a class I taught in Spring 2016 to our 2nd year

PhD students (in Statistics) at Columbia University. The choice of topics is

very eclectic and mostly reflect: (a) my background and research interests, and

(b) some of the topics I wanted to learn more systematically in 2016. The first

part of this lecture notes is on nonparametric function estimation — density

and regression — and I borrow heavily from the book Tsybakov [14] and the

course he taught at Yale in 2014. The second part of the course is a medley

of different topics: (i) reproducing kernel Hilbert spaces (RKHSs; Section 5),

(ii) bootstrap methods (Section 6), (iii) multiple hypothesis testing (Section 7),

and (iv) an introduction to high dimensional linear regression (Section 8).

The content of Section 5 is greatly influenced by Arthur Gretton’s lectures

and slides on RKHSs and its applications in Machine Learning (see e.g., http:

//www.gatsby.ucl.ac.uk/~gretton/coursefiles/rkhscourse.html for a more

detailed course). I have borrowed the material in Section 7 from Emmanuel

Candes’s lectures on ‘Theory of Statistics’ (Stats 300C, Stanford), while the

content of Section 8 is taken from Hastie et al. [5].
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1 Kernel density estimation

Let X1, . . . , Xn be i.i.d. random variables having a probability density p with respect

to the Lebesgue measure on R. The corresponding distribution function is F (x) :=∫ x
−∞ p(t)dt.
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A natural estimator of F is the empirical distribution function:

Fn(x) =
1

n

n∑

i=1

I{Xi ≤ x} =
1

n

n∑

i=1

I(−∞,x](Xi), (1)

where I(·) denotes the indicator function. The Glivenko-Cantelli theorem shows that

sup
x∈R
|Fn(x)− F (x)| a.s.→ 0,

as n→∞ (Exercise (HW1)). Further we know that for every x ∈ R,

√
n(Fn(x)− F (x))

d→ N(0, F (x)(1− F (x))).
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Exercise (HW1): Consider testing F = F0 where F0 is a known continuous strictly

increasing distribution function (e.g., standard normal) when we observe i.i.d. data

X1, . . . , Xn from F . The Kolmogorov-Smirnov test statistic is to consider

Dn := sup
x∈R
|Fn(x)− F0(x)|,

and reject H0 when Dn > cα, for a suitable cα > 0 (where α is the level of the test).

Show that, under H0, Dn is distribution-free, i.e., the distribution of Dn does not

depend on F0 (as long as it is continuous and strictly increasing). How would you

compute (approximate/simulate) the critical value cα, for every n.

Let us come back to the estimation of p. As p is the derivative of F , for small h > 0,

we can write the approximation

p(x) ≈ F (x+ h)− F (x− h)

2h
.

As Fn is a natural estimator of F , it is intuitive to define the following (Rosenblatt)

estimator of p:

p̂Rn (x) =
Fn(x+ h)− Fn(x− h)

2h
.

We can rewrite p̂Rn as

p̂Rn (x) =
1

2nh

n∑

i=1

I(x− h < Xi ≤ x+ h) =
1

nh

n∑

i=1

K0

(
Xi − x
h

)
,

where K0(u) = 1
2
I(−1,1](u). A simple generalization of the Rosenblatt estimator is

given by

p̂n(x) :=
1

nh

n∑

i=1

K

(
Xi − x
h

)
, (2)

where K : R→ R is an integrable function satisfying
∫
K(u)du = 1. Such a function

K is called a kernel and the parameter h is called the bandwidth of the estimator (2).

The function p̂n is called the kernel density estimator (KDE) or the Parzen-Rosenblatt

estimator. Some classical examples of kernels are the following:

K(u) = 1
2
I(|u| ≤ 1) (the rectangular kernel)

K(u) =
1√
2π

exp(−u2/2) (the Gaussian kernel)

K(u) = 3
4
(1− u2)I(|u| ≤ 1) (the Epanechnikov kernel).

Note that if the kernel K takes only nonnegative values and if X1, . . . , Xn are fixed,

then p̂n is a probability density.
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Figure 1: KDE with different bandwidths of a random sample of 100 points from a stan-

dard normal distribution. Grey: true density (standard normal). Red: KDE

with h=0.05. Black: KDE with h=0.337. Green: KDE with h=2.

The Parzen-Rosenblatt estimator can be generalized to the multidimensional case

easily. Suppose that (X1, Y1), . . . , (Xn, Yn) are i.i.d. with (joint) density p(·, ·). A

kernel estimator of p is then given by

p̂n(x, y) :=
1

nh2

n∑

i=1

K

(
Xi − x
h

)
K

(
Yi − y
h

)
, (3)

where K : R→ R is a kernel defined as above and h > 0 is the bandwidth.

1.1 The choice of the bandwidth and the kernel

It turns out that the choice of the bandwidth h is far more crucial for the quality

of p̂n as an estimator of p than the choice of the kernel K. We can view the KDE

(for unimodal, nonnegative kernels) as the sum of n small “mountains” given by the

functions

x 7→ 1

nh
K

(
Xi − x
h

)
.

Every small mountain is centered around an observation Xi and has area 1/n under

it, for any bandwidth h. For a small bandwidth the mountain is very concentrated

(peaked), while for a large bandwidth the mountain is low and fat. If the bandwidth

is small, then the mountains remain separated and their sum is peaky. On the other

hand, if the bandwidth is large, then the sum of the individual mountains is too flat.

Intermediate values of the bandwidth should give the best results.

For a fixed h, the KDE p̂n(x0) is not consistent in estimating p(x0), where x0 ∈ R.

However, if the bandwidth decreases with sample size at an appropriate rate, then it

is, regardless of which kernel is used.
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Exercise (HW1): Suppose that p is continuous at x0, that hn → 0, and that nhn →∞
as n→∞. Then, p̂n(x0)

p→ p(x0) [Hint: Study the bias and variance of the estimator

separately].

1.2 Mean squared error of kernel estimators

A basic measure of the accuracy of p̂n is its mean squared risk (or mean squared error)

at an arbitrary fixed point x0 ∈ R:

MSE = MSE(x0) := Ep
[
(p̂n(x0)− p(x0))2

]
.

Here Ep denotes the expectation with respect to the distribution of (X1, . . . , Xn):

MSE(x0) :=

∫
· · ·
∫ (

p̂n(x0; z1, . . . , zn)− p(x0)
)2[ n∏

i=1

p(zi)
]
dz1 . . . dzn.

Of course,

MSE(x0) = b2(x0) + σ2(x0)

where

b(x0) := Ep[p̂n(x0)]− p(x0), (bias)

and

σ2(x0) := Ep
[(
p̂n(x0)− Ep[p̂n(x0)]

)2]
(variance).

To evaluate the mean squared risk of p̂n we will analyze separately its variance and

bias.

Proposition 1.1 (Variance of p̂n). Suppose that the density p satisfies p(x) ≤ pmax <

∞ for all x ∈ R. Let K : R→ R be the kernel function such that
∫
K2(u)du <∞.

Then for any x0 ∈ R, h > 0, and n ≥ 1 we have

σ2(x0) ≤ C1

nh
,

where C1 = pmax

∫
K2(u)du.

Proof. Observe that p̂n(x0) is an average of n i.i.d. random variables and so

σ2(x0) = Var(p̂n(x0)) =
1

n
Var

(
1

h
K

(
X1 − x0

h

))
≤ 1

nh2
Ep
[
K2

(
X1 − x0

h

)]
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Now, observe that

Ep
[
K2

(
X1 − x0

h

)]
=

∫
K2

(
z − x0

h

)
p(z)dz ≤ pmax h

∫
K2(u)du.

Combining the above two displays we get the desired result.

Thus, we conclude that if the bandwidth h ≡ hn is such that nh → ∞ as n → ∞,

then the variance of σ2(x0) goes to 0 as n→∞.

To analyze the bias of the KDE (as a function of h) we need certain conditions on

the density p and on the kernel K.

Definition 1.2. Let T be an interval in R and let β and L be two positive numbers.

The Hölder class Σ(β, L) on T is defined as the set of ` = bβc times differentiable

functions f : T → R whose derivative f (`) satisfies

|f (`)(x)− f (`)(x′)| ≤ L|x− x′|β−`, for all x, x′ ∈ T.

Definition 1.3. Let ` ≥ 1 be an integer. We say that K : R→ R is a kernel of order

` if the functions u 7→ ujK(u), j = 0, 1, . . . , `, are integrable and satisfy
∫
K(u)du = 1,

∫
ujK(u)du = 0, j = 1, . . . , `.

Does bounded kernels of order ` exist? See Section 1.2.2 of [14] for constructing such

kernels.

Observe that when ` ≥ 2 then the kernel has to take negative values which may lead

to negative values of p̂n. This is sometimes mentioned as a drawback of using higher

order kernels (` ≥ 2). However, observe that we can always define the estimator

p̂+
n (x) = max{0, p̂n(x)}

whose risk is smaller than or equal to the risk of p̂n(x):

Ep
[
(p̂+
n (x0)− p(x0))2

]
≤ Ep

[
(p̂n(x0)− p(x0))2

]
, ∀x ∈ R.

Suppose now that p belong to a class of densities P = P(β, L) defined as follows:

P(β, L) :=

{
p : p ≥ 0,

∫
p(x)dx = 1, and p ∈ Σ(β, L) on R

}
.
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Proposition 1.4 (Bias of p̂n). Assume that p ∈ P(β, L) and let K be a kernel of

order ` = bβc satisfying ∫
|u|β|K(u)|du <∞.

Then for any x0 ∈ R, h > 0, and n ≥ 1 we have

|b(x0)| ≤ C2h
β, (4)

where C2 = L
`!

∫
|u|β|K(u)|du.

Proof. We have

b(x0) =
1

h

∫
K

(
z − x
h

)
p(z)dz − p(x0)

=

∫
K(u)

[
p(x0 + uh)− p(x0)

]
du.

Next, using Taylor theorem1 , we get

p(x0 + uh) = p(x0) + p′(x0)uh+ . . .+
(uh)`

`!
p(`)(x0 + τuh),

where 0 ≤ τ ≤ 1. Since K has order ` = bβc, we obtain

b(x0) =

∫
K(u)

(uh)`

`!
p(`)(x0 + τuh)du

=

∫
K(u)

(uh)`

`!
(p(`)(x0 + τuh)− p(`)(x0))du,

1Taylor’s theorem: Let k ≥ 1 be an integer and let the function f : R → R be k times

differentiable at the point a ∈ R. Then there exists a function Rk : R→ R such that

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2!
(x− a)2 + · · ·+ f (k)(a)

k!
(x− a)k +Rk(x),

where Rk(x) = o(|x− a|k) as x→ a.

Mean-value forms of the remainder: Let f : R → R be k + 1 times differentiable on the open

interval with f (k) continuous on the closed interval between a and x. Then

Rk(x) =
f (k+1)(ξL)

(k + 1)!
(x− a)k+1

for some real number ξL between a and x. This is the Lagrange form of the remainder.

Integral form of the remainder: Let f (k) be absolutely continuous on the closed interval between

a and x. Then

Rk(x) =

∫ x

a

f (k+1)(t)

k!
(x− t)k dt. (5)

Due to absolute continuity of f (k), on the closed interval between a and x, f (k+1) exists a.e.
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and

|b(x0)| ≤
∫
|K(u)| |uh|

`

`!

∣∣∣p(`)(x0 + τuh)− p(`)(x0)
∣∣∣du

≤ L

∫
|K(u)| |uh|

`

`!
|τuh|β−`du ≤ C2h

β.

From Propositions 1.1 and 1.4, we see that the upper bounds on the bias and variance

behave in opposite ways as the bandwidth h varies. The variance decreases as h grows,

whereas the bound on the bias increases. The choice of a small h corresponding to a

large variance leads to undersmoothing. Alternatively, with a large h the bias cannot

be reasonably controlled, which leads to oversmoothing. An optimal value of h that

balances bias and variance is located between these two extremes. To get an insight

into the optimal choice of h, we can minimize in h the upper bound on the MSE

obtained from the above results.

If p and K satisfy the assumptions of Propositions 1.1 and 1.4, we obtain

MSE ≤ C2
2h

2β +
C1

nh
. (6)

The minimum with respect to h of the right hand side of the above display is attained

at

h∗n =

(
C1

2βC2
2

)1/(2β+1)

n−1/(2β+1).

Therefore, the choice h = h∗n gives

MSE(x0) = O
(
n−

2β
2β+1

)
, as n→∞,

uniformly in x0. Thus, we have the following result.

Theorem 1.5. Assume that the conditions of Proposition 1.4 hold and that
∫
K2(u)du <

∞. Fix α > 0 and take h = αn−1/(2β+1). Then for n ≥ 1, the KDE p̂n satisfies

sup
x0∈R

sup
p∈P(β,L)

Ep
[
(p̂n(x0)− p(x0))2

]
≤ Cn−

2β
2β+1 ,

where C > 0 is a constant depending only on β, L, α and on the kernel K.

Proof. We apply (14) to derive the result. To justify the application of Proposi-

tion 1.1, it remains to prove that there exists a constant pmax <∞ satisfying

sup
x∈R

sup
p∈P(β,L)

p(x) ≤ pmax. (7)
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To show that (7) holds, consider K∗ which is a bounded kernel of order ` (not neces-

sarily equal to K). Applying Proposition 1.4 with h = 1 we get that, for any x ∈ R
and any p ∈ P(β, L),

∣∣∣
∫
K (z − x) p(z)dz − p(x)

∣∣∣ ≤ C∗2 :=
L

`!

∫
|u|β|K∗(u)|du.

Therefore, for any x ∈ R and any p ∈ P(β, L),

p(x) ≤ C∗2 +

∫
|K∗(z − x)| p(z)dz ≤ C∗2 +K∗max,

where K∗max = supu∈R |K∗(u)|. Thus, we get (7) with pmax = C∗2 +K∗max.

Under the assumptions of Theorem 1.5, the rate of convergence of the estimator

p̂n(x0) is ψn = n−
β

2β+1 , which means that for a finite constant C and for all n ≥ 1 we

have

sup
p∈P(β,L)

Ep
[
(p̂n(x0)− p(x0))2

]
≤ Cψ2

n.

Now the following two questions arise. Can we improve the rate ψn by using other

density estimators? What is the best possible rate of convergence? To answer these

questions it is useful to consider the minimax risk R∗n associated to the class P(β, L):

R∗n(P(β, L)) = inf
Tn

sup
p∈P(β,L)

Ep
[
(Tn(x0)− p(x0))2

]
,

where the infimum is over all estimators. One can prove a lower bound on the minimax

risk of the form R∗n(P(β, L)) ≥ C ′ψ2
n = C ′n−

2β
2β+1 with some constant C ′ > 0. This

implies that under the assumptions of Theorem 1.5 the KDE attains the optimal rate

of convergence n−
β

2β+1 associated with the class of densities P(β, L). Exact definitions

and discussions of the notion of optimal rate of convergence will be given later.

Remark 1.1. Quite often in practice it is assumed that β = 2 and that p′′ is con-

tinuous at x0. Also, the kernel is taken to be of order one and symmetric around 0.

Then it can be shown that (Exercise (HW1))

MSE(x0) =
1

nh

∫
K2(u)dup(x0) +

1

4
h4

(∫
u2K(u)du

)2

p′′(x0)2 + o((nh)−1 + h4).

Remark 1.2. Since 2β/(2β+1) approaches 1 as k becomes large, Theorem 1.5 implies

that, for sufficiently smooth densities, the convergence rate can be made arbitrarily

close to the parametric n−1 convergence rate. The fact that higher-order kernels
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can achieve improved rates of convergence means that they will eventually dominate

first-order kernel estimators for large n. However, this does not mean that a higher-

order kernel will necessarily improve the error for sample sizes usually encountered in

practice, and in many cases, unless the sample size is very large there may actually

be an increase in the error due to using a higher-order kernel.

1.3 Pointwise asymptotic distribution

Whereas the results from the previous sub-section have shown us that p̂n(x0) converges

to p(x0) in probability under certain assumptions, we cannot straightforwardly use

this for statistical inference. Ideally, if we want to estimate p(x0) at the point x0, we

would like to have exact confidence statements of the form

P (p(x0) ∈ [p̂n(x0)− c(n, α, x0, K), p̂n(x0)− c(n, α, x0, K)]) ≥ 1− α,

where α is the significance level and c(n, α, x0, K) sequence of constants that one

would like to be as small as possible (given α).

Theorem 1.6. Assume that p ∈ P(β, L) and let K be a kernel of order ` = bβc
satisfying ∫

|u|β|K(u)|du <∞.

Suppose that p also satisfies p(x) ≤ pmax < ∞ for all x ∈ R. Let K further satisfy

(a) ‖K‖2
2 :=

∫
K2(u)du < ∞, (b) ‖K‖∞ := supu∈RK(u) < ∞. Suppose that the

sequence of bandwidths {hn}∞n=1 satisfy hn → 0, nhn → ∞, and n1/2h
β+1/2
n → 0 as

n→∞. Then, as n→∞,

√
nh
(
p̂n(x0)− p(x0)

)
d→ N

(
0, p(x0)‖K‖2

2

)
.

Proof. We first find the limit for the ‘variance term’. We use the Lindeberg-Feller

central limit theorem for triangular arrays of independent random variables2 with

Yni :=
√
nh

1

nh
K

(
Xi − x0

h

)
=

√
1

nh
K

(
Xi − x0

h

)
, i = 1, . . . , n,

2Lindeberg-Feller CLT (see e.g., [15, p.20]): For each n let Yn1, . . . , Ynn be independent random

variables with finite variances. If, as n → ∞, (i)
∑n
i=1 E[Y 2

niI(|Yni| > ε)] → 0, for every ε > 0, and

(ii)
∑n
i=1 E[(Yni − E(Yni))

2]→ σ2, then

n∑

i=1

(Yni − E(Yni))
d→ N(0, σ2), as n→∞.
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so that Yn1, . . . , Ynn are i.i.d. and we have

√
nh
(
p̂n(x0)− Ep[p̂n(x0)]

)
=

n∑

i=1

(Yni − E(Yni)).

Thus, we only need to show that the two conditions in the Lindeberg-Feller CLT hold.

Clearly,

nE(Y 2
ni) =

1

h

∫
K2

(
z − x0

h

)
p(z)dz

=

∫
K2 (u) p(x0 + uh)du→ p(x0)

∫
K2(u)du, as n→∞,

by the dominated convergence theorem (DCT), since p(·) is continuous at x0 and

bounded on R. Now,

nE(Yni)
2 =

1

h

(∫
K

(
z − x0

h

)
p(z)dz

)2

= h

(∫
K(u)p(x0 + uh)du

)2

≤ h‖K‖2
2 pmax → 0, as n→∞,

which shows that
∑n

i=1 E[(Yni − E(Yni))
2]→ p(x0)

∫
K2(u)du. Furthermore,

|Yni| ≤
1√
nh
‖K‖∞ → 0, as n→∞,

by the assumption on the sequence of bandwidths. Thus, I(|Yni| > ε)→ 0, for every

ε > 0 and by the DCT
n∑

i=

E[Y 2
niI(|Yni| > ε)] = E[nY 2

n1I(|Yn1| > ε)]→ 0.

By (4) we see that the bias term can be bounded above as
√
nh|b(x0)| ≤

√
nhhβ → 0, as n→∞.

Therefore, we have the desired result.

Exercise (HW1): Suppose that you are given an i.i.d. sample from a bounded density

p with bounded derivatives at x0. Suppose that c(α, x0) is such that P(−c(α, x0) ≤
Z ≤ c(α, x0)) = 1 − α where Z ∼ N(0, p(x0)). Use a kernel density estimator (with

a suitable kernel) to obtain a 95 percent confidence interval (CI) for p(x0) in such a

way that the size of the interval shrinks at rate 1/
√
nhn as n→∞, and that hn can

be chosen so that this rate is ‘almost’ (say, up to a log n term) of order n−1/3.

Exercise (HW1): Under the setup of Remark 1.1 and the assumption that h = αn−1/5,

where α > 0, find the asymptotic distribution of
√
nh(p̂n(x0) − p(x0)). Can this be

used to construct a CI for p(x0)? What are the advantages/disadvantages of using

this result versus the setup of Theorem 1.6 with β = 2 to construct a CI for p(x0)?
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1.4 Integrated squared risk of kernel estimators

In Section 1.2 we have studied the behavior of the KDE p̂n at an arbitrary fixed point

x0. It is also interesting to analyze the global risk of p̂n. An important global criterion

is the mean integrated squared error (MISE):

MISE := Ep
∫

[(p̂n(x)− p(x))2]dx.

By Fubini’s theorem,

MISE =

∫
MSE(x)dx =

∫
b2(x)dx+

∫
σ2(x)dx. (8)

Thus, the MISE is represented as a sum of the bias term
∫
b2(x)dx and the variance

term
∫
σ2(x)dx. To obtain bounds on these terms, we proceed in the same manner

as for the analogous terms of the MSE. Let us study first the variance term.

Proposition 1.7 (Variance of p̂n). Let K : R→ R be the kernel function such that

∫
K2(u)du <∞.

Then for any h > 0, and n ≥ 1 and any probability density p we have
∫
σ2(x)dx ≤ 1

nh

∫
K2(u)du.

Proof. As in the proof of Proposition 1.1,

σ2(x) =
1

nh2
Ep[η2

1(x)] ≤ 1

nh2
Ep
[
K2

(
X1 − x
h

)]

for all x ∈ R. Therefore,

∫
σ2(x)dx ≤ 1

nh2

∫ [∫
K2

(
z − x
h

)
p(z)dz

]
dx

=
1

nh2

∫
p(z)

[∫
K2

(
z − x
h

)
dx

]
dz

=
1

nh

∫
K2(u)du.

The upper bound for the variance term in Proposition 1.7 does not require any con-

dition on p: The result holds for any density. For the bias term in (8) the situation

is different: We can only control it on a restricted subset of densities. As above, we
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specifically assume that p is smooth enough. Since the MISE is a risk corresponding

to the L2(R)-norm, it is natural to assume that p is smooth with respect to this norm.

Sobolev classes provide a popular way to describe smoothness in L2(R).

Definition 1.8. Let β ≥ 1 be an integer and L > 0. The Sobolev class S(β, L) is

defined as the set of all β − 1 differentiable functions f : R → R having absolutely

continuous derivative f (β−1) and satisfying

∫
(f (β)(x))2dx ≤ L2.

Theorem 1.9. Suppose that, for an integer β ≥ 1:

(i) the function K is a kernel of order β − 1 satisfying the conditions

∫
K2(u)du <∞,

∫
|u|β|K(u)|du <∞;

(ii) the density p ∈ S(β, L) for some β ≥ 1 and L > 0.

Then for all n ≥ 1 and all h > 0 the mean integrated squared error of the KDE p̂n

satisfies

MISE ≤ 1

nh

∫
K2(u)du+

L2h2β

(`!)2

(∫
|u|β|K(u)|du

)2

.

Proof. We bound the variance term as in Proposition 1.7. Let ` = β−1. For the bias

term, first note that using the integral form of the remainder term in the Taylor’s

theorem (see (5) and make the transformation t 7→ t−x
uh

),

p(x+ uh) = p(x) + p′(x)uh+ . . .+
(uh)`

(`− 1)!

∫ 1

0

(1− τ)`−1p(`)(x+ τuh)dτ.

Since the kernel K is of order β − 1, we obtain

b(x) =

∫
K(u)

(uh)`

(`− 1)!

[∫ 1

0

(1− τ)`−1p(`)(x+ τuh)dτ

]
du

=

∫
K(u)

(uh)`

(`− 1)!

[∫ 1

0

(1− τ)`−1
(
p(`)(x+ τuh)− p(`)(x)

)
dτ

]
du

Applying the generalized Minkowski inequality3 twice and using the given assump-

3Generalized Minkowski inequality:
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tions on p, we get the following upper bound for the bias term
∫
b2(x)dx:

∫ (∫
|K(u)| |uh|

`

(`− 1)!

∫ 1

0

(1− τ)`−1
∣∣∣p(`)(x+ τuh)− p(`)(x)

∣∣∣dτdu
)2

dx

≤



∫
|K(u)| |uh|

`

(`− 1)!

[∫ (∫ 1

0

(1− τ)`−1
∣∣∣p(`)(x+ τuh)− p(`)(x)

∣∣∣dτ
)2

dx

]1/2

du




2

≤
(∫
|K(u)| |uh|

`

(`− 1)!

[∫ 1

0

(1− τ)`−1

{∫ (
p(`)(x+ τuh)− p(`)(x)

)2

dx

}1/2

dτ

]
du

)2

.

Now, for t := τuh,

∫ (
p(`)(x+ t)− p(`)(x)

)2

dx

=

∫ (
t

∫ 1

0

p(`+1)(x+ θt)dθ

)2

dx

≤ t2
∫ (∫ 1

0

[∫ (
p(`+1)(x+ θt)

)2
dx

]1/2

dθ

)2

= t2
∫ (

p(β)(x)
)2
dx

in view of the generalized Minskowski inequality. Therefore,

∫
b2(x)dx ≤

(∫
|K(u)| |uh|

`

(`− 1)!

[∫ 1

0

(1− τ)`−1|τuh|Ldτ
]
du

)2

≤ L2h2(`+1)

[(`− 1)!]2

(∫
|K(u)||u|`+1 du

)2 [∫ 1

0

(1− τ)`−1dτ

]2

≤ L2h2β

(`!)2

(∫
|u|β|K(u)| du

)2

Exercise (HW1): Assume that:

(i) the function K is a kernel of order 1 satisfying the conditions

∫
K2(u)du <∞,

∫
u2|K(u)|du <∞, SK :=

∫
u2K(u)du 6= 0;

Lemma 1.10. For any Borel function g on R× R, we have

∫ (∫
g(u, x)du

)2

dx ≤
[∫ (∫

g2(u, x)dx

)1/2

du

]2
.
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(ii) The density p is differentiable on R, the first derivative p′ is absolutely contin-

uous on R and the second derivative satisfies
∫

(p′′(x))2dx <∞.

Then for all n ≥ 1 the mean integrated squared error of the kernel estimator p̂n

satisfies

MISE =

[
1

nh

∫
K2(u)du+

h4

4
S2
K

∫
(p′′(x))2dx

]
(1 + o(1)),

where the term o(1) is independent of n (but depends on p) and tends to 0 as h→ 0.

1.5 Unbiased risk estimation: cross-validation

Let p̂n be the KDE and let the kernelK be fixed. We already know that the bandwidth

h is crucial to determine the behavior of the estimator. How to choose h in practice?

Consider the risk

MISE(h) := Ep
∫

(p̂(h)
n − p)2(x)dx.

The optimal value of h is the one that minimizes the MISE, i.e.,

h∗ = argmin
h>0

MISE(h).

This ideal bandwidth h depends on the true density p, so it is not available in practice.

It is called the oracle bandwidth, and the estimator p̂n with bandwidth h = h∗ is called

the oracle. We would like to “mimic the oracle”, i.e., to find a bandwidth ĥn that

only depends on the data X1, . . . , Xn, such that its risk is close to the risk of the

oracle:

Ep
∫

(p̂(ĥn)
n − p)2(x)dx ≈ min

h>0
MISE(h),

It turns out that this task can be achieved. The idea is to first estimate the MISE(·),
and then to minimize in h the obtained estimator of MISE(·).

Note that the MISE can be written as

MISE(h) = E
∫

(p̂n − p)2 = E
[∫

p̂2
n − 2

∫
p̂np

]
+

∫
p2.

Only the expression in the square brackets depends on h; the last term is constant in

h. Let

J(h) := Ep
[∫

p̂2
n − 2

∫
p̂np

]
.

Since we are minimizing over h, minimizing MISE(h) is equivalent to minimizing J(h).

Therefore, it is enough to look for an estimator of J(h), denoted by Ĵ(h), because
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MISE(h) and J(h) have the same minimizers. A first idea is to take an unbiased

estimator of J(h).

[9] suggested the following estimator:

Ĵ(h) ≡ CV(h) =

∫
p̂2
n −

2

n

n∑

i=1

p̂n,−i(Xi),

where CV stands for cross-validation, and

p̂n,−i(x) =
1

(n− 1)h

∑

j 6=i

K

(
Xj − x
h

)
.

Now we prove that CV(h) is an unbiased estimator of J(h), i.e., we show that

Ep
∫
p̂np = Ep

[
1

n

n∑

i=1

p̂n,−i(Xi)

]
. (9)

Since X1, . . . , Xn are i.i.d., the right hand side of (9) is equal to

Ep[p̂n,−1(X1)] = Ep

[
1

(n− 1)h

∑

j 6=1

∫
K

(
Xj − z
h

)
p(z)dz

]

=
1

h

∫
p(x)

∫
K

(
x− z
h

)
p(z)dz dx

This integral is finite if K is bounded. The left hand side of (9) is equal to

Ep

[
1

nh

n∑

i=1

∫
K

(
Xi − x
h

)
p(x)dx

]
= RHS of (9).

Define the cross-validated bandwidth and the cross-validated KDE:

ĥCV = argmin
h>0

CV(h),

p̃CV
n (x) =

1

nĥCV

n∑

i=1

K

(
Xi − x
ĥCV

)
.

[12] was the first to investigate the issue of optimality in connection with cross-

validation. He proved that the integrated squared error of the estimator p̃CV
n is

asymptotically equivalent to that of some oracle estimator:
∫

(p̃CV
n − p)2

minh>0

∫
(p̂

(h)
n − p)2

a.s.→ 1, n→∞,

under some assumptions (the density p is bounded, the kernel is compactly supported,

essentially nonnegative, and satisfies the Hölder condition).
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2 Nonparametric regression

Let (X, Y ) be a pair of real-valued random variables such that E|Y | < ∞. The

regression function f : R→ R of Y on X is defined as

f(x) = E(Y |X = x).

Suppose that we have a sample (X1, Y1), . . . , (Xn, Yn) of n i.i.d. pairs of random

variables having the same distribution as (X, Y ). We would like to estimate the

regression function f from the data. The nonparametric approach only assumes that

f ∈ F , where F is a given nonparametric class of functions. The set of values

{X1, . . . , Xn} is called the design. Here the design is random.

The conditional residual ξ := Y − E(Y |X) has mean zero, E(ξ) = 0, and we may

write

Yi = f(Xi) + ξi, i = 1, . . . , n, (10)

where ξi are i.i.d. random variables with the same distribution as ξ. In particular,

E(ξi) = 0 for all i = 1, . . . , n. The variables ξi can therefore be interpreted as “errors”.

The key idea we use in estimating f nonparametrically in this section is called “local

averaging”. Given a kernel K and a bandwidth h, one can construct kernel estimators

for nonparametric regression. There exist different types of kernel estimators of the

regression function f . The most celebrated one is the Nadaraya-Watson estimator

defined as follows:

fNWn (x) =

∑n
i=1 YiK

(
Xi−x
h

)
∑n

i=1K
(
Xi−x
h

) , if
n∑

i=1

K

(
Xi − x
h

)
6= 0,

and fNWn (x) = 0 otherwise. This estimator was proposed separately in two papers

by Nadaraya and Watson in the year 1964.

Example: If we choose K(u) = 1
2
I(|u| ≤ 1), then fNWn (x) is the average of Yi such

that Xi ∈ [x−h, x+h]. Thus, for estimating f(x) we define the “local” neighborhood

as [x − h, x + h] and consider the average of the observations in that neighborhood.

For fixed n, the two extreme cases for the bandwidth are:

(i) h → ∞. Then fNWn (x) tends to n−1
∑n

i=1 Yi which is a constant independent

of x. The systematic error (bias) can be too large. This is a situation of

oversmoothing.

(ii) h→ 0. Then fNWn (Xi) = Yi whenever h < mini,j |Xi−Xj| and limh→0 f
NW
n (x) =

0, if x 6= Xi. The estimator fNWn is therefore too oscillating: it reproduces the
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data Yi at the points Xi and vanishes elsewhere. This makes the stochastic

error (variance) too large. In other words, undersmoothing occurs.

Thus, the bandwidth h defines the “width” of the local neighborhood and the kernelK

defines the “weights” used in averaging the response values in the local neighborhood.

As we saw in density estimation, an appropriate choice of the bandwidth h is more

important than the choice of the kernel K.

The Nadaraya-Watson estimator can be represented as a weighted sum of the Yi:

fNWn (x) =
n∑

i=1

YiW
NW
i (x)

where the weights are

WNW
i (x) :=

K
(
Xi−x
h

)
∑n

j=1K
(
Xj−x
h

) I
(

n∑

j=1

K

(
Xj − x
h

)
6= 0

)
.

Definition 2.1. An estimator f̂n(x) of f(x) is called a linear nonparametric regres-

sion estimator if it can be written in the form

f̂n(x) =
n∑

i=1

YiWni(x)

where the weights Wni(x) = Wni(x,X1, . . . , Xn) depend only on n, i, x and the values

X1, . . . , Xn.

Typically, the weights Wni(x) of linear regression estimators satisfy the equality∑n
i=1Wni(x) = 1 for all x (or for almost all x with respect to the Lebesgue mea-

sure).

Another intuitive motivation of fNWn is given below. Suppose that the distribution

of (X, Y ) has density p(x, y) with respect to the Lebesgue measure and pX(x) =∫
p(x, y)dy > 0. Then,

f(x) = E(Y |X = x) =

∫
yp(x, y)dy

pX(x)
.

If we replace here p(x, y) by the KDE p̂n(x, y) of the density of (X, Y ) defined by (3)

and use the corresponding KDE p̂Xn (x) to estimate pX(x), we obtain f̂NWn in view of

the following result.

Exercise (HW1): Let p̂Xn (x) and p̂n(x, y) be the KDEs defined in (2) and (3) respec-

tively, with a kernel K of order 1. Then

fNWn (x) =

∫
yp̂n(x, y)dy

p̂Xn (x)
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if p̂Xn (x) 6= 0.

2.1 Local polynomial estimators

If the kernel K takes only nonnegative values, the Nadaraya-Watson estimator fNWn

satisfies

fNWn (x) = argmin
θ∈R

n∑

i=1

(Yi − θ)2K

(
Xi − x
h

)
. (11)

Thus, fNWn is obtained by a local constant least squares approximation of the response

values, i.e., Yi’s. The locality is determined by the bandwidth h and the kernel K

which downweighs all the Xi that are not close to x whereas θ plays the role of a local

constant to be fitted. More generally, we may define a local polynomial least squares

approximation, replacing in (11) the constant θ by a polynomial of given degree `. If

f ∈ Σ(β, L), β > 1, ` = β, then for z sufficiently close to x we may write

f(z) ≈ f(x) + f ′(x)(z − x) + . . .+
f (`)(x)

`!
(z − x)` = θ>(x)U

(
z − x
h

)
,

where

U(u) = (1, u, u2/2!, . . . , u`/`!),

θ(x) =
(
f(x), f ′(x)h, f ′′(x)h2, . . . , f (`)(x)h`

)>
.

Definition 2.2. Let K : R→ R be a kernel, h > 0 be a bandwidth, and ` ≥ 0 be an

integer. A vector θ̂n(x) ∈ R`+1 defined by

θ̂n(x) = argmin
θ∈R`+1

n∑

i=1

[
Yi − θ>U

(
Xi − x
h

)]2

K

(
Xi − x
h

)
(12)

is called a local polynomial estimator of order ` of θ(x) or LP(`) estimator of θ(x) for

short. The statistic

f̂n(x) = U>(0)θ̂n(x)

is called a local polynomial estimator of order ` of f(x) or LP(`) estimator of f(x) for

short.

Note that f̂n(x) is simply the first coordinate of the vector θ̂n(x). Comparing (11)

and (12) we see that the Nadaraya-Watson estimator fNWn with kernel K ≥ 0 is

the LP (0) estimator. Furthermore, properly normalized coordinates of θ̂n(x) provide

estimators of the derivatives f ′(x), . . . , f (`)(x).
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For a fixed x the estimator (12) is a weighted least squares estimator. Indeed, we can

write θ̂n(x) as follows:

θ̂n(x) = argmin
θ∈R`+1

(−2θ>anx + θ>Bnxθ),

where the matrix Bnx and the vector anx are defined by the formulas:

Bnx =
1

nh

n∑

i=1

U

(
Xi − x
h

)
U>
(
Xi − x
h

)
K

(
Xi − x
h

)
,

anx =
1

nh

n∑

i=1

YiU

(
Xi − x
h

)
K

(
Xi − x
h

)
.

Exercise (HW1): If the matrix Bnx is positive definite, show that the local polynomial

estimator f̂n(x) of f(x) is a linear estimator. Also, in this case, find an expression for

f̂n(x).

The local polynomial estimator of order ` has a remarkable property: It reproduces

polynomials of degree ≤ `. This is stated in the next proposition (Exercise (HW1)).

Proposition 2.3. Let x ∈ R be such that Bnx > 0 (i.e., Bnx is positive definite) and

let Q be a polynomial of degree ≤ `. Then the LP(`) weights W ∗
ni are such that

n∑

i=1

Q(Xi)W
∗
ni(x) = Q(x),

for any sample (X1, . . . , Xn). In particular,

n∑

i=1

W ∗
ni(x) = 1, and

n∑

i=1

(Xi − x)kW ∗
ni(x) = 0 for k = 1, . . . , `.

2.2 Pointwise and integrated risk of local polynomial estima-

tors

In this section we study statistical properties of the LP(`) estimator constructed from

observations (Xi, Yi), i = 1, . . . , n, such that

Yi = f(Xi) + ξi, i = 1, . . . , n, (13)

where ξi are independent zero mean random variables (E(ξi) = 0), the Xi are deter-

ministic values belonging to [0, 1], and f is a function from [0, 1] to R.
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Let f̂n(x0) be an LP(`) estimator of f(x0) at point x0 ∈ [0, 1]. The bias and the

variance of f̂n(x0) are given by the formulas

b(x0) = Ef
[
f̂n(x0)

]
− f(x0), σ2(x0) = Ef

[
f̂ 2
n(x0)

]
−
(
Ef
[
f̂n(x0)

])2

,

respectively, where Ef denotes expectation with respect to the distribution of the

random vector (Y1, . . . , Yn). We will sometimes write for brevity E instead of Ef .

We will study separately the bias and the variance terms in this representation of the

risk. First, we introduce the following assumptions.

Assumptions (LP)

(LP1) There exist a real number λ0 > 0 and a positive integer n0 such that the

smallest eigenvalue λmin(Bnx) of Bnx satisfies λmin(Bnx) ≥ λ0 for all n ≥ n0 and

any x ∈ [0, 1].

(LP2) There exists a real number a0 > 0 such that for any interval A ⊂ [0, 1] and all

n ≥ 1,
1

n

n∑

i=1

I(Xi ∈ A) ≤ a0 max(Leb(A), 1/n)

where Leb(A) denotes the Lebesgue measure of A.

(LP3) The kernel K has compact support belonging to [−1, 1] and there exists a num-

ber Kmax <∞ such that |K(u)| ≤ Kmax,∀u ∈ R.

Assumption (LP1) is stronger than the condition Bnx > 0 introduced before since it

is uniform with respect to n and x. We will see that this assumption is natural in the

case where the matrix Bnx converges to a limit as n→∞. Assumption (LP2) means

that the points Xi are dense enough in the interval [0, 1]. It holds for a sufficiently

wide range of designs. An important example is given by the regular design: Xi = i/n,

for which (LP2) is satisfied with a0 = 2. Finally, assumption (LP3) is not restrictive

since the choice of K belongs to the statistician.

Exercise (HW1): Show that assumption (LP1) implies that, for all n ≥ n0, x ∈ [0, 1],

and v ∈ R`+1,

‖B−1
nx v‖ ≤ ‖v‖/λ0,

where ‖ · ‖ denotes the Euclidean norm in R`+1. Hint: Use the fact that Bnx is

symmetric and relate the eigenvalues of Bnx to that of B−1
nx and B−2

nx (note that for a

square matrix A ∈ Rr×r, λmax(A) = v>Av
‖v‖2 , where v 6= 0 ∈ Rr).
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We have the following result (Exercise (HW1)) which gives us some useful bounds on

the weights W ∗
ni(x).

Lemma 2.4. Under assumptions (LP1)–(LP3), for all n ≥ n0, h ≥ 1/(2n), and

x ∈ [0, 1], the weights W ∗
ni(x) of the LP(`) estimator are such that:

(i) supi,x |W ∗
ni(x)| ≤ C∗

nh
;

(ii)
∑n

i=1 |W ∗
ni(x)| ≤ C∗;

(iii) W ∗
ni(x) = 0 if |Xi − x| > h,

where the constant C∗ depends only on λ0, a0, and Kmax.

We are now ready to find upper bounds on the MSE of the LP(`) estimator.

Proposition 2.5. Suppose that f ∈ Σ(β, L) on [0, 1], with β > 0 and L > 0. Let f̂n

be the LP(`) estimator of f with ` = bβc. Assume also that:

(i) the design points X1, . . . , Xn are deterministic;

(ii) assumptions (LP1)–(LP3) hold;

(iii) the random variables ξi are independent and such that for all i = 1, . . . , n,

E(ξi) = 0, E(ξ2
i ) ≤ σ2

max <∞.

Then for all x0 ∈ [0, 1], n ≥ n0, and h ≥ 1/(2n) the following upper bounds hold:

|b(x0) ≤ q1h
β, σ2(x0) ≤ q2

nh
,

where q1 := C∗L/`! and q2 := σ2
maxC

2
∗ .

Thus, Proposition 2.5 implies that

MSE ≤ q2
1h

2β +
q2

nh
. (14)

The minimum with respect to h of the right hand side of the above upper bound is

attained at

h∗n =

(
q2

2βq2
2

)1/(2β+1)

n−1/(2β+1).

Therefore, the choice h = h∗n gives

MSE(x0) = O
(
n−

2β
2β+1

)
, as n→∞,

uniformly in x0. Thus, we have the following result.

25



Theorem 2.6. Assume that the assumptions of Proposition 2.5 hold. Suppose that

for a fixed α > 0 the bandwidth is chosen as h = hn = αn−1/(2β+1). Then the following

holds:

lim sup
n→∞

sup
f∈Σ(β,L)

sup
x0∈[0,1]

Ef
[
ψ−2
n (f̂n(x0)− f(x0))2

]
≤ C <∞,

where ψn := n−
β

2β+1 is the rate of convergence and C > 0 is a constant depending

only on β, L, a0, σ
2
max, Kmax and α.

As the above upper bound holds for every x0 ∈ [0, 1] we immediately get the following

result on the integrated risk.

Corollary 2.7. Under the assumptions of Theorem 2.6 the following holds:

lim sup
n→∞

sup
f∈Σ(β,L)

Ef
[
ψ−2
n ‖f̂n(x0)− f(x0)‖2

2

]
≤ C <∞,

where ‖f‖2
2 =

∫ 1

0
f 2(x)dx, ψn := n−

β
2β+1 is the rate of convergence and C > 0 is a

constant depending only on β, L, a0, σ
2
max, Kmax and α.

2.2.1 Assumption (LP1)

We now discuss assumption (LP1) in more detail. If the design is regular and n is large

enough, Bnx is close to the matrix B :=
∫
U(u)U>(u)K(u)du, which is independent

of n and x. Therefore, for Assumption (LP1) to hold we only need to assure that B
is positive definite. This is indeed true, except for pathological cases, as the following

lemma states.

Lemma 2.8. Let K : R → [0,∞) be a function such that the Lebesgue measure

Leb({u : K(u) > 0}) > 0. Then the matrix

B =

∫
U(u)U>(u)K(u)du

is positive definite.

Proof. It is sufficient to prove that for all v ∈ R`+1 satisfying v 6= 0, we have v>Bv > 0.

Clearly,

v>Bv > 0 =

∫
(v>U(u))2K(u)du ≥ 0.

If there exists v 6= 0 such that
∫

(v>U(u))2K(u)du = 0, then v>U(u) = 0 for almost

all u on the set {u : K(u) > 0}, which has a positive Lebesgue measure by the

assumption of the lemma. But the function v 7→ v>U(u) is a polynomial of degree
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≤ ` which cannot be equal to zero except for a finite number of points. Thus, we come

to a contradiction showing that
∫

(v>U(u))2K(u)du = 0 is impossible for v 6= 0.

Lemma 2.9. Suppose that there exist Kmin > 0 and ∆ > 0 such that

K(u) ≥ KminI(|u| ≤ ∆), ∀u ∈ R,

and that Xi = i/n for i = 1, . . . , n. Let h = hn be a sequence satisfying hn → 0 and

nhn →∞, as n→∞. Then assumption (LP1) holds.

3 Projection estimators

Consider data (Xi, Yi), i = 1, . . . , n, from a nonparametric regression model where

Yi = f(Xi) + ξi, i = 1, . . . , n, (15)

with Xi ∈ X, a metric space, and E(ξi) = 0. The goal is to estimate the function f

based on the data. In what follows, we will also use the vector notation, writing the

model as

y = f + ξ,

where y = (Y1, . . . , Yn)>, f = (f(X1), . . . , f(Xn))> and ξ = (ξ1, . . . , ξn)>.

The idea here is to approximate f by fθ, a linear combination of N given functions

ϕ1, . . . , ϕN where ϕj : X→ R, so that

fθ(x) :=
N∑

j=1

θjϕj(x).

Then we look for a suitable estimator θ̂ = (θ̂1, . . . , θ̂N) of θ based on the sample

(Xi, Yi), i = 1, . . . , n, and construct an estimator of f having the form

f̂(x) = fθ̂(x) =
N∑

j=1

θ̂jϕj(x). (16)

Example 3.1. If X = [0, 1] and f ∈ L2[0, 1], then a popular choice of {ϕj}Nj=1

corresponds to the first N functions of an orthonormal basis in L2[0, 1]. For example,

{ϕj}∞j=1 can be the trigonometric basis or the Legendre basis on [0, 1]. Let {θj}∞j=1 be

the Fourier coefficients of f with respect to the orthonormal basis {ϕj}∞j=1 of L2[0, 1],

i.e.,

θj =

∫ 1

0

f(x)ϕ(x)dx.
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Assume that f can be represented as

f(x) =
∞∑

j=1

θjϕj(x), (17)

where the series converges for all x ∈ [0, 1]. Observe that if Xi are scattered over

[0, 1] in a sufficiently uniform way, which happens, e.g., in the case Xi = i/n, the

coefficients θj are well approximated by the sums n−1
∑N

i=1 f(Xi)ϕj(Xi). Replacing

in these sums the unknown quantities f(Xi) by the observations Yi we obtain the

following estimator of θj:

θ̂j =
1

n

∞∑

i=1

Yiϕj(Xi). (18)

Remark 3.1. The parameter N (called the order of the estimator) plays the same

role as the bandwidth h for kernel estimators: similar to h it is a smoothing parameter,

i.e., a parameter whose choice is crucial for establishing the balance between bias and

variance. The choice of very large N leads to undersmoothing, whereas for small

values of N oversmoothing occurs.

An important class of estimators of the form (16) are projection estimators. Define

the empirical norm ‖ · ‖ as:

‖f‖2 :=
n∑

i=1

f 2(Xi), ‖y‖2 :=
n∑

i=1

Y 2
i .

The projection estimator is defined as follows:

f̂LS(x) = f
θ̂
LS(x) =

N∑

j=1

θ̂LSj ϕj(x) (19)

where θ̂
LS

is the classical least squares estimator (LSE):

θ̂
LS

:= argmin
θ∈RN

‖y − fθ‖2,

where fθ = (fθ(X1), . . . , fθ(Xn))>. Equivalently, we can write

θ̂
LS

= argmin
θ∈RN

‖y −Xθ‖2,

where X := (ϕj(Xi))i,j where i = 1, . . . , n and j = 1, . . . , N . In other words, we con-

struct a ‘nonparametric’ estimator based on a purely parametric idea. The question

is whether such an estimator is good. We will see that this is indeed the case under
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appropriate conditions on the functions {ϕj}, the function f , and N . Recall that,

under the assumption that X>X > 0 (note that X>X is an N ×N matrix), we have

θ̂
LS

= (X>X)−1X>y and f̂LS = Xθ̂
LS

= Ay

where A := X(X>X)−1X> is the so-called hat matrix. The hat matrix is the or-

thogonal projection matrix (in Rn) onto the column-space of X, i.e., the subspace

of Rn spanned by the N columns of X. Note that we can have X>X > 0 only if

N ≤ n. However, even if X>X is not invertible f̂LS is uniquely defined by the Hilbert

projection theorem4 and can be expressed as Ay where now A = X(X>X)+X>; here

A+ stands for the Moore-Penrose pseudoinverse.

Indeed, rank(X>X) = rank(X) ≤ min(N, n). Under the assumption that X>X > 0,

the projection estimator is unique and has the form

f̂LS(x) = ϕ(x)>θ̂
LS

= ϕ(x)>(X>X)−1X>y =
n∑

i=1

Wni(x)Yi,

where ϕ(x) = (ϕ1(x), . . . , ϕN(x))> and Wni(x) is the i-th component of the vector

ϕ(x)>(X>X)−1X>.

3.1 Risk bounds for projection estimators

Assume now that we have the regression model (48), where the points Xi are deter-

ministic elements in the space X. Let us measure the accuracy of an estimator f̂ of

f by the following squared risk:

R(f , f̂) := E‖f − f̂‖2 = E

[
1

n

n∑

i=1

(f̂(Xi)− f(Xi))
2

]
.

This choice of a loss function is quite natural and it measures the prediction accuracy

of the estimator at the observed design points. Further, if the Xi are “equi-spaced”

points then R(f , f̂) is approximately equal to the MISE.

Let f̂(x) be a linear estimator, i.e., f̂(x) =
∑n

i=1Wni(x)Yi. Then we can write f̂ = Sy

where S := (Wnj(Xi))n×n is a deterministic matrix. Note that S does not depend on

4The Hilbert projection theorem is a famous result of convex analysis that says that for every

point u in a Hilbert space H and every nonempty closed convex C ⊂ H, there exists a unique point

v ∈ C for which ‖x− y‖ is minimized over C. This is, in particular, true for any closed subspace M

of C. In that case, a necessary and sufficient condition for v is that the vector u− v be orthogonal

to M .
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y; it depends only on the Xi’s. As particular cases, we can think of f̂ as the LP(`)

estimator or the projection estimator in (16).

Proposition 3.2. Let ξi be random variables such that E(ξi) = 0 and E(ξiξj) = σ2δij

for i, j = 1, . . . , n, where δij is the Kronecker delta function. Let S be any n×nmatrix.

Then the risk of linear estimator f = Sy is given by

R(f , f̂) = ‖Sf − f‖2 +
σ2

n
tr(S>S).

Proof. By definition of the norm ‖ · ‖ and of the model,

‖f̂ − f‖2 = ‖Sf + Sξ − f‖2

= ‖Sf − f‖2 +
2

n
(Sf − f)>Sξ + ‖Sξ‖2.

Taking expectations and using that E(ξ) = 0 we obtain

E‖f̂ − f‖2 = ‖Sf − f‖2 +
1

n
E(ξ>S>Sξ).

Set V = S>S and denote the elements of this matrix by vij. We have

E(ξ>S>Sξ) = E

(
n∑

i,j

ξivijξj

)
=

n∑

i=1

σ2vii = σ2tr(V ).

In particular, if f̂ is a projection estimator then S is an orthogonal projection matrix

and S> = S and thus, V = S (as S2 = S) which shows that

tr(V ) = tr(S) = rank(S) ≤ min(n,N).

Thus, we have

R(f , f̂) ≤ ‖Sf − f‖2 +
σ2

n
min(n,N)

= min
θ∈RN

‖fθ − f‖2 +
σ2

n
min(n,N). (20)

In fact, a close inspection of the proof of Proposition 3.2 shows that for the above

inequality to hold it is enough to assume that E(ξ2
i ) ≤ σ2, and E(ξiξj) = 0 for i 6= j,

where i, j = 1, . . . , n.

In order to control this bias term and to analyze the rate of convergence of projection

estimator, we need to impose some assumptions on the underlying function f and on

the basis {ϕj}∞j=1.
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3.1.1 Projection estimator with trigonometric basis in L2[0, 1]

Here we continue to consider the nonparametric regression model (48) and we will

assume that X = [0, 1]. We will mainly focus on a particular case, Xi = i/n.

Definition 3.3. The trigonometric basis is the orthonormal basis of L2[0, 1] defined

by

ϕ1(x) = 1, ϕ2k(x) =
√

2 cos(2πkx), ϕ2k+1(x) =
√

2 sin(2πkx), k = 1, 2 . . . ,

for x ∈ [0, 1].

We will assume that the regression function f is sufficiently smooth, or more specif-

ically, that it belongs to a periodic Sobolev class of functions. First, we define the

periodic Sobolev class for integer smoothness β.

Definition 3.4. Let β ≥ 1 be an integer and let L > 0. The periodic Sobelev class

W (β, L) is defined as

W (β, L) :=
{
f : [0, 1]→ R : f (β−1) is absolutely continuous and
∫ 1

0

(f (β)(x))2dx ≤ L2, f (j)(0) = f (j)(1), j = 0, 1, . . . , β − 1
}

Any function f belonging to such a class is continuous and periodic (f(0) = f(1))

and thus admits the representation

f(x) = θ1ϕ1(x) +
∞∑

k=1

(θ2kϕ2k(x) + θ2k+1ϕ2k+1(x)) (21)

where {ϕj}∞j=1 is the trigonometric basis given in Definition 3.3. The above infinite

series converges pointwise, and the sequence θ = {θj}∞j=1 of Fourier coefficients of f

belongs to the space

`2(N) :=

{
θ :

∞∑

j=1

θ2
j <∞

}
.

We now state a necessary and sufficient condition on θ under which the function (21)

belongs to the class W (β, L). Define

aj =

{
jβ, for even j,

(j − 1)β, for odd j.
(22)
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Proposition 3.5. Let β ∈ {1, 2, . . .}, L > 0, and let {ϕj}∞j=1 be the trigonometric

basis. A function f ∈ L2[0, 1] belong to W (β, L) if and only if the vector θ of the

Fourier coefficients of f belongs to the following ellipsoid in `2(N):

Θ(β,Q) :=

{
θ ∈ `2(N) :

∞∑

j=1

a2
jθ

2
j ≤ Q

}
(23)

where Q = L2/π2β and aj is given by (22).

See [14, Lemma A.3] for a proof of the above result.

The set Θ(β,Q) defined by (23) with β > 0 (not necessarily an integer), Q > 0, and

aj satisfying (22) is called a Sobolev ellipsoid. We mention the following properties of

these ellipsoids.

• The monotonicity with respect to inclusion:

0 < β′ ≤ β implies Θ(β,Q) ⊂ Θ(β′, Q).

• If β > 1/2, the function f =
∑∞

j=1 θjϕj with the trigonometric basis {ϕj}∞j=1

and θ ∈ Θ(β,Q) is continuous (check this as an exercise). In what follows, we

will basically consider this case.

The ellipsoid Θ(β,Q) is well-defined for all β > 0. In this sense Θ(β,Q) is a more

general object than the periodic Sobolev class W (β, L), where β can only be an

integer. Proposition 3.5 establishes an isomorphism between Θ(β,Q) and W (β, L)

for integer β. It can be extended to all β > 0 by generalizing the definition of W (β, L)

in the following way.

Definition 3.6. For any β > 0 and L > 0 the Sobolev class W (β, L) is defined as:

W (β, L) =
{
f ∈ L2[0, 1] : θ = {θj}∞j=1 ∈ Θ(β,Q)

}

where θj =
∫ 1

0
fϕj and {ϕj}∞j=1 is the trigonometric basis. Here Θ(β,Q) is the Sobolev

ellipsoid defined in (23), where Q = L2/π2β and {aj}∞j=1 is given by (22).

For all β > 1/2, the functions belonging to W (β, L) are continuous. On the contrary,

they are not always continuous for β < 1/2; an example is given by the function

f(x) = sign(x− 1/2), whose Fourier coefficients θj are of order 1/j.

Lemma 3.7. Let {ϕj}∞j=1 be the trigonometric basis. Then,

1

n

n∑

s=1

ϕj(s/n)ϕk(s/n) = δjk, 1 ≤ j, k ≤ n− 1, (24)
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where δjk is the Kronecker delta.

See [14, Lemma 1.7] for a proof of the above result.

We are now ready to establish an upper bound on the bias of the projection estimator.

Proposition 3.8. Let f ∈ W (β, L), β ≥ 1, L > 0. Assume that {ϕj}∞j=1 is the

trigonometric basis and Xi = i/n, i = 1, . . . , n. Then, for all n ≥ 1, N ≥ 1,

inf
θ∈RN

E‖fθ − f‖2 ≤ C(β, L)

(
1

N2β
+

1

n

)
,

where C(β, L) is a constant that depends only on β and L.

The proof of the above result was given in class.

Theorem 3.9. Let f ∈ W (β, L), β ≥ 1, L > 0 and N = dαn1/(2β+1)e for α > 0.

Assume that {ϕj}∞j=1 is the trigonometric basis and Xi = i/n, i = 1, . . . , n. Let ξi

be random variables such that E(ξi) = 0, E(ξ2
i ) ≤ σ2 and E(ξiξj) = 0 for i 6= j ∈

{1, . . . , n}. Then, for all n ≥ 1,

sup
f∈W (β,L)

E‖f̂LS − f‖2 ≤ Cn−
2β

2β+1 ,

where C is a constant that depends only on σ2, β, L and α.

Proof. In view of (20) and Proposition 3.8,

E‖f̂LS − f‖2 ≤ C(β, L)

(
1

N2β
+

1

n

)
+
σ2N

n
= O(n−

2β
2β+1 ).
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4 Minimax lower bounds

We have a family {Pθ : θ ∈ Θ} of probability measures, indexed by Θ, on a measurable

space (X ,A) associated with the data. Usually, in nonparametric statistics, Θ is a

nonparametric class of functions (e.g., Θ = Σ(β, L) or Θ = W (β, L)). Thus, in the

density estimation model, Pθ is the probability measure associated with a sample

X = (X1, . . . , Xn) of size n when the density of Xi is p(·) ≡ θ.

Given a semi-distance5 the performance of an estimator θ̂n of θ is measured by the

maximum risk of this estimator on Θ:

r(θ̂n) := sup
θ∈Θ

Eθ
[
d2(θ̂n, θ)

]
.

The aim of this section is to complement the upper bound results (i.e., supθ∈Θ Eθ
[
d2(θ̂n, θ)

]
≤

Cψ2
n for certain estimator θ̂n) by the corresponding lower bounds:

∀ θ̂n : sup
θ∈Θ

Eθ
[
d2(θ̂n, θ)

]
≥ cψ2

n

for sufficiently large n, where c is a positive constant.

The minimax risk associated with a statistical model {Pθ : θ ∈ Θ} and with a semi-

distance d is defined as

R∗n := inf
θ̂n

sup
θ∈Θ

Eθ
[
d2(θ̂n, θ)

]
,

where the infimum is over all estimators. The upper bounds established previously

imply that there exists a constant C <∞ such that

lim sup
n→∞

ψ−2
n R∗n ≤ C

for a sequence {ψn}n≥1 converging to zero. The corresponding lower bounds claim

that there exists a constant c > 0 such that, for the same sequence {ψn}n≥1,

lim inf
n→∞

ψ−2
n R∗n ≥ c. (25)

4.1 Distances between probability measures

Let (X ,A) be a measurable space and let P and Q be two probability measures on

(X ,A). Suppose that ν is a σ-finite measure on (X ,A) satisfying P � ν and Q� ν.

5We will call the semi-distance d : Θ × Θ → [0,+∞) on Θ as a function that satisfies d(θ, θ′) =

d(θ′, θ), d(θ, θ′′) ≤ d(θ, θ′) + d(θ′, θ′′), and d(θ, θ) = 0, where θ, θ′, θ′′ ∈ Θ. The following are a few

common examples of d: d(f, g) = |f(x0)− g(x0)| (for some fixed x0), d(f, g) = ‖f − g‖2, etc.
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Define p = dP/dν, q = dQ/dν. Observe that such a measure ν always exists since we

can take, for example, ν = P +Q.

Definition 4.1. The Hellinger distance between P and Q is defined as follows:

H2(P,Q) :=

∫
(
√
p−√q)2dν = 2

(
1−

∫ √
pq dν

)
.

Exercise (HW2): The following are some properties of the Hellinger distance:

1. H(P,Q) does not depend on the choice of the dominating measure ν.

2. H(P,Q) satisfies the axioms of distance.

3. 0 ≤ H2(P,Q) ≤ 2.

4. If P and Q are product measures, P = ⊗ni=1Pi, Q = ⊗ni=1Qi, then

H2(P,Q) = 2

[
1−

n∏

i=1

(
1− H2(Pi, Qi)

2

)]
.

Definition 4.2. The total variation distance between P and Q is defined as follows:

V (P,Q) := sup
A∈A
|P (A)−Q(A)| = sup

A∈A

∣∣∣∣
∫

A

(p− q)dν
∣∣∣∣ .

Note that 0 ≤ V (P,Q) ≤ 1 and V (P,Q) satisfies the axioms of distance.

Lemma 4.3 (Scheffé’s theorem).

V (P,Q) =
1

2

∫
|p− q|dν = 1−

∫
min(p, q)dν.

Lemma 4.4 (Le Cam’s inequalities).

∫
min(p, q)dν ≥ 1

2

(∫ √
pq dν

)2

=
1

2

(
1− H2(P,Q)

2

)2

,

1

2
H2(P,Q) ≤ V (P,Q) ≤ H(P,Q)

√
1− H2(P,Q)

2
.

Exercise (HW2): Prove the above two lemmas.

Definition 4.5. The Kullback divergence between P and Q is defined by:

K(P,Q) :=

{ ∫
log
(
p
q

)
p dν, if P � Q,

+∞, otherwise.
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It can be shown that the above definition always makes sense if P � Q. Here are

some properties of the Kullback divergence:

1. K(P,Q) ≥ 0. Indeed, by Jensen’s inequality,
∫

pq>0

log

(
p

q

)
p dν = −

∫

pq>0

p log

(
q

p

)
dν ≥ − log

(∫
qdν

)
≥ 0.

2. K(P,Q) is not a distance (for example, it is not symmetric).

3. [Show this (Exercise (HW2))] If P and Q are product measures, P = ⊗ni=1Pi,

Q = ⊗ni=1Qi, then

K(P,Q) =
n∑

i=1

K(Pi, Qi).

The next lemma links the Hellinger distance with the Kullback divergence.

Lemma 4.6.

H2(P,Q) ≤ K(P,Q).

The following lemma links the total variation distance with the Kullback divergence.

Lemma 4.7 (Pinsker’s inequality).

V (P,Q) ≤
√
K(P,Q)/2.

Exercise (HW2): Prove the above two lemmas.

Definition 4.8. The χ2 divergence between P and Q is defined by:

χ2(P,Q) :=

{ ∫ (p−q)2
p

dν, if P � Q,

+∞, otherwise.

Lemma 4.9. ∫
min(p, q)dν = 1− 1

2

∫
|p− q|dν ≥ 1− 1

2

√
χ2(P,Q).

Proof. Since p and q are probability densities,

2 =

∫
p dν +

∫
q dν = 2

∫
min(p, q)dν +

∫
|p− q|dν

which shows the first equality. To show the inequality, we use Cauchy-Schwarz in-

equality to obtain
∫
|p− q|dν =

∫
1√
p
|p− q|√p dν ≤ χ2(P,Q).
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Lemma 4.10. If P and Q are product measures, P = ⊗ni=1Pi and Q = ⊗ni=1Qi, then

χ2(P,Q) =
n∏

i=1

(χ2(Pi, Qi) + 1)− 1.

The proof is left as an exercise (HW2).

4.2 Lower Bounds on the risk of density estimators at a point

Our aim is to obtain a lower bound for the minimax risk on (Θ, d) where Θ is a

Sobolev density:

Θ = P(β, L), β > 0, L > 0,

and where d is a distance at a fixed point x0 ∈ R:

d(f, g) = |f(x0)− g(x0)|.

The rate that we would like to obtain is ψn = n−
β

2β+1 . Indeed, this is the same rate

as in the upper bounds which will enable us to conclude that ψn is optimal on (Θ, d).

Thus, we want to show that

inf
Tn

sup
p∈P(β,L)

Ep
[
(Tn(x0)− p(x0))2

]
≥ cn−

2β
2β+1 , (26)

for all n sufficiently large, where Tn ranges over all density estimators and c > 0 is a

constant. For brevity we write Tn = Tn(x0). For any p0, p1 ∈ P(β, L), we may write

sup
p∈P(β,L)

Ep[(Tn − p(x0))2] ≥ max
{
Ep0 [(Tn − p0(x0))2],Ep1 [(Tn − p1(x0))2]

}

≥ 1

2

{
Ep0 [(Tn − p0(x0))2] + Ep1 [(Tn − p1(x0))2]

}
.(27)

Note that

Ep[(Tn − p(x0))2] =

∫
. . .

∫
[Tn(x1, . . . , xn)− p(x0)]2

(
n∏

i=1

p(xi)dxi

)
.

Let x := (x1, . . . , xn) and πn(x) =
∏n

i=1 p(xi). Also, let π0,n, π1,n be the joint densities

corresponding to the chosen densities p0 and p1. The expression in (27) is then equal

to

1

2

[∫
(Tn(x)− p0(x0))2π0,n(x)dx +

∫
(Tn(x)− p1(x0))2π1,n(x)dx

]

≥ 1

2

[∫
(Tn(x)− p0(x0))2 + (Tn(x)− p1(x0))2

]
min{π0,n(x), π1,n(x)} dx

≥ 1

4
(p0(x0)− p1(x0))2

∫
min{π0,n(x), π1,n(x)} dx,
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where we have used the fact that u2 + v2 ≥ (u− v)2/2, for u, v ∈ R.

In view of the above, to prove (26) it suffices to find densities p0 and p1 such that

(i) p0, p1 ∈ P(β, L),

(ii) |p0(x0)− p1(x0)| ≥ c1n
− β

2β+1 ,

(iii)
∫

min{π0,n(x), π1,n(x)} dx ≥ c2, where the constant c2 does not depend on n.

We take p0 to be a density on R such that p0 ∈ Σ(β, L/2) and p0(x0) > 0; e.g., p0 can

be the N(0, σ2) density with σ2 chosen is such a suitable way. Obviously p0 ∈ Σ(β, L).

Construct p1 by adding a small perturbation to p0:

p1(x) := p0(x) + hβK

(
x− x0

h

)
,

where h = αn−1/(2β+1) (for α > 0), the support of K is [−1
2
, 3

2
], K is infinitely

differentiable (i.e., K ∈ C∞(R)), K(0) > 0 and
∫
K(u)du = 0. Thus, p1 is a density

for h small enough.

Figure 2: Graphs of K0 and g.
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Lemma 4.11. p1 ∈ Σ(β, L) is a density for h > 0 small enough.

Proof. Let

K0(u) := e
− 1

1−u2 I[−1,1](u).

Then, K0 ∈ C∞(R) and the support of K0 is [−1, 1]. Let g : [−1
2
, 3

2
]→ R be defined

as

g(u) := K0(2u)−K0(2(u− 1)).

Observe that
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1. g(0) 6= 0,

2.
∫
g(u)du = 0,

3. g ∈ C∞(R), which implies that g ∈ Σ(β, L′) for a certain L′ > 0.

Define K : [−1
2
, 3

2
] → R such that K(u) := ag(u) for a > 0 small enough so that

K ∈ Σ(β, L/2).

Using the fact that
∫
g(u)du = 0 it is easy to see that

∫
p1(x)dx = 1. Next we show

that p1 ≥ 0 for h > 0 small enough. For x ∈ [x0 − h
2
, x0 + 3h

2
],

p1(x) ≥ min
t∈[x0−h2 ,x0+ 3h

2
]
p0(t)− sup

t∈[x0−h2 ,x0+ 3h
2

]

hβ
∣∣∣∣K
(
x− x0

h

)∣∣∣∣

≥ min
t∈[x0−h2 ,x0+ 3h

2
]
p0(t)− hβ sup

t∈R
|K (t)| .

Since p0 is continuous, p0(x0) > 0, we obtain that p1(x) > 0 for all x ∈ [x0− h
2
, x0+ 3h

2
],

if h is smaller than some constant h0 > 0. Note that for x /∈ [x0 − h
2
, x0 + 3h

2
],

p1(x) = p0(x) ≥ 0. Thus, p1 is a density.

We now have to show that p1 ∈ Σ(β, L). Set ` := bβc. Clearly, p1 is ` times

differentiable. Further,

p
(`)
1 (x) = p

(`)
0 (x) + hβ−`K(`)

(
x− x0

h

)
.

Hence,

|p(`)
1 (x)− p(`)

1 (x′)| ≤ |p(`)
0 (x)− p(`)

0 (x)|+ hβ−`
∣∣∣∣K(`)

(
x− x0

h

)
−K(`)

(
x′ − x0

h

)∣∣∣∣

≤ L

2
|x− x′|β−` +

L

2
hβ−`

∣∣∣∣
x− x′
h

∣∣∣∣
β−`

≤ L|x− x′|β−`,

where we have used the fact that both p0, K ∈ Σ(β, L/2).

Thus,

|p0(x0)− p1(x0)| = hβK(0) = K(0)n−
β

2β+1 .

Next we will try to show that (iii) holds. In view of Lemma 4.9, it suffices to bound
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χ2(π0,n, π1,n) from above by a constant strictly less than 1. First write χ2(p0, p1) as

∫
(p0 − p1)2

p0

=

∫ x0+3h/2

x0−h/2

[
h2βK2((x− x0)/h)

p0(x)

]
dx

≤ h2β+1

minx∈[x0−h/2,x0+3h/2] p0(x)

∫
K2(u)du

≤ h2β+1

minx∈[x0−1/2,x0+3/2] p0(x)

∫
K2(u)du

where we have assumed that h ≤ α and α ≤ 1. Plugging the choice of h we obtain

χ2(p0, p1) ≤ c∗α
2β+1n−1

where the constant c∗ depends only on p0 and K. Therefore, applying Lemma 4.10

we find

χ2(π0,n, π1,n) ≤ (1 + c∗α
2β+1n−1)n − 1 ≤ exp(c∗α

2β+1)− 1,

where we have used the fact that 1 + v < ev, for v ∈ R. Now, we choose α small

enough so that exp(c∗α
2β+1)− 1 < 1. Then,

∫
min(π0, π1) ≥ 1− 1

2
=

1

2
,

and thus, condition (iii) is satisfied.

Theorem 4.12. Let β > 0, L > 0. There exists a constant c > 0 that only depends

on β and L such that, for all x0 ∈ R, n ≥ 1,

inf
Tn

sup
p∈P(β,L)

Ep
[
(Tn(x0)− p(x0))2

]
≥ cn−

2β
2β+1 ,

where Tn ranges over all density estimators.

Since the choice of x0 is arbitrary, we can equivalently put infx0∈Rbefore the minimax

risk.

Definition 4.13. Let x0 be fixed, and let P be a class of densities on R. A sequence

{ψn}n≥1, ψn > 0, is called an optimal rate of convergence of mean squared error (risk)

on the class P if the following two conditions are satisfied:

(i) infTn supp∈P Ep[(Tn(x0)−p(x0))2] ≥ cψ2
n, where c > 0 is a constant independent

of n.

(ii) There exist an estimator pn(·), and a constant C > 0 independent of n such

that

sup
p∈P

Ep[(pn(x0)− p(x0))2] ≤ Cψ2
n.
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If (i) and (ii) hold, then pn is called a rate optimal estimator for the risk on the class

P .

Corollary 4.14. Let β > 0, L > 0. The KDE with bandwidth h = αn−1/(2β+1),

α > 0, and kernel of order ` = bβc is rate optimal for the mean squared error on the

Hölder class P(β, L), and ψn = n−β/(2β+1) is the corresponding optimal rate.

Summary: We have seen that the following issues play the key role in nonparametric

estimation.

• Bias-variance trade-off: For nonparametric estimation, the bias is not negligible,

which brings in the problem of optimal choice of the smoothing parameter. For

the KDE, the smoothing parameter is the bandwidth.

• Optimality in a minimax sense: Is the upper bound obtained from bias-variance

trade-off indeed optimal? We need minimax lower bounds to answer this ques-

tion.

• Adaptation: What is the optimal data-driven choice of the smoothing param-

eter? An adaptive estimator is an estimator which is rate optimal on a large

scale of classes without any knowledge about the parameters of the classes.

Cross-validation is an example of a successful adaptation procedure.

4.3 Lower bounds on many hypotheses

The lower bounds based on two hypotheses turn out to be inconvenient when we deal

with estimation in Lp distances; see e.g., the start of Section 2.6 of [14].

Let us consider the nonparametric density estimation problem under the L2 risk.

Then,

d(f, g) = ‖f − g‖2 =

(∫
(f(x)− g(x))2 dx

)1/2

.

Our aim is to prove an optimal lower bound on the minimax risk for the Sobolev class

of densities Θ = S(β, L) (where β ≥ 1 is an integer and L > 0) and the above L2

distance with the rate ψn = n−β/(2β+1).

The proof is based on a construction of subsets Fn ⊂ S(β, L), consisting of 2rn

functions, where rn = bn1/(2β+1)c, and on bounding the supremum over S(β, L) by

the average over Fn.

The subset Fn is indexed by the set of all vectors θ ∈ {0, 1}rn consisting of sequences
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of rn zeros and ones. For h = n−1/(2β+1), let xn,1 < xn,2 < . . . < xn,n be a regular grid

of mesh width 2h (i.e., xn,i − xn,i−1 > 2h, for i = 2, . . . , n).

For a fixed probability density p ∈ S(β, L/2) (e.g., let p be the density of N(0, σ2)

where σ2 is such that p ∈ S(β, L/2)). Consider a fixed function K ∈ S(β, L′) with

support (−1, 1), and define, for every θ ∈ {0, 1}rn ,

pn,θ(x) := p(x) + hβ
rn∑

j=1

θjK

(
x− xn,j

h

)
. (28)

If p is bounded away from zero on a interval containing the grid, |K| is bounded, and∫
K(x)dx = 0, then pn,θ is a p.d.f, at least for large n. Furthermore,

∫ ∣∣∣p(β)
n,θ(x)

∣∣∣
2

dx ≤ 2

∫ ∣∣p(β)(x)
∣∣2 dx+ 2hrn

∫ ∣∣K(β)(x)
∣∣2 dx ≤ 2

L2

4
+ 2

L2

4
≤ L2.

Observe that in the above we have used the fact that the mesh width is more than

2h so that for j 6= k,

∫
K

(
x− xn,j

h

)
K

(
x− xn,k

h

)
dx = 0.

Thus, pn,θ ∈ S(β, L) for every θ.

Of course, there exists many choices of p and K such that pn,θ ∈ S(β, L) for every θ.

Theorem 4.15. There exists a constant cβ,L such that for any density estimator p̂n,

sup
p∈S(β,L)

Ep
[∫

(p̂n − p)2

]
≥ cβ,Ln

−2β/(2β+1).

We will use the following result crucially to prove the above theorem.

4.3.1 Assouad’s lemma

The following lemma gives a lower bound for the maximum risk over the parameter

set {0, 1}r, in an abstract form, applicable to the problem of estimating an arbitrary

quantity ψ(θ) belonging to a semi-metric space (with semi-distance d). Let

H(θ, θ′) :=
r∑

i=1

|θi − θ′i|

be the Hamming distance on {0, 1}r, which counts the number of positions at which

θ and θ′ differ.
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For two probability measures P and Q with densities p and q let ‖P ∧Q‖ :=
∫
p∧q dν.

Before we state and prove Assouad’s lemma we give a simple result which will be useful

later.

Lemma 4.16 (Lemma from hypothesis testing). Suppose that we are given two

models Pθ0 and Pθ1 on a measurable space (X ,A) with densities p0 and p1 with

respect to a σ-finite measure ν. Consider testing the hypothesis

H0 : θ = θ0 versus H0 : θ = θ1.

The power function πφ of any test φ satisfies

πφ(θ1)− πφ(θ0) ≤ 1

2
‖Pθ1 − Pθ0‖.

Proof. The difference on the left hand side can be written as
∫
φ(p1 − p0)dν. The

expression is maximized for the test function I{p1 > p0} (Exercise (HW2): Show

this). Thus,

∫
φ (p1 − p0) dν ≤

∫

p1>p0

(p1 − p0) dν =
1

2

∫
|p1 − p0|dν,

as
∫
|p1 − p0| dν =

∫

p1>p0

(p1 − p0) dν +

∫

p0>p1

(p0 − p1) dν

=

∫

p1>p0

(p1 − p0) dν +

(∫
(p0 − p1) dν −

∫

p1>p0

(p0 − p1) dν

)

= 2

∫

p1>p0

(p1 − p0) dν.

Lemma 4.17 (Assouad’s lemma). For any estimator T of ψ(θ) based on an obser-

vation in the experiment {Pθ : θ ∈ {0, 1}r}, and any p > 0,

max
θ

2p Eθ[dp(T, ψ(θ))] ≥ min
H(θ,θ′)≥1

dp(ψ(θ), ψ(θ′))

H(θ, θ′)

r

2
min

H(θ,θ′)=1
‖Pθ ∧ Pθ′‖. (29)

Proof. Define an estimator S, taking values in Θ = {0, 1}r, by letting S = θ is

θ′ 7→ d(T, ψ(θ′)) is minimal over Θ at θ′ = θ (if the minimum is not unique, choose a

point of minimum in any consistent way), i.e.,

S = argmin
θ∈Θ

d(T, ψ(θ)).
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By the triangle inequality, for any θ,

d(ψ(S), ψ(θ)) ≤ d(ψ(S), T ) + d(ψ(θ), T ),

which is (upper) bounded by 2d(ψ(θ), T ), by the definition of S (as d(ψ(S), T ) ≤
d(ψ(θ), T )). If

dp(ψ(θ), ψ(θ′)) ≥ γH(θ, θ′) (30)

for all pairs θ, θ′ ∈ Θ (for some γ to be defined later), then

2p Eθ[dp(T, ψ(θ))] ≥ Eθ[dp(ψ(S), ψ(θ))] ≥ γEθ[H(S, θ)].

The maximum of this expression over Θ is bounded below by the average, which,

apart from the factor γ, can be written as

1

2r

∑

θ

r∑

j=1

Eθ|Sj − θj| =
1

2

r∑

j=1


 1

2r−1

∑

θ:θj=0

∫
SjdPθ +

1

2r−1

∑

θ:θj=1

∫
(1− Sj)dPθ




=
1

2

r∑

j=1

(∫
SjdP̄0,j +

∫
(1− Sj)dP̄1,j

)
,

where

P̄0,j =
1

2r−1

∑

θ:θj=0

Pθ and P̄1,j =
1

2r−1

∑

θ:θj=1

Pθ.

This is minimized over S by choosing Sj for each j separately to minimize the j-th

term in the sum. The expression within brackets is the sum of the error probabilities

of a test of

H0 : P = P̄0,j versus H1 : P = P̄1,j.

Equivalently, it is equal to 1 minus the difference of power and level. By Lemma 4.16

it can be shown that this is at least 1− 1
2
‖P̄0,j− P̄1,j‖ = ‖P̄0,j ∧ P̄1,j‖ (by Lemma 4.9).

Hence, the preceding display is bounded below by

1

2

r∑

j=1

‖P̄0,j ∧ P̄1,j‖.

Note that for two sequences {ai}mi=1 and {bi}mi=1,

min

(
1

m

m∑

i=1

ai,
1

m

m∑

i=1

bi

)
≥ 1

m

m∑

i=1

min(ai, bi) ≥ min
i=1,...,m

min(ai, bi).

The 2r−1 terms Pθ and Pθ′ in the averages P̄0,j and P̄1,j can be ordered and matched

such that each pair θ and θ′ differ only in their j-th coordinate. Conclude that

1

2

r∑

j=1

‖P̄0,j ∧ P̄1,j‖ ≥
1

2

r∑

j=1

min
H(θ,θ′)=1,θj 6=θ′j

‖Pθ ∧ Pθ′‖ ≥
r

2
min

H(θ,θ′)=1
‖Pθ ∧ Pθ′‖.
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Observing that the γ in (30) can always be taken as minH(θ,θ′)≥1
dp(ψ(θ),ψ(θ′))

H(θ,θ′)
, we obtain

the desired result.

Exercise (HW2): Complete the proof of Theorem 4.15.

4.3.2 Estimation of a monotone function

Consider data (Xi, Yi), i = 1, . . . , n, from a nonparametric regression model where

Yi = f(Xi) + ξi, i = 1, . . . , n, (31)

with 0 ≤ X1 < X2 < . . . < Xn ≤ 1 being deterministic design points, f : [0, 1] → R
is nondecreasing and the (unobserved) errors ξ1, . . . , ξn are i.i.d. N(0, σ2). In what

follows, we will also use the vector notation, writing the model as

y = f + ξ,

where y = (Y1, . . . , Yn)>, f = (f(X1), . . . , f(Xn))> and ξ = (ξ1, . . . , ξn)>. The goal of

this section is to find the (optimal) lower bound on the rate of convergence for any

estimator of f based on the loss

d2(f ,g) :=
1

n
‖f − g‖2

2 =
1

n

n∑

i=1

(f(Xi)− g(Xi))
2 (32)

where f, g are real valued functions defined on [0, 1].

For every V > 0 we define byMV the class of nondecreasing functions f : [0, 1]→ R

such that f(1)− f(0) ≤ V .

Theorem 4.18. For any V > 0, there exists a constant cV > 0, only depending on

σ2 and V , such that for any estimator f̂n, and for all n ≥ n0 ∈ N,

sup
f∈MV

Ef [d2(f̂n, f)] ≥ cV n
−2/3,

where f̂n := (f̂n(X1), . . . , f̂n(Xn))>.

Proof. We will use Assouad’s lemma to prove the desired result. Fix an integer

1 ≤ k ≤ n (be chosen later) and let rn := bn/kc, where bxc denotes the largest

integer smaller than or equal to x. Let us define f ∈ Rn as

fi =

{
V (j−1)

rn
, if (j − 1)k < i ≤ jk;

V (rn−1)
rn

, if rnk < i ≤ n.
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Take f to be any nondecreasing function on [0, 1] such that f(Xi) = fi, for i = 1, . . . , n.

Also, it can be assumed that f ∈MV . Let Θ = {0, 1}rn and let ψ(θ) ∈ Rn, for θ ∈ Θ,

be defined as:

ψ(θ)i = fi +
V

2rn

rn∑

j=1

(2θj − 1)I{(j − 1)k < i ≤ jk}. (33)

Note that ψ(θ) induces a nondecreasing function that belongs to MV .

For θ, θ′ ∈ Θ, we have

d2(ψ(θ), ψ(θ′)) =
1

n

rn∑

j=1

∑

(j−1)k<i≤jk

[ψ(θ)i − ψ(θ′)i]
2

=
1

n

rn∑

j=1

k|θj − θ′j|2
V 2

r2
n

=
V 2k

r2
nn
H(θ, θ′).

Therefore, this implies that for θ, θ′ ∈ Θ,

min
H(θ,θ′)≥1

d2(ψ(θ), ψ(θ′))

H(θ, θ′)
=
V 2k

r2
nn
.

Further, by Pinsker’s inequality (see Lemma 4.7), and using the fact that the Kullback-

Leibler divergence K(Pθ, Pθ′) has a simple expression in terms of d2(ψ(θ), ψ(θ′)) [Show

this (Exercise (HW2))]:

V 2(Pθ, Pθ′) ≤
1

2
K(Pθ, Pθ′) =

n

4σ2
d2(ψ(θ), ψ(θ′)) =

V 2k

4σ2r2
n

H(θ, θ′).

Let k := bn2/3
(
σ
V

)2/3c. As,
∫

min(pθ, pθ′)dν = 1− V (Pθ, Pθ′),

min
H(θ,θ′)=1

‖Pθ ∧ Pθ′‖ ≥ 1− V
√
k

2σrn
≥ c > 0,

for c > 0 and n sufficiently large (in fact c can be taken to be close to 1/2). Therefore,

using Assouad’s lemma, we get the following lower bound:

inf
f̂n

sup
θ∈MV

Ef [d2(f̂n, f)] ≥ V 2k

r2
nn

rn
8
c ≥ cV n

−2/3,

where cV is a constant that depends only on σ and V .

4.4 A general reduction scheme

We can consider a more general framework where the goal is to find lower bounds of

the following form:

lim inf
n→∞

inf
θ̂n

sup
θ∈Θ

Eθ
[
w(ψ−1d(θ̂n, θ))

]
≥ c > 0,
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where w : [0,∞) → [0,∞) is nondecreasing, w(0) = 0 and w 6= 0 (e.g., w(u) =

up, p > 0). A general scheme for obtaining lower bounds is based on the following

three remarks:

(a) Reduction to bounds in probability. For any A > 0 satisfying w(A) > 0 we have

Eθ
[
w(ψ−1

n d(θ̂n, θ))
]
≥ w(A)Pθ

[
ψ−1
n d(θ̂n, θ) ≥ A

]
. (34)

We will usually take s ≡ sn = Aψn. Therefore, instead of searching for a lower

bound on the minimax risk R∗n, it is sufficient to find a lower bound on the

minimax probabilities of the form

inf
θ̂n

sup
θ∈Θ

Pθ

(
d(θ̂n, θ) ≥ s

)

where s ≡ sn = Aψn.

(b) Reduction to a finite number of hypotheses. It is clear that

inf
θ̂n

sup
θ∈Θ

Pθ

(
d(θ̂n, θ) ≥ s

)
≥ inf

θ̂n

max
θ∈{θ0,...,θM}

Pθ

(
d(θ̂n, θ) ≥ s

)
(35)

for any finite set {θ0, . . . , θM} contained in Θ. In the examples we have already

seen that the finite set {θ0, . . . , θM} has to be chosen appropriately. We call the

M + 1 elements θ0, . . . , θM as hypotheses. We will call a test any A-measurable

function Ψ : X → {0, 1, . . . ,M}.

(c) Choice of 2s-separated hypotheses. If

d(θj, θk) ≥ 2s, k 6= j, (36)

then for any estimator θ̂n,

Pθ

(
d(θ̂n, θ) ≥ s

)
≥ Pθ (Ψ∗ 6= j) , j = 0, 1, . . . ,M,

where Ψ∗ : X → {0, 1, . . . ,M} is the minimum distance test defined by

Ψ∗ = argmin
0≤k≤M

d(θ̂n, θk).

Therefore,

inf
θ̂n

max
θ∈{θ0,...,θM}

Pθ

(
d(θ̂n, θ) ≥ s

)
≥ inf

Ψ
max

0≤j≤M
Pj(Ψ 6= j) =: pe,M , (37)

where Pj ≡ Pθj and infΨ denotes the infimum over all tests.
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Thus, in order to obtain lower bounds it is sufficient to check that

pe,M ≥ c′,

where the hypotheses θj satisfy (36) with s = Aψn and where the constant c′ > 0 is

independent of n. The quantity pe,M is called the minimum probability of error for

the problem of testing M + 1 hypotheses θ0, θ1, . . . , θM .

Remark 4.1. Let P0, P1, . . . , PM be probability measures on a measurable space

(X ,A). For a test Ψ : X → {0, 1, . . . ,M}, define the average probability of error and

the minimum average probability of error by

p̄e,M(Ψ) :=
1

M + 1

M∑

j=0

Pj(Ψ 6= j), and p̄e,M := inf
Ψ
p̄e,M(Ψ).

Note that as

pe,M ≥ p̄e,M ,

we can then use tools (from multiple hypotheses testing) to lower bound p̄e,M .

Example 4.19. Let Θ = [0, 1]. Consider data X1, . . . , Xn i.i.d. Bernoulli(θ), where

θ ∈ Θ. Thus, here Pθ is the joint distribution of X = (X1, . . . , Xn). The goal is to find

the minimax lower bound for the estimation of θ under the loss d(θ̂n, θ) := |θ̂n − θ|.
We want to show that there exists c > 0 such that

lim inf
n→∞

inf
θ̂n

sup
θ∈Θ

Eθ
[
nd2(θ̂n, θ)

]
≥ c > 0.

Consider M = 1 and let θ0 = 1
2
− s and θ1 = 1

2
+ s, where s ∈ [0, 1/4]. Using

Lemma 4.16 we can show that

inf
θ̂n

max
θ∈{θ0,θ1}

Pθ

(
d2(θ̂n, θ) ≥ s

)
≥ pe,M ≥ p̄e,M ≥ 1− V (P0, P1).

We can bound V (P0, P1) using Pinsker’s inequality (see Lemma 4.7) and then use

Property (3) of the Kullback divergence to show that

V 2(P0, P1) ≤ 1

2
K(P0, P1) ≤ nK(Ber(θ0),Ber(θ1)) = 2s log

(
1 + 2s

1− 2s

)
.

Using the fact that x log
(

1+x
1−x

)
≤ 3x2 for x ∈ [0, 1

2
], we can now show the desired

result for c = 1
48

.

48



Figure 3: Graphs of H and g with M = 10.
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4.5 Fano’s lemma

Lemma 4.20 (Fano’s lemma). Let P0, P1, . . . , PM be probability measures on a mea-

surable space (X ,A), M ≥ 1. Then, p̄e,M ≤M/(M + 1), and

g(p̄e,M) ≥ log(1 +M)− 1

M + 1

M∑

j=0

K(Pj, P ), (38)

where

P =
1

M + 1

M∑

j=0

Pj,

and, for x ∈ [0, 1],

g(x) = x logM +H(x), H(x) = −x log x− (1− x) log(1− x).

Proof. We have

p̄e,M(Ψ) =
1

M + 1
EP

[
M∑

j=0

I(Aj)
dPj

dP

]
= EP

[
M∑

j=0

bjpj

]
(39)

where

pj := (M + 1)−1dPj

dP
, Aj := {Ψ 6= j}, bj = I(Aj)

and EP denotes the expectation with respect to P . The random variables bj and pj

satisfy P -a.s. the following conditions:

M∑

j=0

bj = M, bj ∈ {0, 1}, and
M∑

j=0

pj = 1, pj ≥ 0.
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Then we have that, P -a.s.,
M∑

j=0

bjpj =
∑

j 6=j0

pj, (40)

where j0 is a random number, 0 ≤ j0 ≤ M . We now apply the following lemma

(see [14, Lemma 2.11] for a proof).

Lemma 4.21. For all j0 ∈ {0, 1, . . . ,M} and all real numbers p0, p1, . . . , pM , such

that
∑M

j=0 pj = 1, pj ≥ 0, we have

g

(∑

j 6=j0

pj

)
≥ −

M∑

j=0

pj log pj, (41)

where 0 log 0 := 0.

Note that the function g is concave on 0 ≤ x ≤ 1. Using (39), Jensen’s inequality,

and (40) and (41), we obtain that, for any test Ψ,

g(p̄e,M(Ψ)) = g

(
EP

[
M∑

j=0

bjpj

])
≥ EP

[
g

(
M∑

j=0

bjpj

)]

≥ EP

[
−

M∑

j=0

pj log pj

]

= log(1 +M)− 1

M + 1

M∑

j=0

K(Pj, P ).

Since there exists a sequence of tests {Ψk}k≥1 such that p̄e,M(Ψk)→ p̄e,M as k →∞,

we obtain, by the continuity of g,

g(p̄e,M) = lim
k→∞

g(p̄e,M(Ψk)) ≥ log(1 +M)− 1

M + 1

M∑

j=0

K(Pj, P ).

It remains to show that p̄e,M ≤M/(M + 1). For this purpose, we define a degenerate

test Ψ∗ ≡ 1, and observe that

inf
Ψ
p̄e,M(Ψ) ≤ p̄e,M(Ψ∗) =

1

M + 1

M∑

j=0

Pj(j 6= 1) =
M

M + 1
.
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Using Fano’s lemma we can bound from below the minimax probability of error pe,M

in the following way:

pe,M = inf
Ψ

max
0≤j≤M

Pj(Ψ 6= j) ≥ inf
Ψ
p̄e,M

≥ g−1

(
log(M + 1)− 1

M + 1

M∑

j=0

K(Pj, P )

)
, (42)

where g−1(t) := 0 for t < 0, and for 0 < t < log(M + 1), g−1(t) is a solution of the

equation g(x) = t with respect to x ∈ [0,M/(M + 1)] — this solution exists as g is

continuous and strictly increasing on [0,M/(M + 1)] and g(0) = 0, g(M/(M + 1)) =

log(M + 1).

The following corollary gives a more workable lower bound on pe,M .

Corollary 4.22. Let P0, P1, . . . , PM be probability measures on a measurable space

(X ,A), M ≥ 2. Let

I(M) :=
1

M + 1

M∑

j=0

K(Pj, P ). (43)

Then,

pe,M ≥ p̄e,M ≥ 1− I(M) + log 2

log(M + 1)
. (44)

Proof. As H(x) ≤ log 2 for all x ∈ [0, 1], and g(x) = x logM + H(x), we have,

from (38),

p̄e,M log(M + 1) ≥ p̄e,M logM ≥ log(M + 1)− I(M)− log 2

which yields the desired result.

Determining I(M) exactly is usually intractable however and one typically works with

appropriate bounds on I(M). In fact, (42) is going to be useful if we can show that

log(M + 1) − I(M) > 0. The following corollary gives a sufficient condition for this

and gives a non-trivial lower bound on pe,M .

Corollary 4.23. Let P0, P1, . . . , PM be probability measures on a measurable space

(X ,A), M ≥ 2. If

1

M + 1

M∑

j=0

K(Pj, P0) ≤ α log(M + 1) (45)

with 0 < α < 1, then

pe,M ≥ p̄e,M ≥ 1− log 2

log(M + 1)
− α. (46)
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Proof. We will use the elementary fact (show this; Exercise (HW2)):

1

M + 1

M∑

j=0

K(Pj, P0) =
1

M + 1

M∑

j=0

K(Pj, P ) +K(P , P0). (47)

Thus, using the above display, (38) and the fact that K(P , P0) ≥ 0, we get

g(p̄e,M) ≥ log(M + 1)− 1

M + 1

M∑

j=0

K(Pj, P ),

≥ log(M + 1)− 1

M + 1

M∑

j=0

K(Pj, P0)

≥ log(M + 1)− α log(M + 1).

A similar calculation as in the proof of Corollary 4.22 now yields the desired result.

4.5.1 Estimation of a regression function under the supremum loss

Consider data (Xi, Yi), i = 1, . . . , n, from a nonparametric regression model where

Yi = f(Xi) + ξi, i = 1, . . . , n, (48)

with f : [0, 1] → R, the ξi’s being i.i.d. N(0, σ2), and the Xi’s are arbitrary random

variables taking values in [0, 1] such that (X1, . . . , Xn) is independent of (ξ1, . . . , ξn).

Theorem 4.24. Let β > 0 and L > 0. Consider data from the above model where

f ∈ Σ(β, L). Let

ψn =

(
log n

n

)β/(2β+1)

.

Then,

lim inf
n→∞

inf
Tn

sup
f∈Σ(β,L)

Ef [ψ−2
n ‖Tn − f‖2

∞] ≥ c

where infTn denotes the infimum over all estimators and where the constant c > 0

depends only on β, L and σ2.

Proof. The proof was mostly done in class; also see [14, Theorem 2.11].

4.6 Covering and packing numbers and metric entropy

In Section 4.4 we described a general scheme for proving lower bounds. In step (c)

of the scheme it is important to choose the hypotheses θj’s in Θ such that they are
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2s-separated. Further, the choice of the number of such points M depends on how

large the space Θ is. In this section we define a concept that has been successfully

employed in many fields of mathematics to capture the size of the an underlying set

(with a semi-metric). We also give a few examples from parametric models to show

how this concept can be used in conjunction with Fano’s lemma (as discussed in the

last section) to yield useful lower bounds that do not need specification of the exact

θj’s (the perturbation functions).

Let (Θ, d) be an arbitrary semi-metric space.

Definition 4.25 (Covering number). A δ-cover of the set Θ with respect to the semi-

metric d is a set {θ1, . . . , θN} ⊂ Θ such that for any point θ ∈ Θ, there exists some

v ∈ {1, . . . , N} such that d(θ, θv) < δ.

The δ-covering number of Θ is

N(δ,Θ, d) := inf{N ∈ N : ∃ a δ-cover θ1, . . . , θN of Θ}.
Equivalently, the δ-covering numberN(δ,Θ, d) is the minimal number of ballsB(x; δ) :=

{y ∈ Θ : d(x, y) < δ} of radius δ needed to cover the set Θ.

A semi-metric space (Θ, d) is said to be totally bounded if the δ-covering number is

finite for every δ > 0.

The metric entropy of the set Θ is the logarithm of its covering number: logN(δ,Θ, d).

We can define a related measure — more useful for constructing our lower bounds —

of size that relates to the number of disjoint balls of radius δ > 0 that can be placed

into the set Θ.

Definition 4.26 (Packing number). A δ-packing of the set Θ with respect to the

semi-metric d is a set {θ1, . . . , θD} such that for all distinct v, v′ ∈ {1, . . . , D}, we

have d(θv, θv′) ≥ δ.

The δ-packing number of Θ is

D(δ,Θ, d) := inf{D ∈ N : ∃ a δ-packing θ1, . . . , θD of Θ}.

Equivalently, call a collection of points δ-separated if the distance between each pair

of points is larger than δ. Thus, the packing number D(δ,Θ, d) is the maximum

number of δ-separated points in Θ.

Exercise (HW2): Show that

D(2δ,Θ, d) ≤ N(δ,Θ, d) ≤ D(δ,Θ, d), for every δ > 0.
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Thus, packing and covering numbers have the same scaling in the radius δ.

Remark 4.2. As shown in the preceding exercise, covering and packing numbers are

closely related, and we can use both in the following. Clearly, they become bigger as

δ → 0.

We can now provide a few more complex examples of packing and covering numbers,

presenting two standard results that will be useful for constructing the packing sets

used in our lower bounds to come.

Our first bound shows that there are (exponentially) large packings of the d-dimensional

hypercube of points that are O(d)-separated in the Hamming metric.

Lemma 4.27 (Varshamov-Gilbert Lemma). Fix k ≥ 1. There exists a subset V of

{0, 1}k with |V| ≥ exp(k/8) such that the Hamming distance, H(τ, τ ′) :=
∑k

i=1 I{τi 6=
τ ′i} > k/4 for all τ, τ ′ ∈ V with τ 6= τ ′.

Proof. Consider a maximal subset V of {0, 1}k that satisfies:

H(τ, τ ′) ≥ k/4 for all τ, τ ′ ∈ V with τ 6= τ ′. (49)

The meaning of maximal here is that if one tries to expand V by adding one more

element, then the constraint (49) will be violated. In other words, if we define the

closed ball, B(τ, k/4) := {θ ∈ {0, 1}k : H(θ, τ) ≤ k/4} for τ ∈ {0, 1}k, then we must

have ⋃

τ∈V

B(τ, k/4) = {0, 1}k.

This implies that ∑

τ∈V

|B(τ, k/4)| ≥ 2k. (50)

Let T1, . . . , Tk denote i.i.d. Bernoulli random variables with probability of success 1/2.

For every A ⊆ {0, 1}k, we have P ((T1, . . . , Tk) ∈ A) = |A|2−k. Therefore, for each

τ ∈ V , we can write

2−k|B(τ, k/4)| = P
(

(T1, . . . , Tk) ∈ B(τ, k/4)
)

= P

(
k∑

i=1

{Ti 6= τi} ≤ k/4

)
.

If Si := {Ti 6= τi}, then it is easy to see that S1, . . . , Sk are also i.i.d. Bernoulli random
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variables with probability of success 1/2. Thus,

2−k|B(τ, k/4)| = P (S1 + · · ·+ Sk ≤ k/4)

= P (S1 + · · ·+ Sk ≥ 3k/4)

≤ inf
λ>0

exp(−3λk/4) (E exp(λS1))k

= inf
λ>0

exp(−3λk/4)2−k(1 + eλ)k.

Taking λ = log 3, we get

|B(τ, k/4)| ≤ 3−3k/44k for every τ ∈ V .

Finally, from (50), we obtain

|V| ≥ 33k/4

2k
= exp

(
k log(33/4/2)

)
≥ exp (k/8) .

Given the relationships between packing, covering, and size of the set Θ, we would

expect there to be relationships between volume, packing, and covering numbers.

This is indeed the case, as we now demonstrate for arbitrary norm balls in finite

dimensions.

Lemma 4.28. Let B := {θ ∈ Rd : ‖θ‖2 ≤ 1} denote the unit Euclidean ball in Rd.

Then (
1

δ

)d
≤ N(δ,B, ‖ · ‖2) ≤

(
1 +

2

δ

)d
. (51)

As a consequence of Lemma 4.28, we see that for any δ < 1, there is a packing V
of B such that ‖θ − θ′‖2 ≥ δ for all distinct θ, θ′ ∈ V and |V| ≥ (1/δ)d, because we

know D(δ,B, ‖ · ‖2) ≥ N(δ,B, ‖ · ‖2). In particular, the lemma shows that any norm

ball has a 1/2-packing in its own norm with cardinality at least 2d. We can also

construct exponentially large packings of arbitrary norm-balls (in finite dimensions)

where points are of constant distance apart.

Smoothly parameterized functions: Let F be a parameterized class of functions,

i.e.,

F := {fθ : θ ∈ Θ}.

Let ‖ · ‖Θ be a norm on Θ, and let ‖ · ‖F be a norm on F . Suppose that the mapping

θ 7→ fθ is L-Lipschitz, i.e.,

‖fθ − fθ′‖F ≤ L‖θ − θ′‖Θ.
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Lemma 4.29 (Exercise (HW2)). N(δ,F , ‖ · ‖F) ≤ N(δ/L,Θ, ‖ · ‖Θ) for all δ > 0.

A Lipschitz parameterization allows us to translates a cover of the parameter space

Θ into a cover of the function space F . For example, if F is smoothly parameterized

by (compact set of) d parameters, then N(δ,F , ‖ · ‖F) = O(δ−d).

Exercise (HW2): Let F be the set of L-Lipschitz functions mapping from [0, 1] to

[0, 1]. Then in the supremum norm ‖f‖∞ := supx∈[0,1] |f(x)|,

logN(δ,F , ‖ · ‖∞) � L/δ.

Hint: (Proof idea) Form an δ grid of the y-axis, and an δ/L grid of the x-axis, and

consider all functions that are piecewise linear on this grid, where all pieces have

slopes +L or −L. There are 1/δ starting points, and for each starting point there are

2L/δ slope choices. Show that this set is an O(δ) packing and an O(δ) cover.

4.6.1 Two examples

Example 4.30 (Normal mean estimation). Consider the d-dimensional normal lo-

cation family Nd := {N(θ, σ2Id) : θ ∈ Rd}, where σ2 > 0 and d ≥ 2. We wish to

estimate the mean θ in the squared error loss, i.e., d2(θ̂n, θ) = ‖θ̂n − θ‖2
2, given n

i.i.d. observations X1, . . . , Xn from a member in Nd with mean θ. Let Pθ denote the

joint distribution of the data.

Let V be a 1/2-packing of the unit ‖·‖2-ball with cardinality at least 2d, as guaranteed

by Lemma 4.28. Now we construct our local packing. Fix δ > 0, and for each v ∈ V ,

set θv = δv ∈ Rd. Then we have

‖θv − θv′‖2 = δ‖v − v′‖2 ≥
δ

2
=: 2s

for each distinct pair v, v′ ∈ V , and moreover, we note that ‖θv − θv′‖2 ≤ 2δ for such

pairs as well. Thus, {θv}v∈V is a 2s-separated set with cardinality at least 2d. Let

θv0 , θv1 , . . . , θvM be an enumeration of the 2s-separated points, and we take Pj ≡ Pθvj ,

for j = 0, 1, . . . ,M . Note that for j ∈ {0, . . . ,M} such that Pj ≡ Pv, for some v ∈ V ,

K(Pj, P0) =
n

2σ2
‖θv − θv0‖2

2 ≤
2nδ2

σ2
.

Therefore, taking δ2 := dσ2 log 2/(8n),

1

M + 1

M∑

j=0

K(Pj, P0) ≤ 2nδ2

σ2d log 2
· d log 2 ≤ α log(M + 1)
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where α := 1/4. This shows that (45) holds. Hence, by (34), (35), (37) and Corol-

lary 4.23 we have

inf
θ̂n

sup
θ∈Θ

Eθ[d2(θ̂n, θ)] ≥ inf
θ̂n

sup
θ∈Θ

s2Pθ[d(θ̂n, θ) ≥ s]

≥ s2

(
1− log 2

log(M + 1)
− α

)

≥ 1

42
· dσ

2 log 2

8n

(
1− 1

d
− 1

4

)
.

As d ≥ 2, the above inequality implies the minimax lower bound

inf
θ̂n

sup
θ∈Θ

Eθ[d2(θ̂n, θ)] ≥
1

64
· dσ

2 log 2

8n
= c

dσ2

n
,

where c > 0. While the constant c is not sharp, we do obtain the right scaling in d,

n and the variance σ2. The sample mean attains the same risk.

Example 4.31 (Linear regression). In this example, we show how local packings can

give (up to some constant factors) sharp minimax rates for standard linear regression

problems. In particular, for fixed matrix X ∈ Rn×d, we observe

Y = Xθ + ε,

where ε ∈ Rn consists of independent random variables εi with variance bounded by

Var(εi) ≤ σ2, and θ ∈ Rd is allowed to vary over Rd. For the purposes of our lower

bound, we may assume that ε ∼ N(0, σ2In). Let P := {N(Xθ, σ2In) : θ ∈ Rd} denote

the family of such normally distributed linear regression problems, and assume for

simplicity that d ≥ 32.

In this case, we use the Varshamov-Gilbert bound (Lemma 4.27) to construct a local

packing and attain minimax rates. Indeed, let V be a packing of {0, 1}d such that

‖v − v′‖1 ≥ d/4 for distinct elements of V , and let |V| ≥ exp(d/8) as guaranteed by

the Varshamov-Gilbert bound. For fixed δ > 0, if we set θv = δv, then we have the

packing guarantee for distinct elements v, v′ that

‖θv − θv′‖2
2 = δ2‖v − v′‖2

2 = δ2‖v − v′‖1 ≥ dδ2/4.

Moreover, we have the upper bound

K(Pθv , Pθv′ ) =
1

2σ2
‖X(θv − θv′)‖2

2 ≤
δ2

2σ2
Λmax(X

>X)‖θv − θv′‖2
2 ≤

dδ2

2σ2
Λmax(X

>X),

where Λmax(X
>X) denotes the maximum singular value of X>X.
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Consequently, taking δ2 := σ2

16Λmax(X>X)
, we obtain that

inf
θ̂n

sup
θ∈Θ

Eθ[d2(θ̂n, θ)] ≥
dσ2

(16)2nΛmax(X>X/n)

(
1− 8

d
log 2− 1

4

)
≥ c

dσ2

nΛmax(X>X/n)
,

for some c > 0 if d > (32/3) log 2. Thus, the convergence rate is (roughly) σ2d/n

after rescaling the singular values of X>X by n−1/2. This bound is sharp in terms

of the dimension d, dependence on n, and the variance σ2, but it does not fully

capture the dependence on X>X, as it depends only on the maximum singular value.

An exact calculation can show that the minimax value of the problem is exactly

σ2tr((X>X)−1).

4.7 Global Fano method: Bounding I(M) based on metric

entropy

Observe that, from (47), it follows that

I(M) ≤ 1

M + 1
inf
Q

M∑

j=0

K(Pj, Q). (52)

Different choices of Q in (52) yield different upper bounds on I(M). One gets, for

example,

I(M) ≤ min
k=0,1...,M

∑M
j=0K(Pj, Pk)

M + 1
≤
∑M

j,k=0K(Pj, Pk)

(M + 1)2
≤ max

j,k∈{0,1...,M}
K(Pj, Pk). (53)

These bounds are very frequently used in conjunction with Fano’s inequality; see e.g.,

the two examples in Section 4.6.1. The last bound maxj,k∈{0,1...,M}K(Pj, Pk) is called

the Kullback-Leibler diameter of {Pj}Mj=0.

We will see that quite often (in nonparametric problems) the bounds in (53) are, in

general, quite inaccurate and describe an improved bounds due to [17].

Let P be a collection of distributions. In analogy with Definition 4.25, we say that

the collection of distributions {Qi}Ni=1 form an ε-cover of P in KL-divergence if for

all P ∈ P , there exists some i such that K(P,Qi) ≤ ε2. With this, we may define the

KL-covering number of the set P as

N(ε,P , K) := inf

{
N ∈ N : ∃Qi, i = 1, . . . , N, such that sup

P∈P
min
i
K(P,Qi) ≤ ε2

}
,

where N(ε,P , K) = +∞ if no such cover exists.
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Let P0, P1, . . . , PM be probability measures on a measurable space (X ,A). Recall

that

I(M) :=
1

M + 1

M∑

j=0

K(Pj, P ).

Let P be a collection of distributions such that Pj ∈ P , for all j = 0, 1, . . . ,M .

Proposition 4.32. I(M) ≤ infε>0{ε2 + logN(ε,P , K)}.

Proof. By carefully choosing the distribution Q in the upper bound in (52) above,

we will obtain the desired. Now, assume that the distributions {Qi}Ni=1, form an

ε-cover of the family P , meaning that miniK(P,Qi) ≤ ε2, for all P ∈ P . Let pj

and qi denote the densities of Pj and Qi with respect to some fixed base measure ν

on X (the choice of based measure does not matter). Then defining the distribution

Q := (1/N)
∑N

i=1 Qi (with density q with respect to ν), we obtain for any j,

K(Pj, Q) =

∫
log

(
pj
q

)
pj dν =

∫
log

(
pj

N−1
∑N

i=1 qi

)
pj dν

= logN +

∫
log

(
pj∑N
i=1 qi

)
pj dν ≤ logN +

∫
log

(
pj

maxi qi

)
pj dν

≤ logN + min
i

∫
log

(
pj
qi

)
pj dν = logN + min

i
K(Pj, Qi).

By our assumption that the Qi’s form a cover which gives the desired result, as ε > 0

was arbitrary (as was our choice of the cover).

4.7.1 A general scheme for proving minimax bounds using global packings

There is now a four step process to proving minimax lower bounds using the global

Fano method. Our starting point is to recall the Fano minimax lower bound in (46)

of Corollary 4.22 and (37), which begins with the construction of a set of points

{θ(Pj)}Mj=0 that form a 2s-packing of a set Θ in the semi-metric d. With this in mind,

we perform the following four steps:

(i) Bound the packing entropy. Give a lower bound on the packing number of the

set Θ with 2s-separation (call this lower bound D(s) ≡M + 1).

(ii) Bound the metric entropy. Give an upper bound on the KL-metric entropy

of the class P of distributions containing all the distributions {Pj}Mj=0, i.e., an

upper bound on logN(ε,P , K).
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(iii) Find the critical radius. Using Proposition 4.32 we can now balance I(M) and

the packing entropy logD(s). To that end, we choose εn and sn > 0 at the

critical radius, defined as follows: choose any εn such that

ε2n ≥ logN(εn,P , K), (54)

and choose the largest sn > 0 such that

logD(sn) ≥ 4ε2n + 2 log 2. (55)

Then,

logD(sn) ≥ 2 logN(εn,P , K) + 2ε2n + 2 log 2 ≥ 2(I(M) + log 2).

(iv) Apply the Fano minimax bound (46). Having chosen sn and εn as above, we

immediately obtain that

pe,M ≥ 1− I(M) + log 2

logD(sn)
≥ 1− 1

2
=

1

2
,

and thus, we obtain

inf
θ̂n

sup
θ∈Θ

Eθ
[
w(s−1

n d(θ̂n, θ))
]
≥ 1

2
w(sn).

4.7.2 An example

Example 4.33 (Lipschitz regression). Consider data (Xi, Yi), i = 1, . . . , n, from a

nonparametric regression model 31 with Xi = i/n, f : [0, 1] → [0, 1] is L-Lipschitz

and the (unobserved) errors ξ1, . . . , ξn are i.i.d. N(0, σ2). The goal of this section is

to find the (optimal) lower bound on the rate of convergence for any estimator of f

based on the discrete L2-loss d(·, ·) defined in (32). Let

F := {f : [0, 1]→ [0, 1]| f is L-Lipschitz}.

Result: Note that for δ > 0,

c1
L

δ
≤ logD(δ,F , ‖ · ‖∞) ≤ c2

L

δ
,

where c2 ≥ c1 > 0.

Exercise (HW2): Show that log(ε,P , K) ≤ c2

√
n

2σ2Lε
−1. This completes step (ii).

Further show that (54) holds for εn ≥
(
c2L
√
n√

2σ2

)1/3

and (55) holds for sn = c(σ2L/n)1/3,

for some c > 0. Hence, show that the lower bound on the minimax rate is (σ2L/n)1/3

which involves the right scaling in n, L and the variance σ2.
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5 Reproducing kernel Hilbert spaces

5.1 Hilbert spaces

A vector space in Rn can be spanned by a finite set of vectors. Classes of functions

may also form vector spaces over R, but these spaces are rarely spanned by a finite set

of functions. In this chapter we study a special class of functions that form a Hilbert

space (a generalization of the notion of Euclidean space) and admit expansions like

that as in a finite dimensional vector space.

Definition 5.1 (Hilbert space). Let H be a (real) vector space together with a

function 〈·, ·〉 : H×H → R (the inner product) for which

〈x, y〉 = 〈y, x〉, ∀x, y ∈ H (symmetric),

〈x, ay + bz〉 = a〈x, y〉+ b〈x, z〉, ∀x, y, z ∈ H, α, β ∈ R (bilinear),

〈x, x〉 ≥ 0, x ∈ H, with equality if and only if x = 0.

Suppose that the norm in H is defined by

‖x‖ :=
√
〈x, x〉

and H is complete6 in the metric d(x, y) := ‖x − y‖. Then H forms a Hilbert space

equipped with the inner product 〈·, ·〉.

Example 5.2 (Euclidean space). Let H = Rm and 〈x, y〉 :=
∑m

i=1 xiyi (where x =

(x1, . . . , xm) ∈ Rm); or more generally 〈x, y〉 = x>Ay where A is a symmetric positive

definite matrix.

Example 5.3 (Euclidean matrices). Let H = Rm×m be the set of all m×m matrices.

Define 〈x, y〉 := tr(xy>). Then 〈·, ·〉 defines a Hilbert space over m×m matrices.

Example 5.4 (L2 space). Let (Ω,A, µ) be a measure space and let L2(Ω,A, µ) be

the set (of equivalence classes) of all square integrable functions with

〈f, g〉 :=

∫
fg dµ.

Example 5.5 (Sobolev space). The Sobolev space Wm[0, 1] is the collection of all

functions f : [0, 1]→ R with m− 1 continuous derivatives, f (m−1) absolutely contin-

uous, and ‖f (m)‖ <∞. With an inner product 〈·, ·〉 defined by

〈f, g〉 :=
m−1∑

k=0

f (k)(0)g(k)(0) +

∫ 1

0

f (m)(x)g(m)(x)dx, f, g ∈ Wm[0, 1], (56)

6A metric space H is said to be complete if every Cauchy sequence in H has a limit in H.
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Wm[0, 1] is a Hilbert space.

Here are some properties of any Hilbert space H with inner product 〈·, ·〉:

• The Cauchy-Schwarz inequality holds:

|〈x, y〉| ≤ ‖x‖‖y‖, ∀ x, y ∈ H.

• The Parallelogram laws assert that

‖x+y‖2+‖x−y‖2 = 2(‖x‖2+‖y‖2) and ‖x+y‖2−‖x−y‖2 = 4〈x, y〉 ∀ x, y ∈ H.

• (Linear functional) A function ϕ : H → R is said to be a linear functional if

ϕ(αx + βy) = αϕ(x) + βϕ(y) whenever x, y ∈ H and α, β ∈ R. For example,

for a fixed y ∈ H,

ϕy(x) := 〈x, y〉, ∀ x ∈ H, (57)

defines a continuous linear functional, a linear functional that is continuous with

respect to the metric induced by the inner product.

• (Dual space) The dual space H∗ (of H) is the space of all continuous linear

functions from H into R. It carries a natural norm7, defined by

‖ϕ‖H∗ = sup
‖x‖=1,x∈H

|ϕ(x)|, ϕ ∈ H∗.

This norm satisfies the parallelogram laws.

Result: The Riesz representation theorem gives a convenient description of the

dual. It states that any continuous linear functional can be represented in the

form (57) for some y ∈ H depending on the linear functional.

7Exercise (HW3): Let X and Y be normed vector spaces over R. A function T : X → Y is called

a linear operator if

T (cx1 + x2) = cT (x1) + T (x2), ∀ x1, x2 ∈ X , c ∈ R.

The operator norm (or spectral norm) of T is defined as

‖T‖ := sup{‖T (x)‖ : ‖x‖ ≤ 1},

and T is called bounded if ‖T‖ <∞.

(a) Show that a bounded operator T is continuous: If ‖xn − x‖ → 0, then ‖T (xn)− T (x)‖ → 0.

(b) Show that a continuous linear operator T is bounded.

(c) Let X = Rm and Y = Rn, with the usual Euclidean norms. Let A be an n ×m matrix, and

define a linear operator T by T (x) = Ax. Relate the operator norm ‖T‖ to the eigenvalues of

A>A.
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Thus to every element ϕ of the dual H∗ there exists one and only one uϕ ∈ H
such that 〈x, uϕ〉 = ϕ(x), for all x ∈ H. The inner product on the dual space

H∗ satisfies

〈ϕ, ψ〉H∗ := 〈uψ, uϕ〉H.
So the dual space is also an inner product space. The dual space is also complete,

and so it is a Hilbert space in its own right.

• (Convex sets) Recall that a subset H0 ⊂ H is called a linear subspace if it is

closed under addition and scalar multiplication; i.e., αx + βy ∈ H0 whenever

x, y ∈ H0 and α, β ∈ R.

A subset C ⊂ H is said to be convex if it contains the line joining any two of

its elements, i.e., αx+ (1− α)y ∈ C whenever x, y ∈ C and 0 ≤ α ≤ 1.

A set C ⊂ H is said to be a cone if αx ∈ C whenever x ∈ C and α ≥ 0. Thus, C

is a convex cone if αx+βy ∈ C whenever x, y ∈ C and 0 ≤ α, β <∞. Any linear

subspace is, by definition, also a convex cone. Any ball, B = {x ∈ H : ‖x‖ ≤ c},
c > 0, is a convex set, but not a convex cone.

• (Projection theorem) If C ⊂ H is a closed convex set and z ∈ H, then there is

a unique x ∈ C for which

‖x− z‖ = inf
z∈C
‖y − z‖.

In fact, x ∈ C satisfies the condition

〈z − x, y − x〉 ≤ 0, ∀ y ∈ C. (58)

The element x ∈ C is called the projection of z onto C and denoted by ΠC(z).

Prove the projection theorem. (Exercise (HW3))

In particular, if C is a convex cone, setting y = x/2 and y = 2x in (58) shows

that 〈z − x, x〉 = 0. Thus, x is the unique element of C for which

〈z − x, x〉 = 0 and 〈z − x, y〉 ≤ 0 ∀ y ∈ C.

If C is a linear subspace, then z − x is orthogonal to C, i.e.,

〈z − x, y〉 = 0 ∀ y ∈ C.

• (Orthogonal complement) Suppose that H0 ⊂ H. The orthogonal complement

of H0 is

H⊥0 := {x ∈ H : 〈x, y〉 = 0, ∀ y ∈ H0}.
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Result: The orthogonal complement of a subset of a Hilbert space is a closed

linear subspace.

The projection theorem states that if C ⊂ H is a closed subspace, then any

z ∈ C may be uniquely represented as z = x + y, where x ∈ C is the best

approximation to z, and y ∈ C⊥.

Result: If C ⊂ H is a closed subspace, then H = C ⊕ C⊥, where

A⊕B := {x+ y : x ∈ A, y ∈ B}.

Thus, every closed subspace C of H has a closed complementary subspace C⊥.

• (Orthonormal basis) A collection {et : t ∈ T} ⊂ H (where T is any index set)

is said to be orthonormal if es ⊥ et (i.e., 〈es, et〉 = 0) for all s 6= t and ‖et‖ = 1,

for all t ∈ T .

As in the finite-dimensional case, we would like to represent elements in our

Hilbert space as linear combinations of elements in an orthonormal collection,

but extra care is necessary because some infinite linear combinations may not

make sense.

The linear span of S ⊂ H, denoted span(S), is the collection of all finite linear

combinations α1x1 + · · · + αnxn with α1, . . . , αn ∈ R and x1, . . . , xn ∈ S. The

closure of this set is denoted by span(S).

An orthonormal collection {et, t ∈ T}, is called an orthonormal basis for the

Hilbert space H if 〈et, x〉 6= 0 for some t ∈ T , for every nonzero x ∈ H.

Result: Every Hilbert space has an orthonormal basis.

When H is separable8, a basis can be found by applying the Gram-Schmidt

algorithm to a countable dense set, and in this case the basis will be countable.

Result: If {en}n≥1, is an orthonormal basis of H, then each x ∈ H may be

written as x =
∑∞

k=1〈x, ek〉ek. Show this. (Exercise (HW3))

8A topological space is called separable if it contains a countable, dense subset; i.e., there exists

a sequence {xn}∞n=1 of elements of the space such that every nonempty open subset of the space

contains at least one element of the sequence.
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5.2 Reproducing Kernel Hilbert Spaces

Definition 5.6 (Reproducing kernel Hilbert space). Let X be an arbitrary set and

H a Hilbert space of real-valued functions on X . The evaluation functional over the

Hilbert space of functions H is a linear functional that evaluates each function at a

point x ∈ X ,

Lx : f 7→ f(x) ∀f ∈ H.

We say that H is a reproducing kernel Hilbert space (RKHS) if Lx is continuous at

any f in H, for all x ∈ X (equivalently, if for all x ∈ X , Lx is a bounded9 operator

on H).

Thus, a RKHS is a Hilbert space of functions in which point evaluation is a continuous

linear functional. Roughly speaking, this means that if two functions f and g in the

RKHS are close in norm, i.e., ‖f − g‖ is small, then f and g are also pointwise close,

i.e., |f(x)− g(x)| is small for all x ∈ X .

The Riesz representation theorem implies that for all x ∈ X there exists a unique

element Kx of H with the reproducing property:

f(x) = Lx(f) = 〈f,Kx〉 ∀ f ∈ H. (59)

Since Ky is itself a function in H we have that for each y ∈ X ,

Ky(x) = 〈Ky, Kx〉.

This allows us to define the reproducing kernel of H as a function K : X ×X → R by

K(x, y) = 〈Kx, Ky〉.

From this definition it is easy to see (Exercise (HW3)) that K : X × X → R is both

symmetric and positive definite, i.e.,

n∑

i,j=1

αiαjK(xi, xj) ≥ 0, (60)

for any n ∈ N, x1, . . . , xn ∈ X , and α1, . . . , αn ∈ R. Thus, the “Gram Matrix”

K = ((Kij))n×n defined by Kij = k(xi, xj) is positive semi-definite.

9A functional λ : H → R is bounded if there is a finite real constant B so that, for all f ∈ H,

|λ(f)| ≤ B‖f‖H. It can be shown that the continuity of the functional λ is equivalent to boundedness.
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Example 5.7 (Linear kernel). Let X = Rd and let K(x, y) := x>y, for any x, y ∈ Rd,

be the usual inner product in Rd. Then the linear kernel K is symmetric and positive

definite.

Example 5.8 (RKHS of the linear kernel). Let X = Rd. Consider the space H of

all linear forms on Rd: H := {f(x) = w>x : w ∈ Rd}. Define the inner product by

〈f, g〉H = v>w for f(x) = v>x and g(x) = w>x. Then, the linear kernel K(x, y) :=

x>y is a reproducing kernel for H.

Example 5.9 (Gaussian and Laplace kernels). When X = Rd, the Gaussian and

Laplace kernels are defined as

K(x, y) := exp

(
−‖x− y‖

2
2

2σ2

)
, K(x, y) := exp

(
−‖x− y‖2

2σ2

)
,

respectively, where x, y ∈ Rd, σ2 > 0. Both kernels are positive definite, but the proof

of this fact is more involved than for the linear kernel.

The Moore-Aronszajn theorem (see below) is a sort of converse to (60): if a function

K satisfies these conditions (symmetric and positive definite) then there is a Hilbert

space of functions on X for which it is a reproducing kernel.

Proposition 5.10 (Moore-Aronszajn theorem). Suppose that K is a symmetric,

positive definite kernel on a set X . Then there is a unique Hilbert spaceH of functions

on X for which K is a reproducing kernel.

Proof. The complete proof of this result is rather long. We give a sketch of the proof

here. For all x in X , define Kx := K(x, ·). Let H0 be the linear span of {Kx : x ∈ X}.
Define an inner product on H0 by

〈
n∑

j=1

βjKyj ,
m∑

i=1

αiKxi

〉

H0

:=
m∑

i=1

n∑

j=1

αiβjK(yj, xi),

where {αi}mi=1, {βj}nj=1 ⊂ R and {xi}mi=1, {yj}nj=1 ⊂ X . The symmetry of this inner

product follows from the symmetry of K and the non-degeneracy follows from the

fact that K is positive definite. We can show that

1. the point evaluation functionals Lx are continuous on H0,

2. any Cauchy sequence fn in H0 which converges pointwise to 0 also converges in

in H0-norm to 0.

Let H be the completion of H0 with respect to this inner product. We define an inner

product in H as: suppose that {fn}n≥1 and {gn}n≥1 are sequences in H0 converging
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to f and g respectively. Then {〈fn, gn〉H0}n≥1 is convergent and its limit depends

only on f and g (see [2, Lemma 5] for a proof of the above). Thus we define

〈f, g〉H := lim
n→∞
〈fn, gn〉H0 .

Next we have to show that H is indeed a Hilbert space with the inner product 〈·, ·〉H
(see [2, Lemma 6] for a proof of this; we will have to further show that H is complete).

Further we can show that H0 is dense in H (see see [2, Lemma 7] for a proof of this)

and that the point evaluation map is continuous on H (see see [2, Lemma 8] for a

proof of this).

Now we can check the reproducing property (59), i.e., 〈f,Kx〉H = f(x), for all f ∈ H,

for all x ∈ X . To prove uniqueness, let G be another Hilbert space of functions for

which K is a reproducing kernel. For any x and y in X , (59) implies that

〈Kx, Ky〉H = K(x, y) = 〈Kx, Ky〉G.

By linearity, 〈·, ·〉H = 〈·, ·〉G on the span of {Kx : x ∈ X}. Then G = H by the

uniqueness of the completion. See

http://www.gatsby.ucl.ac.uk/∼gretton/coursefiles/RKHS Notes1.pdf for a more

detailed discussion on this proof.

This proposition allows one to construct reproducing kernels on complicated spaces

X (such as graphs, images) only by checking that the proposed kernel is positive

definite and without explicitly defining the Hilbert space H.

5.2.1 The Representer theorem

The representer theorem [7] shows that solutions of a large class of optimization

problems can be expressed as kernel expansions over the sample points. We present

a slightly more general version of the theorem with a simple proof [10].

Let X be an arbitrary set and let HK be a RKHS of real valued functions on X with

reproducing kernel K(·, ·). Let {(Yi, Xi) : i = 1, . . . , n} be given data (the “training

set”) with Xi ∈ X (the “attribute vector”), and Yi ∈ Y being the “response”.

Theorem 5.11. Denote by Ω : [0,∞) → R a strictly increasing function. Let

` : (X × Y × Y)n → R ∪ {∞} be an arbitrary loss function. Then each minimizer

f ∈ HK of the regularized risk functional

`({(Xi, Yi, f(Xi)}ni=1) + Ω(‖f‖2
HK ) (61)
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admits a representation of the form

f̂(x) =
n∑

i=1

αiK(Xi, x), ∀x ∈ X , where α1, . . . , αn ∈ R. (62)

Proof. Take any f ∈ HK . As HK is a Hilbert space there is a unique decomposition

of f as the sum of fn ∈ S := span({K(X1, ·), . . . , K(Xn, ·)}) and f⊥ ∈ S⊥ ⊂ HK , the

orthogonal complement of S (in HK):

f(x) = fn(x) + f⊥(x) :=
n∑

i=1

αiK(Xi, x) + f⊥(x).

Here αi ∈ R and 〈f⊥, K(Xi, ·)〉 = 0 for all i = 1, . . . , n. By the reproducing property,

f(Xi) = 〈f,K(Xi, ·)〉 = 〈fn, K(Xi, ·)〉+ 〈f⊥, K(Xi, ·)〉 = 〈fn, K(Xi, ·)〉 = fn(Xi),

which implies that

`({(Xi, Yi, f(Xi)}ni=1) = `({(Xi, Yi, fn(Xi)}ni=1).

Secondly, for all f⊥ ∈ S⊥,

Ω(‖f‖2
HK ) = Ω

(∥∥∥
n∑

i=1

αiK(Xi, ·)
∥∥∥

2

+ ‖f⊥‖2

)
≥ Ω

(∥∥∥
n∑

i=1

αiK(Xi, ·)
∥∥∥

2
)
.

Hence, `(· · · ) depends only on the component of f lying in the subspace S and Ω(·)
is minimized if f lies in that subspace. Hence, the criterion function is minimized if

f lies in that subspace, and we can express the minimizer as in (62).

Note that as Ω(·) is strictly non-decreasing, ‖f⊥‖ must necessarily be zero for f to

be the minimizer of (61), implying that f̂ must necessarily lie in the subspace S.

Monotonicity of Ω does not prevent the regularized loss functional (61) from hav-

ing multiple local minima. To ensure a global minimum, we would need to require

convexity. If we discard the strictness of the monotonicity, then it no longer follows

that each minimizer of the regularized loss admits an expansion (62); it still follows,

however, that there is always another solution that is as good, and that does admit

the expansion.

The significance of the representer theorem is that although we might be trying to

solve an optimization problem in an infinite-dimensional space HK , containing linear

combinations of kernels centered on arbitrary points of X , it states that the solution

lies in the span of n particular kernels — those centered on the training points. For

suitable choices of loss functions, many of the αi’s often equal 0.
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5.2.2 Feature map and kernels

A kernel can be thought of as a notion of similarity measure between two points in

the “input points” in X . For example, if X = Rd, then the canonical dot product

K(x, x′) = 〈x, x′〉 =
d∑

i=1

xix
′
i ; x, x′ ∈ Rd.

can be taken as the kernel.

If X is a more complicated space, then we can still define a kernel as follows.

Definition 5.12 (Kernel). Let X be a non-empty set. The function K : X ×X → R
is said to be a kernel if there exists a real Hilbert space E (not necessarily a RKHS),

and a map ϕ : X → E such that for all x, y ∈ X ,

K(x, x′) = 〈ϕ(x), ϕ(x′)〉E . (63)

Such map ϕ : X → E is referred to as the feature map, and space E as the feature

space. Thus kernels are functions that can be written as an inner product in a feature

space.

Exercise (HW3): Show that K(·, ·) defined in (63) is a positive definite function.

Thus, we can think of the patterns as ϕ(x), ϕ(x′), and carry out geometric algorithms

in the Hilbert space (feature space) E . Usually, dim(E) � dim(X ) (if dim(X ) is

defined).

Note that for a given kernel, there may be more than one feature map, as demon-

strated by the following example: take X = R, and K(x, y) = xy = [ x√
2
x√
2
][ y√

2

y√
2
]>,

where we defined the feature maps ϕ(x) = x and ϕ̃(x) = [ x√
2
x√
2
], and where the

feature spaces are respectively, E = R and Ẽ = R2.

Exercise (HW3): For every x ∈ X , assume that the sequence {fn(x)}n≥1 ∈ `2(N),

where fn : X → R, for all n ∈ N. Then K(x1, x2) :=
∑∞

n=1 fn(x1)fn(x2) is a kernel.

As k(·, ·) defined in (63) is symmetric and positive definite it induces a unique RKHS.

Thus, to construct reproducing kernels on complicated spaces we only need to find a

feature map ϕ.

Another way to characterize a symmetric positive definite kernel K is via the Mercer’s

Theorem.
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Figure 4: (Feature space and feature map) On the left, the points are plotted in the

original space. There is no linear classifier that can separate the red crosses

from the blue circles. Mapping the points to a higher dimensional feature space

(x 7→ ϕ(x) := (x1, x2, x1x2) ∈ R3), we obtain linearly separable classes. A

possible decision boundary is shown as a gray plane.
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Figure 2.1: XOR example. On the left, the points are plotted in the original
space. There is no linear classifier that can separate the red crosses from the
blue circles. Mapping the points to a higher dimensional feature space, we
obtain linearly separable classes. A possible decision boundary is shown as a
gray plane.
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Figure 2.1: XOR example. On the left, the points are plotted in the original
space. There is no linear classifier that can separate the red crosses from the
blue circles. Mapping the points to a higher dimensional feature space, we
obtain linearly separable classes. A possible decision boundary is shown as a
gray plane.
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Definition 5.13 (Integral operator). Let K be a continuous kernel on compact met-

ric space X , and let ν be a finite Borel measure on X . Let TK : L2(X , ν) → C(X )

(C(X ) being the space of all continuous real-valued functions on X thought of as a

subset of L2(X , ν)) be the linear map defined as:

(TKf)(·) =

∫

X
K(x, ·)f(x) dν(x), f ∈ L2(X , ν).

Such a TK is called an integral operator.

Exercise (HW3): Show that TK is a continuous function for all f ∈ L2(X , ν).

Theorem 5.14 (Mercer’s Theorem). Suppose that K is a continuous positive definite

kernel on a compact set X , and let ν be a finite Borel measure on X with supp(ν) = X .

Then there is an orthonormal basis {ψi}i∈J of L2(X , ν) consisting of eigenfunctions of

TK such that the corresponding sequence of eigenvalues {λi} are non-negative. The

eigenfunctions corresponding to non-zero eigenvalues are continuous on X and K(·, ·)
has the representation

K(u, v) =
∑

i∈J

λiψi(u)ψi(v), u, v ∈ X ,

where the convergence is absolute and uniform, i.e.,

lim
n→∞

sup
u,v∈X

∣∣∣∣∣K(u, v)−
n∑

i∈J :i=1

λiψi(u)ψi(v)

∣∣∣∣∣ = 0.
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Example 5.15. To take an analogue in the finite case, let X = {x1, . . . , xn}. Let

Kij = K(xi, xj), and f : X → Rn with fi = f(xi) and let ν be the counting measure.

Then,

TKf =
n∑

i=1

K(xi, ·)fi

and

∀ f, f>Kf ≥ 0 ⇒ K is p.s.d. ⇒ K =
n∑

i=1

λiviv
>
i .

Hence,

K(xi, xj) = Kij = (V ΛV >)ij =
n∑

k=1

λkvkivkj =
n∑

k=1

λkvkivkj.

Note that Mercer’s theorem gives us another feature map for the kernel K, since:

K(u, v) =
∑

i∈J

λiψi(u)ψi(v) = 〈ϕ(u), ϕ(v)〉`2(J) ,

so we can take `2(J) as a feature space, and the corresponding feature map is ϕ : X →
`2(J) where

ϕ : x 7→
{√

λiψi(x)
}
`2(J)

.

This map is well defined as
∑

i∈J |
√
λiψi(x)|2 = K(x, x) <∞.

Apart from the representation of the kernel function, Mercer’s theorem also leads to

a construction of RKHS using the eigenfunctions of the integral operator TK .

5.3 Smoothing Splines

Let us consider again our nonparametric regression model

Yi = f(xi) + εi, i = 1, . . . , n,

where ε1, . . . , εn are mean zero, uncorrelated random variables with a common vari-

ance σ2. As with the kernel approach, there is a presumption that f is smooth. The

smoothing spline approach tries to take direct advantage of this smoothness by aug-

menting the usual least squares criteria with a penalty for roughness. For instance,

if the xi’s lie in [0, 1], the estimator f̂ might be chosen to minimize (over g)

n∑

i=1

(Yi − g(xi))
2 + λ‖g(m)‖2

2,
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where ‖ · ‖2 is the L2-norm of functions on [0, 1] under the Lebesgue measure, i.e.,

‖g‖2
2 =

∫ 1

0

g2(x)dx.

The constant λ is called the smoothing parameter. Larger values for λ will lead to a

smoother f̂ , smaller values will lead to an estimate f̂ that follows the observed data

more closely (i.e.,f̂(xi) will be closer to Yi).

We can use the RKHS approach to solve the above optimization problem using the

representer theorem. Please read Chapter 18.3 from [6] for the details (this was done

in class).

Exercise (HW3): (Semiparametric models — partially linear regression model.) Con-

sider a regression model with two explanatory variables x and w in which

Yi = f(xi) + βwi + εi, i = 1, . . . , n,

with 0 < x1 < . . . < xn < 1, f ∈ Wm[0, 1], β ∈ R, and the εi’s are i.i.d. from

N(0, σ2). This might be called a semiparametric model because the dependence on

w is modeled parametrically, but the dependence on x is nonparametric. Following a

penalized least squares approach, consider choosing f̂ and β̂ to minimize

n∑

i=1

(Yi − g(xi)− αwi)2 + λ‖g(m)‖2
2.

(a) Show that the estimator f̂ will still be a natural spline of order 2m.

(b) Derive explicit formulas based on linear algebra to compute β̂ and f̂ .

5.4 Classification and Support Vector Machines

5.4.1 The problem of classification

We observe the data

Dn = {(X1, Y1), . . . , (Xn, Yn)}

where (Xi, Yi)’s are i.i.d. random pairs, Xi takes values in the measurable space (X ,A)

and Yi ∈ {−1,+1} is a label. A new observationX arrives and the aim of classification

is to predict the corresponding Y . We can interpret this task as a classification of X

into one of the two groups labeled with −1 or +1.
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Example 5.16 (Spam-filter). We have a sample of n e-mail messages. For each

message i, we count the percentages of 50 selected words characteristic for spam,

such as the words money, credit, Viagra and so on. This constitutes the vectors of

measurements Xi ∈ R50. Then, an expert provides the values Yi = +1 if e-mail

i is spam and Yi = −1 otherwise. When a new message arrives, we would like to

decide whether it is spam or not. For this purpose, we measure the corresponding

percentages X ∈ R50 in this message, and based on X and on the training data Dn,

we have find a decision Y . The problem is usually solved by separating R50 in two

parts (corresponding to spam and non-spam) the via a hyperplane depending on the

training data Dn. This is called a linear classifier.

At first sight, the observations are of the same form as in the problem of regression

with random design. However, the important feature is that Yi’s are now binary.

Even more important, in the classification context our final aim is different. We are

not interested in estimation of the regression function f ∗(x) := E(Y |X = x) but

rather in predicting the value of the label Y . Note that the regression function has

now the form

f ∗(x) = P(Y = 1|X = x)− P(Y = −1|X = x) = 2η(x)− 1

where

η(x) := P(Y = 1|X = x).

We define a classifier h as any measurable function from X to {−1, 1}. We predict

the label for an observed X as h(X). In practice, h depends on the observed data Dn
but, in this section, we will assume that the observed data is fixed and thus h is just

a function of X.

The performance of a classifier is characterized by the probability of error (also called

the risk of classification), which is defined as:

R(h) := P(Y 6= h(X)).

Our aim is to find the best classifier, i.e., a classifier which minimizes this risk:

h∗ = argmin
h

R(h).

We will call h∗ the Bayes classifier and we call the minimal possible risk R∗ the Bayes

risk, i.e.,

R∗ := min
h
R(h) = R(h∗).

The next theorem shows that such a classifier always exists.
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Theorem 5.17. (i) The Bayes classifier has the form

h∗(x) =

{
1, if η(x) > 1/2,

−1, if η(x) ≤ 1/2.

(ii) For any classifier h we have

R(h)−R(h∗) =

∫

x:h(x)6=h∗(x)

|2η(x)− 1|dPX(x),

where PX is the probability distribution of X.

(iii) The Bayes risk is bounded by 1/2:

R∗ = E[min{η(X), 1− η(X)}] ≤ 1

2
.

Example 5.18. Let X ∈ Rd admit a density p(·) with respect to the Lebesgue

measure on Rd. Then show that (Exercise (HW3))

h∗(x) =

{
1, if πp1(x) > (1− π)p−1(x),

−1, otherwise.

where π = P(Y = 1) and pi(x) = p(x|Y = i) are conditional densities of X given

Y = i, for i = −1, 1. This is the maximum likelihood classifier if and only if π = 1/2.

Parametric approach to classification: Assume that p−1, p1 in the example above

are known, up to some parameters in Rk. If we estimate these parameters then we

can use the “plug-in classifier”:

p̂1(X)π̂ > p̂−1(X)(1− π̂) ⇒ X is classified with Y = 1

p̂1(X)π̂ ≤ p̂−1(X)(1− π̂) ⇒ X is classified with Y = −1

where p̂1, p̂−1 are parametric estimators of p−1, p1, and π. If pi’s are Gaussian densities

N(θi,Σ), i = −1, 1, then the decision rule is linear, which means that X is labeled 1

if and only if X>a+ b > 0 for some a ∈ Rd, b ∈ R. Show this (Exercise (HW3)).

Nonparametric plug-in approach: We can also estimate the regression function

f ?∗ and then calculate η̂n(x) as estimators of η(x) = (f ∗(x) + 1)/2. Using this as the

plug-in estimator, we derive the classifier

ĥn(x) =

{
1, if η̂n(x) > 1/2,

−1, otherwise.
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However, for this method to work we need η̂n to be close to η, which is typically

guaranteed if the function η has some smoothness properties. This is not always

reasonable to assume.

Machine learning approach: This is also a fully nonparametric approach. Except

for assuming that Y ∈ {−1, 1}, we do not make any other assumption on the joint

distribution of (X, Y ). The aim is to mimic the oracle h∗ based on the data Dn. But

this is typically not possible. A more modest and achievable task is to mimic the

oracle hH within some reasonable restricted collection H of classifiers (also called the

dictionary),

hH = argmin
h∈H

R(h).

An important example is given by the class of all linear classifiers:

H = {h : Rd → {−1, 1} : h(x) = 2I(x>a+ b > 0)− 1, a ∈ Rd, b ∈ R}.

5.4.2 Minimum empirical risk classifiers

How to construct good classifiers based on the data? A first idea is to use the

principle of unbiased risk estimation. We need to find an unbiased estimator for the

risk R(h) = P(Y 6= h(X)) and then to minimize this estimator in h over a given class

H. Note that the empirical risk is

Rn(h) =
1

n

n∑

i=1

I{Yi 6= h(Xi)}

is an unbiased estimator for R(h) for all h. Minimizing Rn(h) can be used to obtain

a classifier.

Definition 5.19. Let H be a fixed collection of classifiers. The empirical risk mini-

mization (ERM) classifier on H is defined by

ĥn := argmin
h∈H

Rn(h).

The ERM classifier always exists since the function Rn takes only a finite number of

values, whatever is the class H. Note that I{Yi 6= h(Xi)} = (Yi−h(Xi))
2/4 and thus

Rn(h) =
1

4n

n∑

i=1

(Yi − h(Xi))
2.

Therefore, ĥn is the least squares estimator based on binary variables.
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We expect the ERM classifier to have the risk close to that of the oracle classifier hH.

Let us emphasize that we are not interested in accurate estimation of hH and moreover

there is no guarantee that hH is unique. Mimicking the oracle means constructing a

classifier ĥn such that its risk R(ĥn) is close to the oracle risk minh∈HR(h).

Computational considerations: To find ĥn, we should minimize on H the non-

convex function
1

n

n∑

i=1

I{Yi 6= h(Xi)},

andH is not a convex set because a convex combination of classifiers is not necessarily

a classifier. Thus, the only possibility is to use combinatorial search. Even in the case

where H is the class of linear rules, the computational complexity of combinatorial

search on

A(Dn) := {b = (b1, . . . , bn) : bi = I{h(Xi) 6= Yi}, h ∈ H}

will be of order O(nd+1) where d is the dimension of the Xi’s. This is prohibitive

already for moderately large d.

A remedy is convexification: we replace the indicator function by a convex function

and the class H by a convex class of functions, then solve a convex minimization

problem and classify according to the sign of the solution. This approach was probably

first used by [16] to define the method initially called the generalized portrait and

renamed in the 1990’s as the support vector machine.

5.4.3 Convexifying the ERM classifier

Let us first rewrite R(h) in another form:

R(h) = P(Y 6= h(X)) = P(−Y h(X) ≥ 0) = E
[
I{−Y h(X) ≥ 0}

]
= E[ϕ0(−Y h(X))],

where ϕ0(u) := I(u ≥ 0). We now replace ϕ0 by a convex function ϕ : R → R
(sometimes called a convex surrogate loss) and define

Rϕ(h) := E[ϕ(−Y h(X))],

f ∗ϕ := argmin
f :X→R

Rϕ(f),

Rn,ϕ(h) :=
1

n

n∑

i=1

ϕ(−Yih(Xi)),

f̂n,ϕ := argmin
f∈F

Rn,ϕ(f), (64)
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where F is a convex class of functions f : X → R. The question is whether there are

convex functions ϕ such that h∗ = sign(f ∗ϕ), where h∗ is defined in Theorem 5.17?

Natural requirements to ϕ are: (i) convexity, (ii) ϕ should penalize more for wrong

classification than for correct classification. Note that ϕ0 does not penalize at all for

correct classification, because ϕ0(−1) = 0, but it penalizes for wrong classification

since ϕ0(1) = 1. However ϕ0 is not convex. The first historical example of convex

surrogate loss ϕ is the hinge loss:

ϕH(x) := (1 + x)+.

It satisfies both the requirements (i) and (ii) above. The corresponding risk and its

minimizer are

RϕH (f) := E[(1− Y f(X))+], f ∗ϕH := argmin
f :X→R

RϕH (f).

Proposition 5.20. Let h∗ be the Bayes classifier, i.e., h∗(x) := sign(η(x) − 1/2).

Then f ∗ϕH = h∗.

Proof. Recall that η(x) = P(Y = 1|X = x) and h∗(x) = sign(f ∗(x)) with f ∗(x) =

E(Y |X = x) = 2η(x)− 1. We can write

RϕH (f) =

∫

X
E[(1− Y f(X))+|X = x]dPX(x)

where

E[(1− Y f(X))+|X = x] = P(Y = 1|X = x)(1− f(x))+ + P(Y = −1|X = x)(1 + f(x))+

= η(1− f(x))+ + (1− η(x))(1 + f(x))+.

Fix an arbitrary x and define

g(u) := η(x)(1− u)+ + (1− η(x))(1 + u)+.

We claim that

f ∗ϕH (x) = argmin
u∈R

g(u).

Next, observe that g is a piecewise affine function. Let u∗ = argminu∈R g(u). We can

see that:

g(u) =





η(x)(1− u) + (1− η(x))(1 + u) = 1 + (1− 2η(x))u, if |u| ≤ 1;

(1− η(x))(1 + u), if u > 1;

η(x)(1− u), if u < −1.
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As g is affine for u > 1 (and u < −1) with nonnegative slope we see that u∗ must

belong to [−1, 1]. However, for u ∈ [−1, 1], g is minimized at

u∗ =

{
−1, if η(x) ≤ 1/2;

+1, if η(x) > 1/2.

Thus, f ∗ϕH (x) = u∗ = sign(η(x)− 1/2) = h∗(x) for all x ∈ X .

Classical examples of functions ϕ are the following: (i) ϕ(x) = (1 + x)+ (hinge loss);

(ii) ϕ(x) = exp(x) (exponential loss); (iii) ϕ(x) = log2(1 + exp(x)) (logistic loss).

Proposition 5.21. Let ϕ′ be positive and strictly increasing. Then h∗ = sign(f ∗ϕ).

Proof. Exercise (HW3).

Given a solution f̂n,ϕ to the minimization problem (64), we define the classifier ĥn,ϕ :=

sign(f̂n,ϕ). A popular choice for the set F is

F =

{
M∑

j=1

θjhj : θ ∈ Θ

}

where {h1, . . . , hM} is a dictionary of classifiers independent of the data {(Xi, Yi)}ni=1

(the hj’s are often called the “weak learners”), and Θ ⊂ RM is a set of coefficients

where Θ = RM or Θ is an `1-body or an `2-body as defined as follows.

• An `2-body is a set of the form

Θ =
{
θ ∈ RM : θ>Kθ ≤ r

}

for some symmetric positive semi-definite matrix K and a positive scalar r.

• An `1-body is either an `1-ball Θ = {θ ∈ RM : |θ|1 ≤ r}, or the simplex

Θ = ΛM =

{
θ ∈ RM :

M∑

j=1

θj = 1, θj ≥ 0

}
.

The hinge loss with an `2-body yields support vector machines (SVM). The exponen-

tial and logit loss with an `1-body leads to boosting.
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5.4.4 Support vector machine (SVM): definition

Suppose that H is a RKHS of functions on X with kernel K.

Consider the classification problem described in the previous subsections. A popular

example of a convex set of functions F used in (64) is a ball in the RKHS H:

F = {f ∈ H : ‖f‖H ≤ r}, r > 0.

Then (64) becomes

min
f∈H:‖f‖H≤r

Rn,ϕ(f).

The support vector machine is, by definition, a classifier obtained from solving this

problem when ϕ(x) = (1 + x)+ (the Hinge loss):

min
f∈H

(
1

n

n∑

i=1

(1− Yif(Xi))+ + λ‖f‖2
H

)
. (65)

Thus, by the representer theorem (see Theorem 5.11), it is enough to look for a

solution of (65) in the finite dimensional space S (see the proof of Theorem 5.11)

of dimension less than or equal to n. Solving the problem reduces to finding the

coefficients θj in the representation (62).

Let Kij = K(Xi, Xj) and denote by K the symmetric matrix (Kij)i,j=1,...,n. Then for

any f ∈ S ⊂ H,

‖f‖2
H =

∑

i,j=1,...,n

θiθjKij = θ>Kθ.

Thus, the SVM minimization problem (65) reduces to

min
θ∈Rn

[
1

n

n∑

i=1

(1− Yi(Kθ)i)+ + λθ>Kθ

]
, (66)

where (Kθ)i is the i’th component of Kθ. Given the solution θ̂ of (66), the SVM

classifier ĥn,ϕ is determined as:

ĥn,ϕ = sign(f̂n,ϕ(x)), where f̂n,ϕ(x) =
n∑

i=1

θ̂iK(Xi, x). (67)

5.4.5 Analysis of the SVM minimization problem

Traditionally, the SVM minimization problem (66) is solved by reduction to a quadratic

program after introducing some additional slack variables. Here, we choose to treat
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the problem differently, using subdifferential calculus. For any convex objective func-

tion G, we have the equivalence

θ̂ ∈ argmin
θ∈RM

G(θ)⇐⇒ 0 ∈ ∂G(θ̂) (68)

where ∂G(θ) is the subdifferential of G at θ. (In the particular case where G is

differentiable at θ, the subdifferential is reduced to the gradient of G at θ: ∂G(θ̂) =

{∇G(θ)}.)

Proposition 5.22. The solution of the SVM optimization problem (66) has the form

f̂(x) =
n∑

i=1

θ̂iK(Xi, x),

where the coefficients θ̂i satisfy

θ̂i = 0, if Yif̂(Xi) > 1,

θ̂i =
Yi

2λn
, if Yif̂(Xi) < 1,

θ̂i =
αiYi
2λn

, with αi ∈ [0, 1], if Yif̂(Xi) = 1.

The points Xi with θ̂i 6= 0 are called the support vectors.

In practice, there are often not too many support vectors since only the points Xi

that are misclassified or close to the decision boundary satisfy the condition θ̂i 6= 0.

Proof. We will derive the expression for the subdifferential of the objective function

in (66) by analyzing each term in the sum separately. Fix some index i and consider

the function

θ 7→
(

1− Yi
n∑

j=1

Kijθj

)

+

= (1− Yi(Kθ)i)+.

Let gi(θ) be a subgradient of this function and denote by gij(θ) its j’th component.

There are three cases that follow immediately from the form of the subdifferential of

the function (1− x)+:

• if Yi(Kθ)i > 1 then gij(θ) = 0,

• if Yi(Kθ)i < 1 then gij(θ) = −YiKij,

• if Yi(Kθ)i = 1 then gij(θ) = −αiYiKij, for some αi ∈ [0, 1].

We can wrap these three cases as gij(θ) = −αiYiKij, with
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(i) αi = 0 if Yi(Kθ)i > 1,

(ii) αi = 1 if Yi(Kθ)i < 1,

(iii) αi ∈ [0, 1] if Yi(Kθ)i = 1.

Consequently, the subdifferential ∂
(

1
n

∑n
i=1(1 − Yi(Kθ)i)+

)
is composed of vectors

of the form −Kβ here β =
(

1
n
αiYi

)n
i=1

with αi satisfying the above conditions (i)–

(iii). Next, the function λθ>Kθ is differentiable and its gradient is 2λKθ. Thus, the

subdifferential of the objective function in (66) is composed of vectors of the form

−Kβ + 2λKθ.

Now, by (68), a vector θ̂ is a solution of (66) if and only if 0 belongs to the subdiffer-

ential of the objective function at θ̂, which can be written as 2λθ̂ − β = ε for some ε

satisfying Kε = 0. It remains to note that we can always take ε = 0 since the choice

of ε in the null space of K does not modify the value of the objective function. This

completes the proof.

Observe that the SVM solution can be written as (67). Thus, if we consider the

functions ϕi(·) = K(Xi, ·), we have

f̂ =
n∑

i=1

θ̂iϕj

so that f̂ can be viewed as a linear classifier in “transformed coordinates”. The

functions ϕi(·) = K(Xi, ·) can be interpreted as “weak learners” but in this case they

are not classifiers.

The strength of the RKHS approach is that the space X can be any arbitrary space

(such as a graph or a semi-group, for example) but we transform each point Xi ∈
X into an finite-dimensional vector Zi = (ϕ1(Xi), . . . , ϕn(Xi))

> ∈ Rn, and then

use a linear classifier f̂(X) = θ>Z in the finite-dimensional space Rn where Z :=

(ϕ1(X), . . . , ϕn(X))> ∈ Rn. The classification rule for a new point Z is

Ŷ :=

{
1, if θ̂>Z > 0,

−1, otherwise.

For any learning point Zi, if Zi is correctly classified we have Yiθ̂
>Zi > 0, and if Zi is

wrongly classified we have Yiθ̂
>Zi ≤ 0. By Proposition 5.22 a solution θ̂ of the SVM

minimization problem has the coordinates θ̂i, i = 1, . . . , n, satisfying:

81



• θ̂i = 0 if Yiθ̂
>Zi > 1. Interpretation: The point (Zi, Yi) does not affect the

classification rule if Zi is correctly classified with high margin (larger than 1),

where the margin of the i’th observation is defined as Yiθ̂
>Zi = Yif̂(Xi).

• θ̂i 6= 0 if Yiθ̂
>Zi ≤ 1. The last inequality means that the point Zi is wrongly

classified or correctly classified with small margin (smaller than 1). If θ̂i 6= 0,

the point Zi is called a support vector.

5.5 Kernel ridge regression

Consider the regression model

Yi = f ∗(xi) + εi, i = 1, . . . , n,

where f ∗ is the true regression function, xi’s take values in X (an arbitrary metric

space), ε1, . . . , εn are mean zero, uncorrelated random variables. We want to estimate

f ∗ by minimizing the criterion function

f̂ = argmin
f∈H

n∑

i=1

(Yi − f(xi))
2 + λ‖f‖2

H. (69)

By the representer theorem, we can claim that any solution to (69) is of the form

f̂(·) =
∑n

i=1 αiK(xi, ·) for some weight vector (α1, . . . , αn) ∈ Rn. Thus, the above

optimization problem can be equivalently expressed as:

α̂ := argmin
α∈Rn

‖Y −Kα‖2 + λα>Kα,

where K = ((Kij)) with Kij = K(xi, xj), Y = (Y1, . . . , Yn). Here we have used that

for f̂ in the span of {K(xi, ·)}ni=1 and thus f(xi) = (Kα)i, ‖f‖2
H = α>Kα. We can

solve the above finite dimensional optimization problem to yield

K(K + λI)α = KY,

which shows that α̂ = (K + λI)−1Y is a solution.

5.6 Kernel principal component analysis (PCA)

Given a random vector X ∼ P in Rd, PCA solves the following eigenvector (eigen-

value) problem:

Σv = λv,
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where Σ is the covariance matrix of X and the eigenvector corresponding to the i’th

largest eigenvalue is the i’th principal component, for i = 1, . . . , n. Another way to

view the PCA problem is to first consider the first principal component, which is a

solution to the following optimization problem:

v1 = argmax
v∈Rd:‖v‖≤1

Var(v>X) = argmax
v∈Rd:‖v‖≤1

v>Σv.

The second principal component is defined as the unit vector that maximizes Var(v>X)

over all vectors v that are orthogonal to v1, and so on.

Given i.i.d. samples {xi}ni=1 from P , the sample principal components are obtained

by solving the corresponding sample analogue:

Σ̂v = λv,

where Σ̂ := 1
n

∑n
i=1(xi − x̄)(xi − x̄)> (here x̄ =

∑n
i=1 xi/n is the sample mean) is the

sample covariance matrix of X. Similarly,

v̂1 = argmax
v∈Rd:‖v‖≤1

v>Σ̂v = argmax
v∈Rd:‖v‖≤1

1

n

n∑

i=1

[
v>(xi − x̄)

]2
. (70)

Now suppose that X ∼ P takes values in an arbitrary metric space X . Suppose that

H is a RKHS (of functions) on X with reproducing kernel K. We can use the kernel

method to extent classical PCA to capture non-linear principal components. The first

principal component can now be defined as

f1 := argmax
f∈H:‖f‖H≤1

Var(f(X)) = argmax
f∈H:‖f‖H≤1

Var(〈f,K(X, ·)〉H).

Let ϕ(x) := K(x, ·) for all x ∈ X (note that here ϕ is not exactly the feature map, as

ϕ : X → H). Given a sample {xi}ni=1 from P , the sample first principal component

(function) can be defined analogously (as in (70)) as

f̂1 = argmax
f∈H:‖f‖H≤1

V̂ar(〈f,K(X, ·)〉H) = argmax
‖f‖H≤1

1

n

n∑

i=1



〈
f, ϕ(xi)−

1

n

n∑

j=1

ϕ(xj)

〉

H




2

.

We define the empirical covariance operator as

Σ̂ :=
1

n

n∑

i=1

ϕ̃(xi)⊗ ϕ̃(xi), where ϕ̃(xi) := ϕ(xi)−
1

n

n∑

j=1

ϕ(xj).
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We would like to find eigenfunctions f̂ (the principal components) (Why? Exercise

(HW3)) such that

Σ̂(f̂) = λf̂ . (71)

The question now is, how do we express the above equation in terms of kernels, i.e.,

how do we “kernelize” it? Towards this end, we make the following claim.

Claim: Any solution to (71) is of the form f̂ =
∑n

i=1 αiϕ̃(xi) for some weight vector

(α1, . . . , αn) ∈ Rn.

Proof: First, we observe that any solution to (71) lies in Range(Σ̂). Linearity, and

the nature of ϕ̃(xi)⊗ ϕ̃(xi) (by definition (a⊗ b)(c) := 〈b, c〉Ha) tell us that

Σ̂(f̂) =
1

n

n∑

i=1

〈ϕ̃(xi), f̂〉H ϕ̃(xi).

Therefore, (71) is equivalent to the following system of equations in α ∈ Rn:

Σ̂

(
n∑

i=1

αiϕ̃(xi)

)
= λ

n∑

i=1

αiϕ̃(xi).

For the above set of equations, we left-hand side equals

1

n

n∑

j=1

n∑

i=1

αi〈ϕ̃(xi), ϕ̃(xj)〉H ϕ̃(xj).

Using the fact that 〈ϕ̃(xj), ϕ̃(xj)〉H = K̃(xi, xj), where K̃ = HKH (show this; Exer-

cise (HW3); here H = In − 1n×n/n and K is the Gram matrix, i.e., Kij = K(xi, xj))

the above system of equations may be written as

1

n

n∑

j=1

n∑

i=1

αiK̃ij ϕ̃(xj) = λ
n∑

i=1

αiϕ̃(xi).

Taking inner products with ϕ(xl), for l = 1, . . . , n, we get

1

n

n∑

j=1

n∑

i=1

αiK̃ijK̃jl = λ
n∑

i=1

αiK̃il.

We now have a set of n linear equations in the vector α ∈ Rn. In matrix-vector form,

it can be written very simply as

K̃2α = λnK̃α.

The only solutions of this equation that are of interest to us are those that satisfy

K̃α = λnα.

This is simply an eigenvalue/eigenvector problem in the matrix K.
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6 Bootstrap

Suppose that we have data X ∼ P , and θ ≡ θ(P ) is a parameter of interest. Let

θ̂ ≡ θ̂(X) be an estimator of θ. Suppose that we would want to construct a level-

(1− 2α) confidence interval for θ, i.e., find κα and κ1−α such that

P(θ̂ − κα ≤ θ ≤ θ̂ + κ1−α) ≥ 1− 2α. (72)

How do we find (estimate) κα and κ1−α in such a general setting?

Problem: The distribution of θ̂ − θ depends on P and might be unknown. Even

if we know the asymptotics (e.g., asymptotically normal), we may want more accu-

rate quantiles for a fixed sample size. In some situations, the asymptotic limiting

distribution can depend on nuisance parameters that can be hard to estimate.

In these situations we can use the bootstrap.

To motivate the bootstrap method, let us consider the following simple scenario.

Suppose that we model our data X = (X1, . . . , Xn) as a random sample from some

distribution P ∈ P , where P is a class of probability distributions. Let η(X, P )

be a root, i.e., a random variable that possibly depends on both the distribution

P and the sample X drawn from P (e.g., think of η(X, P ) as
√
n(X̄n − µ), where

X̄n =
∑n

i=1Xi/n and µ = E(X1)). In fact, θ̂ − θ (as described above) is a root.

In general, we may wish to estimate the mean or a quantile or some other probabilistic

feature or the entire distribution of η(X, P ). As mentioned above, the distribution of

θ̂ − θ depends on P and is thus unknown. Let Hn(x, P ) denote the c.d.f. of η(X, P ),

i.e.,

Hn(x, P ) := PP (η(X, P ) ≤ x). (73)

Of course, if we can estimate Hn(·, P ) then we can use this to construct CIs, test

hypotheses; e.g., if η(X, P ) = (θ̂−θ) then being able to estimate Hn(·, P ) immediately

yields estimates of κα and κ1−α as defined in (72).

Idea: What if we knew P and could draw unlimited replicated samples from P?

In that case we could approximate Hn(x, P ) as follows: draw repeated samples from

P resulting in a series of values for the root η(X, P ), then we could form an estimate

of Hn(x, P ) by counting how many of the η(X, P )’s are ≤ x.

But, of course, we do not know P . However we can estimate P by P̂n and use the

above idea. This is the notion of bootstrap.
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Definition 6.1 (Bootstrap). The bootstrap is a method of replacing (plug-in) the

unknown distribution P with a known distribution P̂n (estimated from the data) in

probability/expectation calculations.

The bootstrap approximation of Hn(·, P ) is Ĥn(·, P̂n), where P̂n is an estimator of P

obtained from the observed data (that we think is close to P ), i.e.,

Ĥn(x, P̂n) := P∗
P̂n

(η(X∗, P̂n) ≤ x|X). (74)

where P∗
P̂n

(·|X) is the conditional probability given the observed data X (under the

estimated P̂n). Thus, bootstrap estimates the distribution of η(X, P ) by that of

η(X∗, P̂n), where X∗ is a random sample (conditional on the data) drawn from the

distribution P̂n. The idea is that

if P̂n ≈ P, then Ĥn(·, P̂n) ≈ Hn(·, P ).

Question: How do we find Ĥn(·, P̂n), the distribution of η(X∗, P̂n)?

Answer: In most cases, the distribution of η(X∗, P̂n) is difficult to analytically com-

pute, but we can always be approximated easily by Monte Carlo simulations.

The bootstrap can be broken down in the following simple steps:

• Find a “good” estimator P̂n of P .

• Draw a large number (say, B) of random samples X∗(1), . . . ,X∗(B) from the

distribution P̂n and then compute T ∗(j) := η(X∗(j), P̂n), for j = 1, . . . , B.

• Finally, compute the desired feature of η(X∗, P̂n) using the empirical c.d.f. H̃B
n (·, P̂n)

of the values T ∗(1), . . . , T ∗(B), i.e.,

H̃B
n (x, P̂n) :=

1

B

B∑

j=1

I{T ∗(j) ≤ x}, for x ∈ R.

Intuitively,

H̃B
n (·, P̂n) ≈ Ĥn(·, P̂n) ≈ Hn(·, P ),

where the first approximation is from Monte Carlo error (and can be as small as we

would like, by taking B as large as we want) and the second approximation is due to

the bootstrap method. If P̂n is a good approximation of P , then bootstrap can be

successful.
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6.1 Parametric bootstrap

In parametric models it is more natural to take P̂n as the fitted parametric model.

Example 6.2 (Estimating the standard deviation of a statistic). Suppose thatX1, . . . , Xn

is random sample from N(µ, σ2). Suppose that we are interested in the parameter

θ = P(X ≤ c) = Φ

(
c− µ
σ

)
,

where c is a given known constant. A natural estimator of θ is its MLE θ̂:

θ̂ = Φ

(
c− X̄
σ̂

)
,

where σ̂2 = 1
n

∑n
i=1(Xi − X̄)2 and X̄ = 1

n

∑n
i=1 Xi.

Question: How do we estimate the standard deviation of θ̂? There is no easy closed

form expression for this.

Solution: We can bootstrap!

Draw many (say B) bootstrap samples of size n from

N(X̄, σ̂2) ≡ P̂n.

For the j’th bootstrap sample we compute a sample average X̄∗(j), a sample standard

deviation σ̂∗(j). Finally, we compute

θ̂∗(j) = Φ

(
c− X̄∗(j)
σ̂∗(j)

)
.

We can estimate the mean of θ̂ by θ̄∗ = 1
B

∑B
j=1 θ̂

∗(j). The standard deviation of θ̂ can

then be estimated by the bootstrap standard deviation of the θ̂∗(j) values, i.e.,

[
1

B

B∑

j=1

(θ̂∗(j) − θ̄∗)2

]1/2

.

Example 6.3 (Comparing means when variances are unequal). Suppose that we

have two independent samples X1, . . . , Xm and Y1, . . . , Yn from two possibly different

normal populations. Suppose that

X1, . . . , Xm are i.i.d. N(µ1, σ
2
1) and Y1, . . . , Yn are i.i.d. N(µ2, σ

2
2).

Suppose that we want to test

H0 : µ1 = µ2 versus H1 : µ1 6= µ2.
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We can use the test statistic

U =
(m+ n− 2)1/2(X̄m − Ȳn)
(

1
m

+ 1
n

)1/2
(S2

X + S2
Y )1/2

,

where X̄m = 1
m

∑m
i=1Xi, Ȳn = 1

n

∑n
i=1 Yi, S

2
X =

∑m
i=1(Xi−X̄m)2 and S2

Y =
∑n

i=1(Yi−
Ȳn)2. Note that as σ2

1 6= σ2
2, U does not necessarily follow a t-distribution.

Question: How do we find the critical value of this test?

The parametric bootstrap can proceed as follows:

First choose a large numberB, and for j = 1, . . . , B, simulate (X̄
∗(j)
m , Ȳ

∗(j)
n , S

2∗(j)
X , S

2∗(j)
Y ),

where all four random variables are independent with the following distributions:

• X̄∗(j)m ∼ N(0, σ̂2
X/m),

• Ȳ ∗(j)n ∼ N(0, σ̂2
Y /n),

• S2∗(j)
X ∼ σ̂2

X χ2
m−1,

• S2∗(j)
Y ∼ σ̂2

Y χ
2
n−1,

where σ̂2
X = S2

X/(m− 1) and σ̂2
Y = S2

Y /(n− 1). Then we compute

U∗(j) =
(m+ n− 2)1/2(X̄

∗(j)
m − Ȳ ∗(j)n )

(
1
m

+ 1
n

)1/2
(S

2∗(j)
X + S

2∗(j)
Y )1/2

for each j. We approximate the null distribution of U by the empirical distribution

of the {U∗(j)}Bj=1. Let c∗n be the
(
1− α

2

)
-quantile of the empirical distribution of

{U∗(j)}Bj=1. Then, we can reject H0 if

|U | > c∗n.

6.2 The nonparametric bootstrap

In problems where the distribution P is not indexed by a parametric family, a natural

estimator of P is the empirical distribution P̂n given by the distribution that puts

1/n-mass at each of the observed data points.

Example 6.4. Let X = (X1, . . . , Xn) be an i.i.d. sample from a distribution F on R.

Suppose that we want a CI for the median θ of F . We can base a CI on the sample

median M .
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We want to estimate the distribution of M − θ. Let η(X, F ) := M − θ. We may

choose F̂ = Fn, the empirical distribution function of the observed data. Thus, our

method can be broken in the following steps:

• Choose a large number B and simulate many samples X∗(j), for j = 1, . . . , B,

(conditionally i.i.d. given the data) from Fn. This reduces to drawing with

replacement sampling from X.

• For each bootstrap sample we compute the sample median M∗(j) and then find

the appropriate sample quantiles of {M∗(j)−M}Bi=1. Observe that η(X∗, Fn) =

M∗ −M .

6.3 Consistency of the bootstrap

Suppose that F̂n and F are the corresponding c.d.f.’s for P̂n and P respectively.

Suppose that P̂n is a consistent estimator of P . This means that at each x in the

support of X1 where F (x) is continuous, F̂n(x) → F (x) in probability or a.s. as

n → ∞10. If, in addition, Ĥn(x, P ), considered as a functional of P , is continuous

in an appropriate sense, it can be expected that Ĥn(x, P̂n) will be close to Hn(x, P ),

when n is large.

Observe that Ĥn(x, P̂n) is a random distribution function (as it depends on the ob-

served data). Let ρ be any notion of distance between two probability distributions

that metrizes weak convergence, i.e., for any sequence of c.d.f.’s {Gn}n≥1, we have

Gn
d→ G if and only if ρ(Gn, G)→ 0 as n→∞.

In particular, we can take ρ to be the Prohorov metric11 or the Levy metric12. For

simplicity, we can also use the uniform distance (Kolmogorov metric) between Gn

and G (which metrizes weak convergence if G is a continuous c.d.f.).

Definition 6.5. We say that the bootstrap is weakly consistent under ρ for η(Xn, P )

if

ρ(Hn, Ĥn)
p→ 0 as n→∞,

where Hn and Ĥn are defined in (73) and (74) respectively. We say that the bootstrap

10If F is a continuous c.d.f., then it follows from Polya’s theorem that F̂n → F in probability or

a.s. uniformly over x. Thus, F̂n and F are uniformly close to one another if n is large.
11

12
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is strongly consistent under ρ for η(Xn, P ) if

ρ(Hn, Ĥn)
a.s.→ 0 as n→∞.

In many problems, it can be shown that Hn(·, P ) converges in distribution to a limit

H(·, P ). In such situations, it is much easier to prove that the bootstrap is consistent

by showing that

ρ(Ĥn, H)
a.s./p→ 0 as n→∞.

In applications, e.g., for construction of CIs, we are quite often interested in approx-

imating the quantiles of Hn by that of Ĥn (as opposed to the actual c.d.f.). The

following simple result shows that weak convergence, under some mild conditions,

implies the convergence of the quantiles.

Exercise (HW4): Let {Gn}n≥1 be a sequence of distribution functions on the real line

converging weakly to a distribution function G, i.e., Gn(x) → G(x) at all continuity

points x of G. Assume that G is continuous and strictly increasing at y = G−1(1−α).

Then,

G−1
n (1− α) := inf{x ∈ R : Gn(x) ≥ 1− α} → y = G−1(1− α).

The following theorem, although quite obvious, gives us a general strategy to prove

the consistency of the bootstrap in many problems.

Theorem 6.6. Let CP be a set of sequences {Pn ∈ P}n≥1 containing the sequence

{P, P, . . .}. Suppose that, for every sequence {Pn} ∈ CP , Hn(·, Pn) converges weakly

to a common limit H(·, P ). Let Xn be a sample of size n from P . Assume that P̂n

is an estimator of P based on Xn such that {P̂n} falls in CP with probability one.

Then,

ρ(Hn(·, P ), Ĥn(·, P̂n))
a.s.→ 0 as n→∞.

If H(·, P ) is continuous and strictly increasing at H−1(1− α, P ) (0 < α < 1), then

Ĥ−1
n (1− α, P̂n)

a.s.→ H(1− α, P ) as n→∞.

Further, if H(x, P ) is continuous in x, then

K(Ĥn, Hn) := sup
x∈R
|Ĥn(x, P̂n)−Hn(x, P )| a.s.→ 0 as n→∞.

The proof of the above theorem is also left as an exercise (HW4).
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Remark 6.1. Often, the set of sequences CP can be described as the set of sequences

{Pn}n≥1 such that d(Pn, P ) → 0, where d is an appropriate “metric” on the space

of probabilities. Indeed, one should think of CP as a set of sequences {Pn} that

are converging to P in an appropriate sense. Thus, the convergence of Hn(·, Pn) to

H(·, P ) is locally uniform in a specified sense. Unfortunately, the appropriate metric

d will depend on the precise nature of the problem and the choice of the root.

Theorem 6.6 essentially says that to prove the consistency of the bootstrap it is enough

to try to understand the limiting behavior of Hn(·, Pn), where Pn is any sequence

of distributions “converging” (in some appropriate sense) to P . Thus, quite often,

showing the consistency of the bootstrap boils down to showing the weak convergence

of η(Xn, Pn) under a triangular array setup, as Xn is now an i.i.d. sample from Pn. For

example, if the CLT plays a crucial role in proving that Hn(·, P ) converges weakly to

a limit H(·, P ), the Lindeberg-Feller CLT theorem can be used to show that Hn(·, Pn)

converges weakly to H(·, P ).

Theorem 6.7 (Bootstrapping the sample mean). Suppose X1, X2, . . . , Xn are i.i.d. F

and that σ2 := VarF (X1) <∞. Let η(X, F ) :=
√
n(X̄n−µ), where µ := EF (X1) and

X̄n :=
∑n

i=1 Xi/n. Then,

K(Ĥn, Hn) = sup
x∈R
|Hn(x)− Ĥn(x)| p→ 0 as n→∞,

where Ĥn(x) ≡ Ĥn(x, Fn) and Fn is the empirical c.d.f. of the sample X1, X2, . . . , Xn.

Exercise (HW4): Show that foror almost all sequences X = {X1, X2, . . .}, the con-

ditional distribution of
√
n(X̄∗n − X̄n), given X, converges in law to N(0, σ2) by the

triangular array CLT (Lindeberg CLT).

Exercise (HW4): Show the following joint (unconditional) asymptotic distribution:

(√
n(X̄n − µ),

√
n(X̄∗n − X̄n)

) d→ (Z1, Z2),

where Z1, Z2 are i.i.d. N(0, σ2). In fact, a more general version of the result is true.

Suppose that (Un, Vn) is a sequence of random vectors such that Un
d→ Z ∼ H (some

Z) and Vn|Un d→ Z (the same Z) a.s. Then (Un, Vn)
d→ (Z1, Z2), where Z1, Z2 are

i.i.d. H.

Exercise (HW4): What do you think would be the limiting behavior of
√
n(X̄∗n − µ),

conditional on the data X?
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6.4 Second-order accuracy of the bootstrap

One philosophical question about the use of the bootstrap is whether the bootstrap

has any advantages at all when a CLT is already available. To be specific, suppose

that η(X, F ) =
√
n(X̄n − µ). If σ2 := VarF (X1) <∞, then

√
n(X̄n − µ)

d→ N(0, σ2) and K(Ĥn, Hn)
p→ 0 as n→∞.

So two competitive approximations to Hn(x) are Φ(x/σ̂n) (where σ̂2
n := 1

n

∑n
i=1(Xi−

X̄n)2) and Ĥn(x, Fn). It turns out that, for certain types of statistics, the bootstrap

approximation is (theoretically) more accurate than the approximation provided by

the CLT. Because any normal distribution is symmetric, the CLT cannot capture

information about the skewness in the finite sample distribution of η(X, F ). The

bootstrap approximation does so. So the bootstrap succeeds in correcting for skew-

ness, just as an Edgeworth expansion13 would do. This is called Edgeworth correction

by the bootstrap, and the property is called second-order accuracy of the bootstrap.

Theorem 6.8 (Second-order accuracy). Suppose X1, X2, . . . , Xn are i.i.d. F and

that σ2 := VarF (X1) < ∞. Let η(X, F ) :=
√
n(X̄n − µ)/σ, where µ := EF (X1) and

X̄n :=
∑n

i=1 Xi/n. If EF |X1|3 <∞ and F is continuous, then,

K(Ĥn, Hn) = op(n
−1/2) as n→∞,

where Ĥn(x) ≡ Ĥn(x;Fn) is the c.d.f. of η(X∗, Fn) :=
√
n(X̄∗n − X̄n)/σ̂ (σ̂2 =

1
n

∑n
i=1(Xi − X̄n)2) and Fn is the empirical c.d.f. of the sample X1, X2, . . . , Xn.

Remark 6.2 (Rule of thumb). Let X1, X2, . . . , Xn are i.i.d. F and η(X, F ) be a root.

If η(X, F )
d→ N(0, τ 2), where τ does not dependent of F , then second-order accuracy

is likely. Proving it will depend on the availability of an Edgeworth expansion for

η(X, F ). If τ depends on F (i.e., τ = τ(F )), then the bootstrap should be just

first-order accurate.

6.5 Failure of the bootstrap

In spite of the many consistency theorems in the previous sections, there are instances

where the ordinary bootstrap based on sampling with replacement from Fn actually

13We note that T :=
√
n(X̄n − µ)/σ admits the following Edgeworth expansion:

P(T ≤ x) = Φ(x) +
p1(x|F )√

n
φ(x) +

p2(x|F )

n
φ(x) + smaller order terms,

where p1(x|F ) and p2(x|F ) are polynomials in x with coefficients depending on F .
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does not work. Typically, these are instances where the root η(X, F ) fails to admit

a CLT. Before seeing a few examples, we list a few situations where the ordinary

bootstrap fails to estimate the c.d.f. of η(X, F ) consistently:

(a) η(X, F ) =
√
n(X̄n − µ) when VarF (X1) =∞.

(b) η(X, F ) =
√
n(g(X̄n)− g(µ)) and ∇g(µ) = 0.

(c) η(X, F ) =
√
n(g(X̄n)− g(µ)) and g is not differentiable at µ.

(d) The underlying population Fθ is indexed by a parameter θ, and the support of

Fθ depends on the value of θ.

(e) The underlying population Fθ is indexed by a parameter θ, and the true value

θ0 belongs to the boundary of the parameter space Θ.

Exercise (HW4): Let X = (X1, X2, . . . , Xn) be an i.i.d. sample from F and σ2 =

VarF (X1) = 1. Let g(x) = |x| and let η(X, F ) =
√
n(g(X̄n)− g(µ)). If the true value

of µ is 0, then by the CLT for X̄n and the continuous mapping theorem, η(X, F )
d→ |Z|

with Z ∼ N(0, σ2). Show that the bootstrap does not work in this case.

6.6 Subsampling: a remedy to the bootstrap

The basic idea of subsampling is to approximate the sampling distribution of a statistic

based on the values of the statistic computed over smaller subsets of the data. For

example, in the case where the data are n observations that are i.i.d., a statistic is

computed based on the entire data set and is recomputed over all
(
n
b

)
data sets of size

b. These recomputed values of the statistic are suitably normalized to approximate

the true sampling distribution.

Suppose that X1, . . . , Xn is a sample of n i.i.d. random variables having a common

probability measure denoted by P . Suppose that the goal is to construct a confidence

region for some parameter θ(P ) ∈ R.

Let θ̂n ≡ θn(X1, . . . , Xn) be an estimator of θ(P ). It is desired to estimate or ap-

proximate the true sampling distribution of θ̂n in order to make inferences about

θ(P ).

Let Hn(·, P ) be the sampling c.d.f. of τn(θ̂n − θ) based on a sample of size n from P ,

where τn is a normalizing constant. Essentially, the only assumption that we will need

to construct asymptotically valid confidence intervals for θ(P ) is the following: there
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exists a limiting non-degenerate c.d.f. H(·, P ) such that Hn(·, P ) converges weakly to

H(·, P ) as n→∞.

To describe the method let Y1, . . . , YNn be equal to the Nn :=
(
N
b

)
subsets of size b of

{X1, . . . , Xn}, ordered in any fashion. Of course, the Yi’s depend on b and n, but this

notation has been suppressed. Only a very weak assumption on b will be required.

In typical situations, it will be assumed that b/n→ 0 and b→∞ as n→∞.

Now, let θ̂n,b,j be equal to the statistic θ̂b evaluated at the data set Yj. The approxi-

mation to Hn(x, P ) we study is defined by

Ln,b(x) =
1

Nn

Nn∑

i=1

I{τb(θ̂n,b,j − θ̂n) ≤ x}.

The motivation behind the method is the following. For any j, Yj is a random sample

of size b from P . Hence, the exact distribution of τb(θ̂n,b,i − θ(P )) is Hb(·, P ). The

empirical distribution of the Nn values of τb(θ̂n,b,j − θ̂n) should then serve as a good

approximation to Hb(P ) ≈ Hn(P ). Of course, θ(P ) is unknown, so we replace θ(P )

by θ̂n, which is asymptotically permissible because τb(θ̂n−θ(P )) is of order τb/τn → 0.

Theorem 6.9. Assume that there exists a limiting non-degenerate c.d.f. H(·, P ) such

that Hn(·, P ) converges weakly to H(·, P ) as n→∞. Also assume τb/τn → 0, b→∞,

and b/n→ 0 as n→∞.

(i) If x is a continuity point of H(.·, P ), then Ln,b(x)
p→ H(x, P ).

(ii) If H(·, P ) is continuous, then supx |Ln,b(x)−Hn(x, P )| p→ 0.

(iii) Assume τb(θ̂n − θ(P ))→ 0 almost surely and, for every d > 0,

∑

n

exp{−d(n/b)} <∞.

Then, the convergences in (i) and (ii) hold with probability one.

Proof. See the proof of Theorem 2.2.1 in [8].

6.7 Bootstrapping regression models

Regression models are among the key ones that differ from the i.i.d. setup and are

also among the most widely used. Bootstrap for regression cannot be model-free; the

particular choice of the bootstrap scheme depends on whether the errors are i.i.d. or
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not. We will only talk about the linear model with deterministic x’s and i.i.d. errors.

Additional moment conditions will be necessary depending on the specific problem to

which the bootstrap will be applied; see e.g., [4]. First let us introduce some notation.

We consider the model

yi = β>xi + εi,

where β is a p× 1 (p < n) vector and so is xi, and εi’s are i.i.d. F with mean 0 and

variance σ2 <∞.

Let X be the n × p design matrix with the i’th row equal to xi and let Y :=

(y1, . . . , yn) ∈ Rn. The least squares estimator of β is defined as

β̂n := argmin
β∈Rp

n∑

i=1

(yi − x>i β)2 = (X>X)−1X>Y,

where we assume that (X>X)−1 is nonsingular.

We may be interested in the sampling distribution of

(X>X)−1(β̂n − β) ∼ Hn(F ).

First observe that Hn only depends on F . The residual bootstrap scheme is described

below.

Compute the residual vector

ε̂ = (ε̂1, . . . , ε̂n)> := Y −Xβ̂n.

We consider the centered residuals:

ε̃i = yi − x>i β̂n −
1

n

n∑

j=1

ε̂j, for i = 1, . . . , n.

The bootstrap estimator of the distribution Hn(F ) is Hn(F̃n), where F̃n is the empir-

ical c.d.f. of ε̃1, . . . , ε̃n.

We proved in class that an application of the Lindeberg-Feller CLT shows that the

above bootstrap scheme is consistent, under the conditions:

(i) p is fixed (as n grows);

(ii) 1
n
X>nXn → Σ, where Σ is positive definite;

(iii) 1√
n
|xij,n| → 0 as n→∞, where Xn = (xij,n).
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6.8 Bootstrapping a nonparametric function: the Grenander

estimator

Consider X1, . . . , Xn i.i.d. from a nonincreasing density f0 on [0,∞). The goal is to es-

timate f0 nonparametrically. In particular, we consider the nonparametric maximum

likelihood estimator (NPMLE) of f0, defined as

f̃n := arg max
f↓

n∏

i=1

f(Xi),

where the maximization if over all nonincreasing densities on [0,∞). It can see shown

that

f̃n = LCM′[Fn],

where Fn is the empirical c.d.f. of the data, and LCM′[Fn] denotes the right-hand

slope of the least concave majorant of Fn; see e.g.,

http://www.math.yorku.ca/∼hkj/Teaching/Bristol/notes.pdf

for the characterization, computation and theoretical properties of f̃n.

In class we considered bootstrapping the Grenander estimator f̃n, the NPMLE of f0,

at a fixed point t0 > 0, in the interior of the support of f0. We sketched a proof

of the inconsistency of bootstrapping from Fn or LCM′[Fn]; see [11] for the details.

We also derived sufficient conditions for the consistency of any bootstrap scheme in

this problem. Furthermore, we showed that we can consistently bootstrap from a

smoothed version of f̃n.
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7 Multiple hypothesis testing

In the multiple hypothesis testing14,15 problem we wish to test many hypotheses si-

multaneously. The null hypotheses are denoted by H0,i, i = 1, . . . , n, where n denotes

the total number of hypotheses.

Consider a prototypical example: we test n = 1000 null hypotheses at level 0.05 (say).

Suppose that everything is null (i.e., all the null hypotheses are true) — even then

on an average we expect 50 rejections.

In general, the problem is how do we detect the true non-null effects (hypotheses

where the null is not true) when a majority of the null hypotheses are true? This

question has received a lot of attention in the statistical literature, particularly in

genomic experiments. Consider the following example.

Example 7.1 (Prostate cancer study). DNA microarrays measure expression levels

of tens of thousands of genes. The data consist of levels of mRNA, which are thought

to measure how much of a protein the gene produces. A larger number implies a more

active gene.

Suppose that we have n genes and data on the expression levels for each gene among

healthy individuals and those with prostate cancer. In the example considered in [3],

n = 6033 genes were measured on 50 control patients and 52 patients with prostate

cancer. The data obtained are (Xij) where

Xij = gene expression level on gene i for the j’th individual.

We want to test the effect of the i’th gene. For the i’th gene, we use the following

test statistic:
X̄P
i· − X̄C

i·
sd(. . .)

∼ t100, under H0,i,

where X̄P
i· denotes the average expression level for the i’th gene for the 52 cancer

patients and X̄C
i· denotes the corresponding value for the control patients and sd(. . .)

denotes the standard error of the difference. We reject the null H0,i for gene i if the

test statistic exceeds the critical value t−1
100(1− α), for α ∈ (0, 1).

There are two main questions that we will address on this topic:

14Many thanks to Jimmy K Duong for scribing the lecture notes based on which this section is

adapted.
15Most of the material here can be found in the lecture notes by Emmanuel Candes; see

http://statweb.stanford.edu/∼candes/stats300c/lectures.html.
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• Global testing. In global testing, our primary interest is not on the n hypotheses

H0,i, but instead on the global hypothesis H0 : ∩ni=1H0,i, the intersection of the

H0,i’s.

• Multiple testing. In this scenario we are concerned with the individual hypothe-

ses H0,i and want to say something about each hypothesis.

7.1 Global testing

Consider the following prototypical (Gaussian sequence model) example:

yi = µi + zi, for i = 1, . . . , n, (75)

where zi’s are i.i.d. N(0, 1), the µi’s are unknown constants and we only observe the

yi’s. We want to test

H0,i : µi = 0 versus H1,i : µi 6= 0 (or µi > 0).

In global testing, the goal is to test the hypothesis:

H0 : µi = 0, for all i(no signal), versus H1 : at least one µi is non-zero.

The complication is that if we do each of these tests H0,i at level α, and then want

to combine them, the global null hypothesis H0 might not have level α. This is the

first hurdle.

Data: p1, p2, . . . , pn: p-values for the n hypotheses.

We will assume that under H0,i, pi ∼ Unif(0, 1). (we are not assuming independence

among the pi’s yet.)

7.2 Bonferroni procedure

Suppose that α ∈ (0, 1) is given. The Bonferroni procedure can be described as:

• Test H0,i at level α/n, for all i = 1, . . . , n.

• Reject the global null hypothesis H0 if we reject H0,i for some i.

This can be succinctly expressed as looking at the minimum of the p-values, i.e.,

Reject H0 if min
i=1,...,n

pi ≤
α

n
.
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Question: Is this a valid level-α test, i.e., is PH0(Type I error)
?

≤ α? Answer: Yes.

Observe that

PH0(Rejecting H0) = PH0

(
min

i=1,...,n
pi ≤ α/n

)

= PH0(∪ni=1{pi ≤ α/n})

≤
n∑

i=1

PH0,i
(pi ≤ α/n), (crude upper bound)

= n · α/n, since pi ∼ Unif([0, 1]) under null

= α.

So this is a valid level-α test, whatever the pi’s are (the pi’s could be dependent).

Question: Are we being too conservative (the above is an upper bound)? As we are

testing each hypothesis using a very small level α/n most of the p-values would fail

to be significant. The feeling is that we need a very strong signal for some i to detect

the global null using the Bonferroni method.

Answer: We are not doing something very crude, if all the p-values are independent.

Question: What is the exact level of the test?

Answer: If the pi’s are independent, then observe that

PH0

(
min
i
pi ≤ α/n

)
= 1− PH0 (∩ni=1{pi > α/n})

= 1−
n∏

i=1

PH0,i
(pi > α/n) (using independence)

= 1−
(

1− α

n

)n

as n→∞−−−−−→ 1− e−α

≈ α (for α small).

Thus, the Bonferroni approach is not a bad thing to do, especially when we have

independent p-values.

7.2.1 Power of the Bonferroni procedure

Let us now focus on the power of the Bonferroni method. To discuss power we need

a model for the alternative.
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Question: Consider the example of the Gaussian sequence model mentioned pre-

viously. Under what scenario for the µi’s do we expect the Bonferroni test to do

well?

Answer: If we have (a few) strong signals, then the Bonferroni procedure is good.

We will try to formalize this now.

In the Gaussian sequence model the Bonferroni procedure reduces to: Reject H0,i

(H0,i : µi = 0 vs. H1,i : µi > 0) if

yi > zα/n,

where zα/n is the (1− α/n)’th quantile of the standard normal distribution.

Question: How does zα/n behave? Do we know its order (when α is fixed and n is

large)?

Answer: As first approximation, zα/n is like
√

2 log n (an important number for

Gaussian random variables).

Fact 1. Here is a fact from extreme value theory about the order of the maximum of

the zi’s, i.e., maxi=1,...,n zi:
maxi=1,...,n zi√

2 log n

a.s.−−→ 1,

i.e., if we have a bunch of n independent standard normals, the maximum is like√
2 log n (Exercise: show this).

Fact 2. Bound on 1− Φ(t):

φ(t)

t

(
1− 1

t2

)
≤ 1− Φ(t) ≤ φ(t)

t
,

which implies that

1− Φ(t) ≈ φ(t)

t
for t large.

Here is a heuristics proof of the fact that zα/n ≈
√

2 log n:

1− Φ(t) ≈ φ(t)

t
=

α

n

⇔ e−t
2/2

√
2πt

=
α

n

⇔ −t
2

2
= ���

���XXXXXXlog(
√

2πt) + log(α/n) (as log(
√

2πt) is a smaller order term)

≈ t2 = −2 log(α/n) = 2 log n− 2 logα ≈
√

2 log n.
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The mean of maxi=1,...,n zi is like
√

2 log n and the fluctuations around the mean is of

order Op(1).

Exercise: Use the Gaussian concentration inequality to derive this result. Note that

the maximum is a Lipschitz function.

To study the power of the Bonferroni procedure, we consider the following stylistic

regimes (in the following the superscript (n) is to allow the variables to vary with n):

(i) µ
(n)
1 = (1 + ε)

√
2 log n and µ2 = . . . = µn = 0,

(ii) µ
(n)
1 = (1− ε)√2 log n and µ2 = . . . = µn = 0,

where ε > 0. So, in both settings, we have a one strong signal, and everything else is

0.

In case (i), the signal is slightly stronger than
√

2 log n; and in case (ii), the signal

is slightly weaker than
√

2 log n. We will show that Bonferroni actually works for

case (i) (by that we mean the power of the test actually goes to 1). Meanwhile, the

Bonferroni procedure fails for case (ii) — the power of the test converges to α.

This is not only a problem with the Bonferroni procedure — it can be shown that no

test can detect the signal in case (ii).

Case (i):

P(max yi > zα/n) = P
(
{y1 > zα/n} ∪

{
max
i=2,...,n

yi > zα/n

})

≥ P({y1 > zα/n})
≈ P

(
z1 >

√
2 log n− (1 + ε)

√
2 log n

)
→ 1.

In this regime, just by looking at y1, we will be able to detect that H0 is not true.

Case (ii):

P(max yi > zα/n) ≤ P(y1 > zα/n) + P
(

max
i=2,...,n

yi > zα/n

)
.

Note that the first term is equal to P(z1 > ε
√

2 log n) → 0 as n → ∞; whereas the

second term converges to 1− e−α. Hence, we have shown that in this case the power

of the test is less than or equal to the level of the test. So the test does as well as

just plain guesswork.

This shows the dichotomy in the Bonferroni procedure; that by just changing the

signal strength you can always recover or you can fail (1− α) of the time.
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Whenever we have a hypothesis testing procedure, there has to be an effort in trying to

understand the power of the procedure. And it is quite often the case that different

tests (using different test statistics) are usually geared towards detecting different

kinds of departures from the null. Here, the Bonferroni procedure is geared towards

detecting sparse, strong signals.

7.3 Chi-squared test

Consider the Gaussian sequence model described in (75) and suppose that we want

to test the global null hypothesis:

H0 : µi = 0, for all i, (no signal) versus H1 : at least one µi is non-zero.

Letting Y = (y1, . . . , yn), the chi-squared test can be expressed as:

Reject H0 if T := ‖Y ‖2 > χ2
n(1− α).

Note that under H0,

T ∼ χ2
n,

and under H1,

T ∼ χ2
n(‖µ‖2),

where µ = (µ1, . . . , µn) ∈ Rn and χ2
n(‖µ‖2) denotes the non-central χ2

n distribution

with non-centrality parameter ‖µ‖2.

This test is going to have high power when ‖µ‖2 is large. So, this test would have

high power when there are many weak signals (even if each µi is slightly different

from zero as we square it and add these up we can get a substantially large ‖µ‖2).

The Bonferroni procedure may not be able to detect a scenario like this — given α/n

to each hypothesis if the signal strengths are weak all of the p-values (for the different

hypotheses) might be considerably large.

7.4 Fisher’s combination test

Suppose that p1, . . . , pn are the n p-values obtained from the n hypotheses tests. We

assume that the pi’s are independent. The Fisher’s combination test rejects the global

null hypothesis if

T :=
n∑

i=1

−2 log pi
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is large. Observe that, under H0,

T := −2
n∑

i=1

log pi ∼ χ2
2n.

This follows from the fact that under H0,i,

− log pi ∼ Exp(1) ≡ Gamma(1, 1).

Again, as this test is aggregating the p-values, it will hopefully be able to detect the

presence of many weak signals.

7.5 Multiple testing/comparison problem: false discovery rate

Until now, we have been considering tests of the global null H0 = ∩iH0,i. For some

testing problems, however, our goal is to accept or reject each individual H0,i. Given

n hypotheses, we have four types of outcomes in multiple testing:

Accept H0,i Reject H0,i

H0,i true U V n0

H0,i false T S n− n0

n−R R n

where R = number of rejections is an observed random variable; U, V, S, T are unob-

served random variables. Note that

V = number of false discoveries.

Suppose that the hypotheses indexed by I0 ⊆ {1, . . . , n} are truly null with |I0| = n0

and the remaining hypotheses are non-null.

Ideally, we would not like to make false discoveries. But if you are not willing to make

any false discoveries, which basically translates to our threshold/cutoff being really

large for each test, then we will not be able make any discoveries at all.

Traditionally, statisticians want to control the family-wise error rate (FWER) :

FWER = P(V ≥ 1).

It is very easy to design a test whose FWER is controlled by a predetermined level

α: reject or accept each hypothesis H0i according to a test whose type I error is at

most α/n. Indeed, this is the Bonferroni method. By the union bound, one then has

FWER = P (∪i∈I0 {Reject H0,i}) ≤
∑

i∈I0

P (Reject H0,i) ≤
αn0

n
≤ α.
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In modern theory of hypothesis testing, control of the FWER is considered too strin-

gent mainly because it leads to tests that fail to reject many non-null hypotheses as

well.

The false discovery rate (FDR) is an error control criterion developed in the 1990’s as

an alternative to the FWER. When the number of tests is in the tens of thousands or

even higher, FWER control is so stringent a criterion that individual departures from

the null have little chance of being detected. In such cases, it may be unreasonable

to control the probability of having any false rejections. Attempting to do so would

leave us with virtually no power to reject individual non-nulls. Sometimes, control of

FWER is even not quite needed.

A new point of view advanced by [1] proposes controlling the expected proportion

of errors among the rejected hypotheses. The false discovery proportion (FDP) is

defined as

FDP :=
V

max(R, 1)
.

FDP is an unobserved random variable, so the criterion we propose to control is its

expectation, which we refer to as the false discovery rate:

FDR := E(FDP).

The Benjamini-Hochberg (BH) procedure controls FDR at any desired level (e.g.,

suppose we take q = 0.2), i.e.,

FDR ≤ q = 0.2;

thus out of all of the rejections we make we are willing to have 20% of them be false,

on an average.

The BH procedure can be described as: suppose that p1, . . . , pn are the p-values from

the n hypotheses tests. Let

p(1) ≤ p(2) ≤ . . . ≤ p(n)

be the sorted p-values. Let

i0 := max

{
i ≤ n : p(i) ≤ q

i

n

}
, 0 < q < 1.

We reject all the hypotheses H0,(i) for 1 ≤ i ≤ i0 (reject those hypotheses with p-

values from p(1) to p(i0)). Pictorially this can be easily expressed as: draw the line
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with slope q passing through the origin and plot the ordered p-values, and reject all

the hypotheses whose p-values lie above the line after the last time it was below the

line.

Another way to view the BH procedure is via the following sequential description:

start with {i = n} and keep accepting the hypothesis corresponding to p(i) as long as

p(i) > qi/n. As soon as p(i) ≤ iq/n, stop and reject all the hypotheses corresponding

to p(j) for j ≤ i.

Theorem 7.2. Suppose that the p-values p1, . . . , pn are independent. Then

FDR = E
(

V

max(R, 1)

)
≤ q.

Remark 7.1. Note that the above result states that the BH procedure controls FDR

for all configurations of {H0,i}ni=1.

Proof. Without loss of generality suppose that H0,1, . . . , H0,n0 are true. Observe that

{R = r} =
{
p(r) ≤

r

n
q, p(s) >

s

n
q,∀s > r

}
.

Further, under {R = r}, V =
∑n0

i=1 1{pi ≤ r
n
q}. Thus,

{
p1 ≤

r

n
q,R = r

}

=
{
p1 ≤

r

n
q, p(r) ≤

r

n
q, p(s) >

s

n
q,∀s > r

}

=

{
p1 ≤

r

n
q, p

(−1)
r−1 ≤

r

n
q, p(−1)

s >
s+ 1

n
q,∀s ≥ r

}

=
{
p1 ≤

r

n
q, R̃(p(−1)) = r − 1

}
,

where p(−1) = (p2, . . . , pn) and R̃ = sup{1 ≤ i ≤ n− 1 : p
(−1)
(i) ≤ i+1

n
q}. Finally we can
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show that

FDR = E
(
V

R
1{R 6= 0}

)

= E(
n∑

r=1

V

r
1{R = r})

=
n∑

r=1

1

r
E(V 1{R = r})

=
n∑

r=1

1

r

n0∑

i=1

P
(
pi ≤

r

n
q,R = r

)

=
n∑

r=1

1

r
n0P

(
p1 ≤

r

n
q,R = r

)
(by exchangeability)

=
n∑

r=1

n0

r
P
(
p1 ≤

r

n
q)P(R̃(p(−1)) = r − 1

)
(by independence)

=
n∑

r=1

n0

r

r

n
qP(R̃(p(−1)) = r − 1)

=
n0

n
q ≤ q.

7.6 The Bayesian approach: connection to empirical Bayes

By formulating the multiple testing problem in a simple Bayesian framework, we are

able to construct procedures that control a quantity closely related to the FDR as we

have previously defined.

We assume that we have n hypotheses, which are null (H = 0) with probability π0

and non-null (H = 1) with probability 1− π0. Our observations {Xi}ni=1 (p-values/z-

values) are thus assumed to come from the mixture distribution

f(x) = π0f0(x) + (1− π0)f1(x)

where f0 is the density of Xi if null is true (with c.d.f. F0; e.g., U [0, 1] or N(0, 1))

and f1 is the density of Xi otherwise (with c.d.f. F1). Let H denote the unobserved

variable that takes the value 0 or 1 depending on whether the null hypothesis is true

or not.

In this setup, we observe X ∈ A and wonder whether it is null or not. By Bayes’
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rule, we can evaluate this probability to be

φ(A) := P(H = 0|X ∈ A) (posterior probability of the null hypothesis)

=
P(X ∈ A|H = 0)

P(X ∈ A)

=
π0P0(A)

P (A)
=

π0

∫
A
f0(x)dx

P (A)
,

where P0(A) denotes the probability of a set A under the null distribution.

We can call the quantity φ(A) the Bayes false discovery rate (BFDR). If we report

x ∈ A as non-null, φ(A) is the probability that we have made a false discovery. What

should be A? If we reject H0,i if Xi > xc (e.g., if we are testing H0,i : µi = 0 vs.

H1,i : µi > 0) then A = [xc,∞). In practice, we will have some critical value xc and

A will take one of the following forms:

[xc,∞) (−∞, xc] (−∞,−xc] ∪ [xc,∞). (76)

In order to make use of the above machinery, we need to have knowledge of π0, f0

and f1. It is extremely unlikely that we would know these quantities in practice. By

using empirical Bayes techniques, we are able to accurately estimate these quantities

based on our data, as explained below.

We proceed by assuming the following: (i) usually f0 is known (assumed N(0, 1) or

Unif(0, 1)); (ii) π0 is ‘almost known’, in the sense that it’s a fraction close to 1 in

many applications; (iii) f1 is unknown.

Without knowing P (A), the BFDR cannot be computed. However, we can estimate

this quantity by

P̂ (A) =
1

n

n∑

i=1

1A(Xi).

This yields the BFDR estimate:

B̂FDR = φ̂(A) =
π̂0P0(A)

P̂ (A)
.

If n is large, then P̂ (A) will be close to P (A), and thus B̂FDR may be a good estimate

of BFDR.

7.6.1 Global versus local FDR

Classical BH theory only lets us discuss false discovery rates for tail sets of the

form (76). An advantage of the Bayesian theory is that we can now compute and
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bound the FDR for generic measurable sets A. [3] likes to distinguish between the

“local” and “global” FDR rates:

Global FDR : FDR(xc) = φ([xc,∞)), Local FDR : FDR(xc) = φ({xc}),

where FDR(xc) will in general be well-defined provided all distributions have contin-

uous densities, i.e.,

φ({x0}) =
π0f0(x0)

f(x0)
.

These two quantities can be very different.

Example 7.3. Suppose that F0 = N(0, 1) and F1 = Unif(−10, 10), π0 = 1/2. In

other words, under the null hypotheses the test statistics are standard Gaussian,

whereas under the alternatives they have a uniform distribution over a medium-size

interval, and on average half the hypotheses are null. In this case:

φ([2,∞)) =
1− Φ(2)

8/20 + (1− Φ(2))
≈ 0.054, φ({2}) =

φ(2)

1/20 + φ(2)
≈ 0.52.

Thus, a global FDR analysis suggests that x ≥ 2 is strong evidence for the alternative,

whereas a local FDR analysis tells us that in fact x = 2 is mild evidence for the null.

(There is no contradiction here — under the data generating distribution, given that

x ≥ 2 you would expect that x >> 2, and so the expected global FDR is small.)

The beauty of local FDR theory is that it can tell us the probability that any given

hypothesis is null, instead of just giving us the expected proportion of nulls among

all rejections. It’s down side, of course, is that it relies on more complex Bayesian

machinery. Standard BH theory (which is what people mostly use in practice) gives

us weaker global FDR type results, but requires much less assumptions to go through.

For more on this topic see [3, Chapter 5].

7.6.2 Empirical Bayes interpretation of BH(q)

How does the BH procedure relate to the empirical Bayes procedures we are dis-

cussing? First, we note that z-values map to p-values using the relation

pi = F0(Xi), (Xi is the test statistic).

Using this we observe that

p(i) = F0(X(i)), and
i

n
= F̂n(X(i)) ≈ F (X(i)).
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Thus,

i : p(i) ≤
i

n
q ⇔ F0(X(i))

F̂n(X(i))
≤ q ≈ F0(X(i))

F (X(i))
≤ q.

Thus, assuming that B̂FDR was computed with π0 = 1, we observe that

F0(X(i))

F̂n(X(i))
≤ q ≈ φ̂((−∞, X(i)]) ≤ q.

The claim below then follows.

Claim: The empirical Bayes formulation of BH(q) is to reject H0,(i) for all i ≤ i0

where i0 is the largest index such that

B̂FDR((−∞, x(i0)]) ≤ q.

Assuming independence of the test statistics, the FDR is at most q.

Note that π0 is usually unknown. However, usually we set π0 = 1, which results in a

conservative estimate of the FDR.
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8 High dimensional linear regression

Consider the standard linear regression model

y = Xβ∗ + w,

where X ∈ RN×p is the design matrix, w ∈ RN is the vector of noise variables (i.e.,

E(w) = 0), and β∗ ∈ Rp is the unknown coefficient vector. We are interested in

estimating β∗ from the observed response y. In this section we consider the situation

where p � N (or p is comparable to N) and study the performance of the lasso

estimator16 (least absolute shrinkage and selection operator; see e.g., [13]):

β̂ := argmin
β∈Rp:‖β‖1≤R

‖y −Xβ‖2
2, (77)

where R > 0 is a tuning parameter. The above is sometimes called as the constrained

form of the lasso solution. An equivalent form (due to Lagrangian duality) is the

penalized version

min
β∈Rp

[
1

2N
‖y −Xβ‖2

2 + λN‖β‖1

]
, (78)

where λN > 0 is the Lagrange multiplier associated with the constraint ‖β‖1 ≤ R.

The lasso estimator performs both variable selection and regularization simultane-

ously; it has good prediction accuracy and offers interpretability to the statistical

model it produces. Figure 5 shows a simple illustration of the performance of the

constrained lasso estimator (and ridge regression17) and gives some intuition as to

why it can also perform variable selection.

Given a lasso estimate β̂ ∈ Rp, we can assess its quality in various ways. In some

settings, we are interested in the predictive performance of β̂, so that we might

compute a prediction loss function of the form

L(β̂, β∗) :=
1

N
‖Xβ̂ −Xβ∗‖2

2,

corresponding to the mean-squared error of β̂ over the given samples of X. If the

unknown vector β∗ is of primary interest then a more appropriate loss function to

consider would be the `2-error

L2(β̂, β∗) := ‖β̂ − β∗‖2
2.

16This material is mostly taken from [5].
17In ridge regression we consider the problem: minβ∈Rp:‖β‖22≤R2 ‖y −Xβ‖22.
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Figure 2.1 Left: Coe�cient path for the lasso, plotted versus the ¸1 norm of the
coe�cient vector, relative to the norm of the unrestricted least-squares estimate —̃.
Right: Same for ridge regression, plotted against the relative ¸2 norm.
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Figure 2.2 Estimation picture for the lasso (left) and ridge regression (right). The
solid blue areas are the constraint regions |—1|+|—2| Æ t and —2

1+—2
2 Æ t2, respectively,

while the red ellipses are the contours of the residual-sum-of-squares function. The
point ‚— depicts the usual (unconstrained) least-squares estimate.

Figure 5: Estimation picture for the lasso (left) and ridge regression (right). The solid blue

areas are the constraint regions |β1| + |β2| ≤ t and β2
1 + β2

2 ≤ t2, respectively,

while the red ellipses are the contours of the residual-sum-of-squares function.

The point β̂ depicts the usual (unconstrained) least-squares estimate.

8.1 Strong convexity

The lasso minimizes the least-squares loss fN(β) := 1
2N
‖y −Xβ‖2

2 subject to an `1-

constraint. Let us suppose that the difference in function values ∆fN = |fN(β̂) −
fN(β∗)| converges to zero as the sample size N increases. The key question is the

following: what additional conditions are needed to ensure that the `2-norm of the

parameter vector difference ∆β = ‖β̂−β∗‖2 also converges to zero? Figure 6 illustrates

two scenarios that suggest that the function fN has to be suitably “curved”.

A natural way to specify that a function is suitably “curved” is via the notion of

strong convexity. More specifically, given a differentiable function f : Rp → R, we

say that it is strongly convex with parameter γ > 0 at θ∗ ∈ Rp if the inequality

f(θ)− f(θ∗) ≥ ∇f(θ∗)>(θ − θ∗) +
γ

2
‖θ − θ∗‖2

2

holds for all θ ∈ Rp. Note that this notion is a strengthening of ordinary convexity,

which corresponds to the case γ = 0. When the function f is twice continuously

differentiable, an alternative characterization of strong convexity is in terms of the

Hessian∇2f : in particular, the function f is strongly convex with parameter γ around

θ∗ ∈ Rp if and only if the minimum eigenvalue of the Hessian matrix ∇2f(θ) is at

least γ for all vectors θ in a neighborhood of θ∗.
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292 THEORETICAL RESULTS FOR THE LASSO

function fN (—) over some constraint set. (For instance, the lasso minimizes
the least-squares loss fN (—) = 1

N Îy ≠ X—Î2
2 subject to an ¸1-constraint.) Let

us suppose that the di�erence in function values �fN = |fN (‚—) ≠ fN (—ú)|
converges to zero as the sample size N increases. The key question is the
following: what additional conditions are needed to ensure that the ¸2-norm
of the parameter vector di�erence �— = Î‚— ≠ —úÎ2 also converges to zero?

�⇤ b�

�fN

��

�⇤ b�

�fN

��

Figure 11.2 Relation between di�erences in objective function values and di�er-
ences in parameter values. Left: the function fN is relatively “flat” around its opti-
mum ‚—, so that a small function di�erence �fN = |fN (‚—) ≠ fN (—ú)| does not imply
that �— = Î‚— ≠ —úÎ2 is small. Right: the function fN is strongly curved around its
optimum, so that a small di�erence �fN in function values translates into a small
di�erence in parameter values.

To understand the issues involved, suppose that for some N , the objec-
tive function fN takes the form shown in Figure 11.2(a). Due to the relative
“flatness” of the objective function around its minimum ‚—, we see that the
di�erence �fN = |fN (‚—) ≠ fN (—ú)| in function values is quite small while at
the same time the di�erence �— = Î‚— ≠ —úÎ2 in parameter values is relatively
large. In contrast, Figure 11.2(b) shows a more desirable situation, in which
the objective function has a high degree of curvature around its minimum
‚—. In this case, a bound on the function di�erence �fN = |fN (‚—) ≠ fN (—ú)|
translates directly into a bound on �— = Î‚— ≠ —úÎ2.

How do we formalize the intuition captured by Figure 11.2? A natural
way to specify that a function is suitably “curved” is via the notion of strong
convexity. More specifically, given a di�erentiable function f : Rp æ R, we
say that it is strongly convex with parameter “ > 0 at ◊ œ Rp if the inequality

f(◊Õ) ≠ f(◊) Ø Òf(◊)T (◊Õ ≠ ◊) + “

2 Î◊Õ ≠ ◊Î2
2 (11.8)

hold for all ◊Õ œ Rp. Note that this notion is a strengthening of ordinary
convexity, which corresponds to the case “ = 0. When the function f is twice
continuously di�erentiable, an alternative characterization of strong convexity

Figure 6: Relation between differences in objective function values and differences in pa-

rameter values. Left: the function fN is relatively “flat” around its optimum

β̂, so that a small function difference ∆fN = |fN (β̂) − fN (β∗)| does not imply

that ∆β = ‖β̂−β∗‖2 is small. Right: the function fN is strongly curved around

its optimum, so that a small difference ∆fN in function values translates into a

small difference in parameter values.

8.2 Restricted strong convexity and `2-error ‖β̂ − β∗‖2

Let us now return to the high-dimensional setting, in which the number of parameters

p might be larger than N . It is clear that the least-squares objective function fN(β)

is always convex; under what additional conditions is it also strongly convex? A

straightforward calculation yields that ∇2f(β) = X>X/N for all β ∈ Rp. Thus,

the least-squares loss is strongly convex if and only if the eigenvalues of the p × p

positive semidefinite matrix X>X are uniformly bounded away from zero. However,

it is easy to see that any matrix of the form X>X has rank at most min{N, p}, so it is

always rank-deficient — and hence not strongly convex — whenever N < p. Figure 7

illustrates the situation.

For this reason, we need to relax our notion of strong convexity. It turns out, as will

be clarified by the analysis below, that it is only necessary to impose a type of strong

convexity condition for some subset C ⊂ Rp of possible perturbation vectors ν ∈ Rp.

Definition 8.1 (Restricted strong convexity). We say that a function f : Rp → R
satisfies restricted strong convexity at θ∗ ∈ Rp with respect to C ⊂ Rp if there is a

constant γ > 0 such that

ν>∇2f(θ)ν

‖ν‖2
2

≥ γ for all nonzero ν ∈ C,

and for all θ ∈ Rp in a neighborhood of θ∗.
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is in terms of the Hessian Ò2f : in particular, the function f is strongly convex
with parameter “ around —ú œ Rp if and only if the minimum eigenvalue of the
Hessian matrix Ò2f(—) is at least “ for all vectors — in a neighborhood of —ú.
If f is the negative log-likelihood under a parametric model, then Ò2f(—ú) is
the observed Fisher information matrix, so that strong convexity corresponds
to a uniform lower bound on the Fisher information in all directions.

11.2.2 Restricted Eigenvalues for Regression

Let us now return to the high-dimensional setting, in which the number of
parameters p might be larger than N . It is clear that the least-squares objective
function fN (—) = 1

2N Îy ≠ X—Î2
2 is always convex; under what additional

conditions is it also strongly convex? A straightforward calculation yields that
Ò2f(—) = XTX/N for all — œ Rp. Thus, the least-squares loss is strongly
convex if and only if the eigenvalues of the p ◊ p positive semidefinite matrix
XTX are uniformly bounded away from zero. However, it is easy to see that
any matrix of the form XTX has rank at most min{N, p}, so it is always
rank-deficient—and hence not strongly convex—whenever N < p. Figure 11.3
illustrates the situation.

C

⌫bad

⌫good

Figure 11.3 A convex loss function in high-dimensional settings (with p ∫ N) can-
not be strongly convex; rather, it will be curved in some directions but flat in others.
As shown in Lemma 11.1, the lasso error ‚‹ = ‚— ≠—ú must lie in a restricted subset C
of Rp. For this reason, it is only necessary that the loss function be curved in certain
directions of space.

For this reason, we need to relax our notion of strong convexity. It turns
out, as will be clarified by the analysis below, that it is only necessary to
impose a type of strong convexity condition for some subset C µ Rp of possible

Figure 7: A convex loss function in high-dimensional settings (with p � N) cannot be

strongly convex; rather, it will be curved in some directions but flat in others.

As will be shown in later, the lasso error ν̂ = β̂ − β∗ must lie in a restricted

subset C of Rp. For this reason, it is only necessary that the loss function be

curved in certain directions of space.

In the specific case of linear regression, this notion is equivalent to lower bounding

the restricted eigenvalues of the design matrix — in particular, requiring that

1
N
ν>∇2X>Xν

‖ν‖2
2

≥ γ for all nonzero ν ∈ C. (79)

This is referred to as the γ-RE condition.

So, what constraint sets C are relevant? Suppose that the parameter vector β∗ is

sparse — say supported on the subset S = S(β∗). Defining the lasso error ν̂ = β̂−β∗,
let ν̂S ∈ R|S| denote the subvector indexed by elements of S, with ν̂Sc defined in an

analogous manner. For appropriate choices of the `1-ball radius — or equivalently, of

the regularization parameter λN — it turns out that the lasso error satisfies a cone

constraint of the form

‖ν̂Sc‖1 ≤ α‖ν̂S‖1,

for some constant α ≥ 1. Thus, we consider a restricted set of the form

C(S, α) := {ν ∈ Rp : ‖νSc‖1 ≤ α‖νS‖1},

for some parameter α ≥ 1.

Theorem 8.2. Suppose that the design matrix X satisfies the restricted eigenvalue

bound (79) with parameter γ > 0 over C(S, 1). Then any estimate β̂ based on the

constrained lasso (77) with R = ‖β∗‖1 satisfies the bound

‖β̂ − β∗‖2 ≤
4

γ

√
k

N

‖X>w‖∞√
N

.
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Before proving this result, let us discuss the different factors in the above bound.

First, it is important to note that this result is deterministic, and apply to any set of

linear regression equations with a given observed noise vector w. Based on our earlier

discussion of the role of strong convexity, it is natural that lasso `2-error is inversely

proportional to the restricted eigenvalue constant γ > 0. The second term k/N is

also to be expected, since we are trying to estimate an unknown regression vector

with k unknown entries based on N samples. As we have discussed, the final term

in both bounds, involving either ‖X>w‖∞, reflects the interaction of the observation

noise w with the design matrix X.

Example 8.3 (Classical linear Gaussian model). We begin with the classical linear

Gaussian model for which the noise w ∈ RN is Gaussian with i.i.d. N(0, σ2) entries.

Let us view the design matrix X as fixed, with columns {x1, . . . ,xp}. For any given

column j ∈ {1, . . . , p}, a simple calculation shows that the random variable x>j w/N

is distributed as N(0, σ
2

N

‖xj‖22
N

). Consequently, if the columns of the design matrix X

are normalized (meaning ‖xj‖2
2/N = 1 for all j = 1, . . . , p), then this variable has

N(0, σ
2

N
) distribution, so that we have the Gaussian tail bound

P

(
|x>j w|
N

≥ t

)
≤ 2e−

Nt2

2σ2 for t > 0.

Since ‖X>w‖∞/N corresponds to the maximum over p such variables, the union

bound yields

P
(‖X>w‖∞

N
≥ t

)
≤ 2e−

Nt2

2σ2
+log p = 2e−

1
2

(τ−2) log p,

where the second equality follows by setting t = σ
√

τ log p
N

for some τ > 2. Conse-

quently, we conclude that the lasso error satisfies the bound

‖β̂ − β∗‖2 ≤
4σ

γ

√
τk log p

N

with probability at least 1− 2e−
1
2

(τ−2) log p.

Proof of Theorem 8.2. In this case, since β∗ is feasible and β̂ is optimal, we have

the inequality ‖y − Xβ̂‖2
2 ≤ ‖y − Xβ∗‖2

2. Defining the error vector ν̂ := β̂ − β∗,

substituting in the relation y = Xβ∗ + w, and performing some algebra yields the

basic inequality
‖Xν̂‖2

2

2N
≤ w>Xν̂

N
. (80)

Applying a version of Hölder’s inequality to the right-hand side yields the upper

bound 1
N
|w>Xν̂| ≤ 1

N
‖X>w‖∞‖ν̂‖1.
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Next, we claim that the inequality ‖β̂‖1 ≤ R = ‖β∗‖1 implies that ν̂ ∈ C(S, 1).

Observe that

R = ‖β∗S‖1 ≥ ‖β∗ + ν̂‖1

= ‖β∗S + ν̂S‖1 + ‖ν̂Sc‖1

≥ ‖β∗S‖ − ‖ν̂S‖1 + ‖ν̂Sc‖1.

Rearranging this inequality, we see that ‖ν̂Sc‖1 ≤ ‖ν̂S‖1, which shows that ν̂ ∈ C(S, 1).

Thus, we have

‖ν̂‖1 = ‖ν̂S‖1 + ‖ν̂Sc‖1 ≤ 2‖ν̂S‖1 ≤ 2
√
k‖ν̂‖2,

where we have used the Cauchy-Schwarz inequality in the last step.

On the other hand, applying the restricted eigenvalue condition to the left-hand side

of the inequality (80) yields

γ
‖ν̂‖2

2

2
≤ ‖Xν̂‖

2
2

2N
≤ w>Xν̂

N
≤ 1

N
‖X>w‖∞‖ν̂‖1 ≤

1

N
‖X>w‖∞2

√
k‖ν̂‖2.

Putting together the pieces yields the claimed bound.

Exercise (HW 4): Suppose that the design matrix X satisfies the restricted eigenvalue

bound (79) with parameter γ > 0 over C(S, 3). Given a regularization parameter

λN ≥ 2‖X>w‖∞/N > 0, show that any estimate β̂ from the regularized lasso (78)

satisfies the bound

‖β̂ − β∗‖2 ≤
3

γ

√
k

N

√
NλN .

8.3 Bounds on prediction error

In this section we focus on the Lagrangian lasso (78) and develop some theoretical

guarantees for the prediction error L(β̂, β) := 1
N
‖Xβ̂ −Xβ∗‖2

2.

Theorem 8.4. Consider the Lagrangian lasso with a regularization parameter λN ≥
2
N
‖X>w‖∞.

(a) Any optimal solution β̂ satisfies

1

N
‖Xβ̂ −Xβ∗‖2

2 ≤ 6‖β∗‖1λN .

(b) If β∗ is supported on a subset S, and the design matrix X satisfies the γ-RE

condition (79) over C(S, 3), then any optimal solution β̂ satisfies

1

N
‖Xβ̂ −Xβ∗‖2

2 ≤
9

γ
|S|λ2

N .
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As we have discussed, for various statistical models, the choice λN = cσ
√

log p
N

is valid

for Theorem 8.4 with high probability, so the two bounds take the form

1

N
‖Xβ̂ −Xβ∗‖2

2 ≤ c1σR1

√
log p

N
, and

1

N
‖Xβ̂ −Xβ∗‖2

2 ≤ c2
σ

γ

|S| log p

N
,

for suitable constants c1, c2. The first bound, which depends on the `1-ball radius R1,

is known as the “slow rate” for the lasso, since the squared prediction error decays

as 1/
√
N . On the other hand, the second bound is known as the “fast rate” since it

decays as 1/N . Note that the latter is based on much stronger assumptions: namely,

the hard sparsity condition that β∗ is supported on a small subset S, and more

disconcertingly, the γ-RE condition on the design matrix X. In principle, prediction

performance should not require an RE condition, so that one might suspect that this

requirement is an artifact of our proof technique. However, this dependence turns

out to be unavoidable for any polynomial-time method; see e.g., [18] where, under a

standard assumption in complexity theory, the authors prove that no polynomial-time

algorithm can achieve the fast rate without imposing an RE condition.

Proof of Theorem 8.4. Define the function

G(ν) :=
1

2N
‖y −X(β∗ + ν)‖2

2 + λN‖β∗ + ν‖1.

Noting that ν̂ := β̂ − β∗ minimizes G by construction, we have G(ν̂) ≤ G(0). Some

algebra yields the modified basic inequality:

‖Xν̂‖2
2

2N
≤ w>Xν̂

N
+ λN{‖β∗‖1 − ‖β∗ + ν̂‖1}. (81)

Thus,

0 ≤ ‖X>w‖∞
N

‖ν̂‖1 + λN{‖β∗‖1 − ‖β∗ + ν̂‖1}

≤
{‖X>w‖∞

N
− λN

}
‖ν̂‖1 + 2λN‖β∗‖1

≤ 1

2
λN {−‖ν̂‖1 + 4‖β∗‖1} ,

where the last step uses the fact that 1
N
‖X>w‖∞ ≤ λN/2 (by assumption). Therefore,

‖ν̂‖1 ≤ 4‖β∗‖1. Returning again to the modified basic inequality (81), we have

‖Xν̂‖2
2

2N
≤ ‖X

>w‖∞
N

‖ν̂‖1 + λN‖β∗‖1 ≤
λN
2
· 4‖β∗‖1 + λN‖β∗‖1 ≤ 3λN‖β∗‖1,
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which establishes (a).

To prove (b), observe that as β∗Sc = 0, we have ‖β∗‖1 = ‖β∗S‖1, and

‖β∗ + ν̂‖1 = ‖β∗S + ν̂S‖1 + ‖ν̂Sc‖1 ≥ ‖β∗S‖1 − ‖ν̂S‖1 + ‖ν̂Sc‖1.

Substituting this relation into the modified basic inequality (81) yields

‖Xν̂‖2
2

2N
≤ w>Xν̂

N
+ λN{‖ν̂S‖1 − ‖ν̂Sc‖1}.

≤ ‖X>w‖∞
N

‖ν̂‖1 + λN{‖ν̂S‖1 − ‖ν̂Sc‖1}. (82)

Given the stated choice of λN , the above inequality yields

‖Xν̂‖2
2

2N
≤ λN

2
{‖ν̂S‖1 + ‖ν̂Sc‖1}+ λN{‖ν̂S‖1 − ‖ν̂Sc‖1}

≤ 3

2
λN‖ν̂S‖1 ≤

3

2
λN
√
k‖ν̂‖2, (83)

where k := |S|.

Next we claim that the error vector ν̂ associated with any lasso solution β̂ belongs to

the cone C(S, 3). Since ‖X
>w‖∞
N

≤ λN
2

, inequality (82) implies that

0 ≤ λN
2
‖ν̂‖1 + λN{‖ν̂S‖1 − ‖ν̂Sc‖1}.

Rearranging and then dividing out by λN > 0 yields that ‖ν̂Sc‖1 ≤ 3‖ν̂S‖1 as claimed.

As the error vector ν̂ belongs to the cone C(S, 3), the γ-RE condition guarantees that

‖ν̂‖2
2 ≤ 1

Nγ
‖Xν̂‖2

2. Therefore, using (82) gives

1

N
‖Xν̂‖2

2 ≤ 3λN
√
k‖ν̂‖2 ≤ 3λN

√
k

Nγ
‖Xν̂‖2 ⇒

1√
N
‖Xν̂‖2 ≤ 3λN

√
k

γ
.

This completes the proof.

Exercise (HW 4): State and prove the analogous theorem for the constrained form of

the lasso (given in (77)) where you take R = ‖β∗‖1.

8.4 Equivalence between `0 and `1-recovery

As seen in Theorem 8.4(b), the `1-constraint yields a bound on the prediction error

that is almost optimal — if we knew the set S then using linear regression would yield
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a bound of the order σ|S|/N ; using lasso, we just pay an additional multiplicative

factor of log p. As S is obviously unknown, we can think of fitting all possible linear

regression models with k := |S| predictors and then choosing the best one. This

would be equivalent to solving the following `0-problem:

min
β∈Rp:‖β‖0≤k

‖y −Xβ‖2
2,

where ‖β‖0 denotes the number of non-zero components of β. Obviously, this proce-

dure is computationally infeasible and possibly NP hard.

In this subsection we compare the `0 and `1-problems in the noiseless setup. This

would shed light on when we can expect the `1 relaxation to perform as well as

solving the `0-problem. More precisely, given an observation vector y ∈ RN and a

design matrix X ∈ RN×p, let us consider the two problems

min
β∈Rp:Xβ=y

‖β‖0 (84)

and

min
β∈Rp:Xβ=y

‖β‖1. (85)

The above linear program (LP) (85) is also known as the basis pursuit LP. Suppose

that the `0-based problem (84) has a unique optimal solution, say β∗ ∈ Rp. Our

interest is in understanding when β∗ is also the unique optimal solution of the `1-

based problem (85), in which case we say that the basis pursuit LP is equivalent to

`0-recovery. Remarkably, there exists a very simple necessary and sufficient condition

on the design matrix X for this equivalence to hold.

Definition 8.5 (Exact recovery property). An N × p design matrix X is said to

satisfy the exact recovery property for S ⊂ {1, . . . , p} (or S-ERP) if every β∗ ∈ Rp

supported on S uniquely minimizes ‖β‖1 subject to Xβ = Xβ∗.

For a given subset S ⊂ {1, 2, . . . , p}, let us define the following set:

C(S) := {β ∈ Rp : ‖βSc‖1 ≤ ‖βS‖1}.

The set C(S) is a cone but is not convex (Exercise (HW4): show this), containing all

vectors that are supported on S, and other vectors as well. Roughly, it corresponds

to the cone of vectors that have most of their mass allocated to S. Recall that we

have already seen the importance of the set C(S) in the recovery of β∗ and Xβ∗ using

the lasso estimator.

Given a matrix X ∈ RN×p, its nullspace is given by

null(X) = {β ∈ Rp : Xβ = 0}.
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Definition 8.6 (Restricted nullspace property). For a given subset S ⊂ {1, 2, . . . , p},
we say that the design matrix X ∈ RN×p satisfies the restricted nullspace property

over S, denoted by RN(S), if

null(X) ∩ C(S) = {0}.

In words, the RN(S) property holds when the only element of the cone C(S) that lies

within the nullspace of X is the all-zeroes vector. The following theorem highlights the

connection between the exact recovery property and the restricted nullspace property.

Theorem 8.7. The matrix X is S-ERP if and only if it is RN(S).

Since the subset S is not known in advance — indeed, it is usually what we are trying

to determine — it is natural to seek matrices that satisfy a uniform version of the

restricted nullspace property. For instance, we say that the uniform RN property of

order k holds if RN(S) holds for all subsets of {1, . . . , p} of size at most k. In this

case, we are guaranteed that the `1-relaxation succeeds for any vector supported on

any subset of size at most k.

Proof of Theorem 8.7. First, suppose that X satisfies the RN(S) property. Let

β∗ ∈ Rp be supported on S and let y = Xβ∗. Let β̂ ∈ Rp be any optimal solution

to the basis pursuit LP (85), and define the error vector ν̂ := β̂ − β∗. Our goal is to

show that ν̂ = 0, and in order to do so, it suffices to show that ν̂ ∈ null(X) ∩ C(S).

On the one hand, since β∗ and β̂ are optimal (and hence feasible) solutions to the `0

and `1-problems, respectively, we are guaranteed that Xβ∗ = y = Xβ̂, showing that

Xν̂ = 0. On the other hand, since β∗ is also feasible for the `1-based problem (85),

the optimality of β̂ implies that ‖β̂‖1 ≤ ‖β∗‖1 = ‖β∗S‖1. Writing β̂ = β∗+ ν̂, we have

‖β∗S‖1 ≥ ‖β̂‖1 = ‖β∗S + ν̂S‖1 + ‖ν̂Sc‖1 ≥ ‖β∗S‖1 − ‖ν̂S‖1 + ‖ν̂Sc‖1.

Rearranging terms, we find that ν̂ ∈ C(S). Since X satisfies the RN(S) condition by

assumption, we conclude that ν̂ = 0, as required.

Suppose now that X is S-ERP. We will use the method of contradiction here to

show that X is RN(S). Thus, assume that X is not RN(S). Then there exists

h 6= 0 ∈ null(X) such that

‖hS‖1 ≥ ‖hSc‖1. (86)

Set β∗ ∈ Rp such that β∗S = hS and β∗Sc = 0. Then β∗ is supported on S. Thus, by

the S-ERP β∗ uniquely minimizes ‖β‖1 subject to Xβ = Xβ∗ := y.
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Set β+ ∈ Rp such that β+
S = 0 and β+

Sc = −hSc . Then observe that Xβ∗ = Xβ+ as

Xβ∗ = XShS = −XSchSc = Xβ+

(recall that Xh = 0). Thus, β+ ∈ Rp is a feasible solution to the optimization

problem: min ‖β‖1 subject to Xβ = Xβ∗ = y. Thus, by the uniqueness of β∗,

‖β∗‖1 < ‖β+‖1 which is equivalent to ‖hS‖1 < ‖hSc‖1 — a contradiction to (86).

This completes the proof.

8.4.1 Sufficient conditions for restricted nullspace

Of course, in order for Theorem 8.7 to be useful in practice, we need to verify the RN

property. A line of work has developed various conditions for certifying the uniform

RN property. The simplest and historically earliest condition is based on the pairwise

incoherence

r(X) := max
j 6=k∈{1,...,p}

|〈xj,xk〉|
‖xj‖2‖xk‖2

.

For centered xj this is the maximal absolute pairwise correlation. When X is rescaled

to have unit-norm columns, an equivalent representation is given by r(X) = maxj 6=k |〈xj,xk〉|,
which illustrates that pairwise incoherence measures how close the Gram matrix X>X

is to the p-dimensional identity matrix in an element-wise sense.

The following result shows that having a low pairwise incoherence is sufficient to

guarantee exactness of the basis pursuit LP.

Proposition 8.8 (Pairwise incoherence implies RN). Suppose that for some integer

k ∈ {1, 2, . . . , p}, the pairwise incoherence satisfies the bound r(X) < 1
3k

. Then X

satisfies the uniform RN property of order k, and hence, the basis pursuit LP is exact

for all vectors with support at most k.

Proof. See [5][Section 10.4.3] for a proof of this claim.

An attractive feature of pairwise incoherence is that it is easily computed; in partic-

ular, in O(Np2) time. A disadvantage is that it provides very conservative bounds

that do not always capture the actual performance of `1-relaxation in practice.

Definition 8.9 (Restricted isometry property). For a tolerance δ ∈ (0, 1) and integer

k ∈ {1, 2, . . . , p}, we say that the restricted isometry property RIP(k, δ) holds if

‖X>X− Ik‖op ≤ δ
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for all subsets S ⊂ {1, 2, . . . , p} of cardinality k. We recall here that ‖ · ‖op denotes

the operator norm, or maximal singular value of a matrix.

Thus, we see that RIP(k, δ) holds if and only if for all subsets S of cardinality k, we

have
‖XSu‖2

2

‖u‖2
2

∈ [1− δ, 1 + δ], for all u 6= 0 ∈ Rk;

hence the terminology of restricted isometry. The following result, which we state

without any proof, shows that the RIP is a sufficient condition for the RN property

to hold.

Proposition 8.10 (RIP implies RNP). If RIP(2k, δ) holds with δ < 1/3, then the

uniform RN property of order k holds, and hence the `1-relaxation is exact for all

vectors supported on at most k elements.
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