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Multivariate two-sample testing

Data: {Xi}mi=1 iid P1 on Rd ; {Yj}nj=1 iid P2 on Rd , d ≥ 1

Test if the two samples came from the same distribution, i.e.,

H0 : P1 = P2 versus H1 : P1 6= P2

When d = 1: Student (1908), Wilcoxon (1945), Cramér von-Mises
(1928), Smirnov (1939), Wald and Wolfowitz (1940), Mann and
Whitney (1947), Anderson (1962), ...

When d > 1: Hotelling (1931), Weiss (1960), Bickel (1969),
Friedman and Rafsky (1979), Schilling (1986), Henze (1988), Liu
and Singh (1993), Székely (2003), Rosenbaum (2005), Gretton et
al. (2012), Chen and Friedman (2017), Bhattacharya (2019), ...

What is the distribution-free analogue of Hotelling’s test when d > 1?
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and Singh (1993), Székely (2003), Rosenbaum (2005), Gretton et
al. (2012), Chen and Friedman (2017), Bhattacharya (2019), ...

What is the distribution-free analogue of Hotelling’s test when d > 1?



When d = 1

Two-sample t-test

Two-sample t-test: Compares X̄m = 1
m

∑m
i=1 Xi & Ȳn = 1

n

∑n
j=1 Yj

Under H0, the t-statistic has approximately tm+n−2 distribution

Approximate (not valid for small sample sizes) level α test; requires
moment assumptions; not robust to outliers

Question: Can we find a distribution-free test that is robust to outliers
and heavy-tailed distributions and is also efficient?

Answer: Wilcoxon rank-sum test (WRS) [Wilcoxon (1945)]

WRS test is distribution-free: null distribution is universal — does not
depend on the distribution of the data (if it is a continuous dist.)
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Wilcoxon rank-sum test (WRS)

Pool {X1, . . . ,Xm,Y1, . . . ,Yn} to obtain ranks R̂m,n(Xi )’s and R̂m,n(Yj)’s:

WRS =
1

n

n∑
j=1

R̂m,n(Yj)−
1

m

m∑
i=1

R̂m,n(Xi )

WRS test is distribution-free and exact for all P1 = P2 continuous

Under H0,
(
R̂m,n(X1), . . . , R̂m,n(Xm), R̂m,n(Y1), . . . , R̂m,n(Yn)

)
distributed

uniformly over all (m+n)! permutations of

{
1

m + n
,

2

m + n
, . . . , 1

}

WRS: Exact test valid for all sample sizes

Robust to outliers; does not need moment assumptions

Based on univariate ranks — advent of classical nonparametrics
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Efficiency of the WRS test

Test if the two samples came from the same distribution, i.e.,

H0 : P1 = P2 versus H1 : P1 6= P2

Comparison of WRS test with t-test (under location shift alternatives)

WRS test has 0.95 Pitman efficiency w.r.t t-test when P1 is Gaussian

Non-trivial efficiency lower bound of 0.864 w.r.t t-test [Hodges and
Lehmann (1956)]; efficiency can be +∞ (for heavy-tailed dist.)

Non-trivial efficiency lower bound of 1 w.r.t t-test [Chernoff and
Savage (1958)] when the following revised statistic is used:

1

n

n∑
j=1

Φ−1(R̂m,n(Yj))− 1

m

m∑
i=1

Φ−1(R̂m,n(Xi ))

Generalize all these properties to multivariate data
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Question: How to construct efficient distribution-free multivariate
tests?

When d = 1 tests based on “ranks” are distribution-free

How to define multivariate ranks that lead to distribution-free tests?

Optimal transport!
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1 Optimal Transport: Monge’s Problem
Introduction
Multivariate Ranks via Optimal Transport

2 Multivariate Two-sample Goodness-of-fit Testing
Distribution-free Testing — Hotelling T 2 and Rank Hotelling
Lower bounds on Asymptotic (Pitman) Relative Efficiency

3 Other Applications of Distribution-free Inference
Testing for Mutual Independence
Testing for Symmetry
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Optimal transport: Monge’s problem

Gaspard Monge (1781): What is the cheapest way to transport a pile of
sand to cover a sinkhole?

Goal: inf
T :T (X )∼µ

Eν [c(X ,T (X ))] X ∼ ν

ν (“data” dist.) and µ (“reference” dist.)

c(x , y) ≥ 0: cost of transporting x to y (e.g., c(x , y) = ‖x − y‖2)

T transports ν to µ: T#ν = µ (i.e., T (X ) ∼ µ where X ∼ ν)
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Rank function as the optimal transport (OT) map: when d = 1

X ∼ ν (continuous dist.) on R, F ≡ Fν c.d.f. of ν

Rank: The population rank of x ∈ R is F (x) (a.k.a. the c.d.f. at x)

Property: F (X ) ∼ Uniform([0, 1]) ≡ µ; i.e., F transports ν to µ

If Eν [X 2] <∞, the c.d.f F is the optimal transport (OT) map as

F = arg min
T :T#ν=µ

Eν [(X − T (X ))2]

where we take
c(x , y) = (x − y)2
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Sample rank map: when d = 1

Data: X1, . . . ,Xn iid ν (cont. distribution) on R

Sample rank map: R̂n : {X1,X2, . . . ,Xn} −→ { 1
n ,

2
n , . . . ,

n
n}

x(1) x(2) x(3)

x(4)

x(5)

x(6)

x(7)

x(8)

x(9) x(10)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 10

Data points

Empirical ranks

Sample rank map R̂n is the OT map that transports

νn := 1
n

n∑
i=1

δXi to µn := 1
n

n∑
j=1

δ j
n
,

i.e., R̂n := arg min
T :T#νn=µn

1

n

n∑
i=1

|Xi − T (Xi )|2 = arg max
T :T#νn=µn

1

n

n∑
i=1

X(i)·T (X(i))
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X ∼ ν; ν is a probability measure (abs. cont.) in Rd (d ≥ 1)

Reference dist.: U ∼ µ on S ⊂ Rd (µ = Unif([0, 1]d), N(0, Id))

Find OT map T s.t. T (X )
d
= U ∼ µ (µ abs. cont.)

Population rank function [Hallin (2017), Chernozhukov et al. (2017)]

If Eν‖X‖2 <∞, rank function R : Rd → S is the OT map s.t.

R := arg min
T :T#ν=µ

Eν‖X − T (X )‖2

Properties of population rank function [Brenier (1991), McCann (1995)]

R(·) characterizes distribution: R1(x) = R2(x) ∀ x ∈ Rd iff P1 = P2

R(·) is invertible, i.e., there exists unique Q(·) s.t.

R ◦ Q(u) = u (µ-a.e.) and Q ◦ R(x) = x (ν-a.e.)

Both R(·) and Q(·) and gradients of convex functions
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If Eν‖X‖2 <∞, the population rank function R(·) is defined as

R := arg min
T :T#ν=µ

Eν‖X − T (X )‖2 (1)

Even when Eν‖X‖2 = +∞, R(·) can still be defined

Characterization of the population rank function [McCann (1995)]

Suppose X ∼ ν abs. cont. on Rd . Then ∃ ν-a.e. unique meas. mapping
R : Rd → S, transporting ν to µ (i.e., R#ν = µ), of the form

R(x) = ∇ϕ(x), for ν-a.e. x , (2)

where ϕ : Rd → R ∪ {+∞} is a convex function (cf. when d = 1).

Moreover, when Eν‖X‖2 <∞, R(·) as defined in (2) also satisfies (1).
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X1, . . . ,Xn
iid∼ ν on Rd (abs. cont.); µ ∼ Unif([0, 1]d)

Empirical rank map R̂n: {X1, . . . ,Xn} → {c1, . . . , cn} ⊂ [0, 1]d —
sequence of “uniform-like” points (or quasi-Monte Carlo sequence)

(1,1)(0,1)

(0,0) (1,0)

Data points

Empirical ranks

Sample multivariate rank map R̂n is defined as the OT map s.t.

R̂n := arg min
T :T#νn=µn

1

n

n∑
i=1

‖Xi − T (Xi )‖2

where T transports νn := 1
n

∑n
i=1 δXi to µn := 1

n

∑n
j=1 δcj

Assignment problem (can be reduced to a linear program — O(n3))
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Distribution-free property [Hallin (2017), Deb and S. (2019)]

Suppose that X1, . . . ,Xn iid on Rd with abs. cont. distribution. Then,

(R̂n(X1), . . . , R̂n(Xn))

is uniformly distributed over the n! permutations of {c1, . . . , cn}.

The first step to obtaining distribution-free tests [Hallin et al. (2021)]

Consistency [Deb and S. (2019), Deb, Bhattacharya and S. (2021)]

X1, . . . ,Xn iid ν (abs. cont.). If µn := 1
n

∑n
j=1 δcj

d→ µ (abs. cont.), then

1

n

n∑
i=1

‖R̂n(Xi )− R(Xi )‖2 p−→ 0

Regularity to the empirical multivariate rank/OT map
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Question: What is the rate of convergence of R̂n?

Recall: νn := 1
n

∑n
i=1 δXi , µn := 1

n

∑n
j=1 δcj

OT maps: R#ν = µ, R̂n#νn = µn

Assume
∫
‖x‖2 dν(x) <∞,

∫
‖y‖2 dµ(y) <∞

Rate of convergence [Deb, Ghosal and S. (2021)] Proof of this result

Suppose the population rank map R(·) is Lipschitz. Then, under
appropriate conditions on µn,

E

[
1

n

n∑
i=1

‖R̂n(Xi )− R(Xi )‖2

]
.


n−1/2 d = 2, 3,

n−1/2 log n d = 4,

n−2/d d > 4.

This is the optimal rate for d ≥ 4 [Hütter & Rigollet (2021)]

Connection to estimation of the OT map R (R#ν = µ)

References: Hütter & Rigollet (2021), Ghosal and S. (2019), Manole et

al. (2021), Pooladian and Niles-Weed (2022), Gunsilius (2022), ...
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Multivariate two-sample goodness-of-fit test

Testing for equality of two multivariate distributions

Data: {Xi}mi=1 iid P1 on Rd ; {Yj}nj=1 iid P2 on Rd , d ≥ 1

Test if the two samples came from the same distribution, i.e.,

H0 : P1 = P2 versus H1 : P1 6= P2

Hotelling T 2 statistic [Hotelling (1931)]: The multivariate
analogue of Student’s t-statistic, given by

T2
m,n :=

mn

m + n

(
X̄ − Ȳ

)>
S−1
m,n

(
X̄ − Ȳ

)
;

where Sm,n is pooled covariance matrix

Reject H0 iff T2
m,n > cα [asymp. cut-off cα: (1− α) quantile of χ2

d ]

Consistency: P(T2
m,n > cα)→ 1 when E[X1] 6= E[Y1]

Question: What is the distribution-free analogue of Hotelling’s T 2?
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Data: {Xi}mi=1 iid P1 (abs. cont.), {Yj}nj=1 iid P2 on Rd , d ≥ 1

Reference dist.: µ on S ⊂ Rd (abs. cont.; µ = Unif([0, 1]d) or N(0, Id))

Proposed test [Deb, Bhattacharya and S. (2021)]

Joint rank map: The sample ranks of the pooled observations:

R̂m,n : {X1, . . . ,Xm,Y1, . . . ,Yn} → {c1, . . . , cm+n} ⊂ S

Rank Hotelling: RT2
m,n := T2

m,n

(
{R̂m,n(Xi )}, {R̂m,n(Yj)}

)

This yields the Wilcoxon rank-sum test when applied to the t-test

General principle [Deb and S. (2019)]

Start with any “good” test & replace Xi ’s & Yj ’s with pooled OT ranks

Distribution-freeness: Under H0, the dist. of RT2
m,n is free of P1 ≡ P2

The only known efficient, computationally feasible, distribution-free
analogue of Hotelling’s T 2; cf. Puri & Sen (1971), Hallin et al. (2020), ...
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Rank Hotelling test

Rank Hotelling test: φm,n ≡ 1{RT2
m,n > κ

(m,n)
α } — distribution-free

κ
(m,n)
α depends on cj ’s, m, n and d

Asymptotic null distribution [Deb, Bhattacharya, and S. (2021)]

Under H0, if µn := 1
n

∑n
j=1 δcj

d→ µ, then,

RT2
m,n

d→ χ2
d as min{m, n} → ∞.

The choice of the cj ’s have no effect for large m, n

Consistency [Deb, Bhattacharya, and S. (2021)]

Under location shift alternatives (P1 6= P2), if (i) µn
d→ µ, and

(ii) m
m+n → λ ∈ (0, 1), then,

lim
m,n→∞

EH1 [φm,n] = 1.

Question: How does the efficiency of RT2
m,n compare with T2

m,n?
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Question: How to compare two consistent tests SN and TN?

Asymptotic relative (Pitman) efficiency (ARE) [Pitman (1948),
Serfling (1980), Lehmann & Romano (2005), van der Vaart (1998)]

X1, . . . ,Xm
iid∼ Pθ1 & Y1, . . . ,Yn

iid∼ Pθ2 ; N = m+n; m
N ≈ λ ∈ (0, 1)

{Pθ}θ∈Θ⊂Rp : “smooth” (satisfies DQM) parametric family

Test H0 : θ2 = θ1 vs. H1 : θ2 = θ1 + ∆; ∆→ 0

Fix α ∈ (0, 1) (level) and β ∈ (α, 1) (power)

Let N∆(T·) ≡ N∆ denote the minimum number of samples s.t:

EH0 [TN∆
] = α and EH1 [TN∆

] ≥ β

The asymptotic (Pitman) efficiency of SN w.r.t TN is given by

ARE (SN ,TN) := lim
∆→0

N∆(T·)

N∆(S·)

ARE (SN ,TN) can depend on α and β, but in some cases it doesn’t!
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Hotelling T 2: T2
m,n({Xi}, {Yj}) = mn

m+n

(
X̄ − Ȳ

)>
S−1
m,n

(
X̄ − Ȳ

)
Rank Hotelling: RT2

m,n = T2
m,n

(
{R̂m,n(Xi )}, {R̂m,n(Yj)}

)
X1, . . . ,Xm

iid∼ Pθ1 & Y1, . . . ,Yn
iid∼ Pθ2 ; N = m + n

{Pθ}θ∈Θ⊂Rp : “smooth” (satisfies DQM) parametric family

Consider H0 : θ2 = θ1 vs. H1 : θ2 = θ1 + hN−1/2; h 6= 0 ∈ Rp

ARE (RT2
m,n,T

2
m,n) can be derived under the above alternatives

Some observations

Expression of ARE (RT2
m,n,T

2
m,n) does not depend on α and β

Asymp. dist. of RT2
m,n can depend on choice of µ (reference dist.)

Can we lower bound ARE for sub-classes of multivariate dists., i.e.,

min
F

ARE (RT2
m,n,T

2
m,n) = ??
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X1, . . . ,Xm
iid∼ Pθ1 & Y1, . . . ,Yn

iid∼ Pθ2 ; N = m + n

Independent coordinates case (location shift family)

Find = {Pθ}θ∈Θ has density pθ(z1, . . . , zd) =
∏d

i=1 fi (zi − θi ), θ ∈ Rd

Theorem [Deb, Bhattacharya, and S. (2021)]

Suppose m
N → λ ∈ (0, 1). If µN := 1

N

∑N
j=1 δcj

d→ Unif([0, 1]d) ≡ µ, then
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Find

ARE (RT2
m,n,T

2
m,n) = 0.864.

If µN
d→ N(0, Id) ≡ µ, then

min
Find

ARE (RT2
m,n,T

2
m,n) = 1.

Generalizes Hodges & Lehmann (1956), Chernoff & Savage (1958)

ARE can be arbitrarily large (can tend to +∞) for heavy tailed dists.
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Elliptically symmetric distributions

Fell = {Pθ}θ∈Θ is class of elliptically symmetric distributions on Rd , i.e.,

pθ(x) ∝ (det(Σ))−
1
2 f
(
(x − θ)>Σ−1(x − θ)

)
, for all x ∈ Rd

Theorem [Deb, Bhattacharya, and S. (2021)]

Suppose: (i) µN
d→ N(0, Id) ≡ µ, (ii) m

N → λ ∈ (0, 1). Then,

min
Fell

ARE (RT2
m,n,T

2
m,n) = 1.

This generalizes the famous result of Chernoff and Savage (1958)

Lower bounds can also be obtained for other sub-classes of
multivariate distributions (e.g., the model for ICA)
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Testing for Mutual Independence

(X ,Y ) ∼ P on Rd1 × Rd2 ; d1, d2 ≥ 1

Data: n iid observations {(Xi ,Yi )}ni=1 from P

Test if X is independent of Y , i.e.,

H0 : X ⊥⊥ Y versus H1 : X 6⊥⊥ Y

When d1 = d2 = 1: Pearson (1904), Spearman (1904), Kendall
(1938), Hoeffding (1948), Blomqvist (1950), Blum et al. (1961),
Rosenblatt (1975), Feuerverger (1993), ...

When d1 > 1 or d2 > 1: Friedman and Rafsky (1979), Székely et
al. (2007), Gretton et al. (2008), Oja (2010), Heller et al. (2013),
Biswas et al. (2016), Berrett and Samworth (2019), ...
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(X ,Y ) ∼ P on Rd1 × Rd2 , X ∼ PX , Y ∼ PY , d1, d2 ≥ 1

Data: {(Xi ,Yi ) : 1 ≤ i ≤ n} iid P

Test: H0 : X ⊥⊥ Y vs. H1 : X 6⊥⊥ Y

Distance Covariance [Szekely et al. (2007, 2009), Feuerverger (1993)]

Characterizes independence: dCov(X ,Y ) = 0 iff X ⊥⊥ Y

Sample distance covariance: dCovn (V -statistic)

Distance covariance test: Reject H0 if

dCovn({(Xi ,Yi )}ni=1) > cα

Critical value cα depends on n, PX , PY ! (can use permutation test)

Question: What is the distribution-free analogue of distance covariance?
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Test: H0 : X ⊥⊥ Y vs. H1 : X 6⊥⊥ Y

Take µ1 = Uniform([0, 1]d1 ) and µ2 = Uniform([0, 1]d2 )

Rank distance covariance [Deb and S. (2019)]

OT rank of Xi : R̂X
n : {X1, . . . ,Xn} → {c(1)

1 , . . . , c
(1)
n } ⊂ [0, 1]d1

OT rank of Yi : R̂Y
n : {Y1, . . . ,Yn} → {c(2)

1 , . . . , c
(2)
n } ⊂ [0, 1]d2

Rank distance cov.: RdCovn = dCovn

({
(R̂X

n (Xi ), R̂
Y
n (Yi ))

}n

i=1

)
Distribution-freeness [Deb and S. (2019)]

X and Y abs. cont. Under H0, the dist. of RdCovn is free of PX and PY .

Leads to a test that is also: (i) consistent (against all fixed alternatives),
(ii) computationally feasible, and (iii) has non-trivial efficiency

Our general principle could have been used with any other procedure for
mutual independence testing, e.g., the HSIC statistic [Gretton et
al. (2005)] which uses ideas from the theory of RKHS, ...
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Testing for Symmetry

Data: {Xi}ni=1 iid X ∼ P (abs. cont.) on R

Test the hypothesis of symmetry, i.e.,

H0 : X
d
= −X versus H1 : not H0 (?)

Distribution-free testing for symmetry

Sign test [Arbuthnott (1710)]: “... the first use of significance tests
...” (first nonparametric test)

Wilcoxon signed-rank (WSR) test [Wilcoxon (1945)]: Created the
field of (classical) nonparametrics

Arises with paired (matched) data; when normality can be violated

Result [van der Vaart (1998)]: Under H0, the (i) signs are
iid Bernoulli( 1

2 ), and (ii) signs and signed-ranks are independent

Goal: Develop multivariate distribution-free testing procedures for (?)
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Testing Multivariate Symmetry

There are many notions of symmetry in Rd , for d ≥ 2:

Central symmetry: H0 : X
d
= −X

Sign symmetry: H0 : X
d
= DX , D = diag(±1, . . . ,±1)

Spherical symmetry: H0 : X
d
= QX , Q orthogonal matrix

Our framework

O(d): group of all orthogonal matrices on Rd×d

G: compact subgroup of O(d)

Test: H0 : X
d
= QX ∀Q ∈ G, versus H1 : not H0

Results [Huang and S. (2023+)]

Construct distribution-free analogues of signs and signed-ranks

Generalized Wilcoxon signed-rank test for G-symmetry

Derive consistency, efficiency lower bounds, etc.

Distribution-free confidence sets for the center of G-symmetry
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Figure: Confidence sets for center of O(d)-symmetry (spherical symmetry) as
the sample size n varies, obtained from (i) normal data (first row) and (ii) data
from multivariate t-distribution with 1 degree of freedom (second row).



Summary

Proposed a multivariate analogue of the Wilcoxon rank-sum test
Studied its distribution-freeness and efficiency properties

Proposed a general framework — multivariate distribution-free
testing procedures based on optimal transport; other examples may
include testing for symmetry, testing the equality of K -distributions,
independence testing of K -vectors, ...

The proposed tests are: (i) distribution-free and have good efficiency,
(ii) computationally feasible, (iii) more powerful for distributions
with heavy tails, and (iv) robust to outliers & contamination
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νn := 1
n

∑n
i=1 δXi , µn := 1

n

∑n
j=1 δcj

OT maps: R#ν = µ, R̂n#νn = µn

Suppose R = ∇ϕ, where ϕ : Rd → R ∪ {+∞} is convex

Legendre-Fenchel dual of ϕ: ϕ∗(y) := supx∈Rd [x>y − ϕ(x)]

Fact 1: R is 1
λ -Lipschitz iff ϕ∗ is λ-strongly convex

ϕ∗ is λ-strongly convex if, for all x , y ∈ Dom(ϕ∗),

ϕ∗(y) ≥ ϕ∗(x) +∇ϕ∗(x)>(y − x) +
λ

2
‖y − x‖2.

Fact 2: ∇ϕ∗(R(x)) = x a.e.

The 2-Wasserstein distance (squared) between ν and µ is defined as:

W 2
2 (ν, µ) := min

π∈Π(ν,µ)

∫
‖x − y‖2 dπ(x , y),

where Π(ν, µ) := {distributions on Rd × Rd with marginals ν & µ}
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λ

2
‖y − x‖2.

Fact 2: ∇ϕ∗(R(x)) = x a.e.

The 2-Wasserstein distance (squared) between ν and µ is defined as:

W 2
2 (ν, µ) := min

π∈Π(ν,µ)

∫
‖x − y‖2 dπ(x , y),

where Π(ν, µ) := {distributions on Rd × Rd with marginals ν & µ}



Estimation of OT map [Deb, Ghosal and S. (2021)] Rate of convergence

If the population rank map R(·) is 1
λ -Lipschitz, then

λ

∫
‖R̂n(x)−R(x)‖2 dνn(x) ≤W 2

2 (νn, µ̃n)−W 2
2 (νn, µn)+2

∫
g d(µn−µ̃n)

where µ̃n := 1
n

∑n
i=1 δR(Xi ) and g(y) := ϕ∗(y)− 1

2‖y‖
2.

Then, recalling νn := 1
n

∑n
i=1 δXi and µn := 1

n

∑n
j=1 δcj ,

D1 :=

∫
ϕ∗dµn −

∫
ϕ∗d µ̃n

=

∫
[ϕ∗(R̂n(x))− ϕ∗(R(x))]dνn(x) (as R̂n#νn = µn)

(a)

≥
∫ {
∇ϕ∗(R(x))>(R̂n(x)− R(x)) +

λ

2
‖R̂n(x)− R(x)‖2

}
dνn(x)

(b)
=

∫
x>(R̂n(x)− R(x))dνn(x)︸ ︷︷ ︸

D2

+
λ

2

∫
‖R̂n(x)− R(x)‖2dνn(x)

Fact 3: 2D2 = W 2
2 (νn, µ̃n)−W 2

2 (νn, µn) +
∫
‖y‖2 d(µn − µ̃n)(y)
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