Abstract
We present Rao-Blackwellized Tempered Sampling (RTS), a new method to compute partition functions of complex and multimodal distributions. The method exploits the multinomial probability law of the inverse temperatures in simulated tempering, and provides estimates of the partition function in terms of a simple quotient of Rao-Blackwellized marginal inverse temperature probability estimates, which are updated while sampling. The method has interesting connections with several alternative popular methods. We empirically find that RTS provides more accurate estimates than Annealed Importance Sampling when calculating partition functions of large Restricted Boltzmann Machines (RBM); moreover, the method is sufficiently accurate to track training and validation log-likelihoods during learning of RBMs, at minimal computational cost.

Simulated Tempering
To sample from a multimodal unnormalized distribution \(f(x) \), we introduce a normalized, easy-to-sample distribution \(p_i(x) \) and construct an interpolating family parametrized by an inverse temperature sequence \(\{0 = \beta_1 < \beta_2 < \ldots < \beta_K = 1\} \).

- The interpolating functions are \(p_i(x|\beta) = f_i(x)/Z_i \), where \(f_i(x) = f(x)^{\beta_i}p_i(x)^{1-\beta_i} \) and \(Z_i = \int f(x)^{\beta_i}p_i(x)^{1-\beta_i}dx \).
- The inverse temperatures become random variables, with \(p(\beta_i) = r_k \), and we define the joint distribution:
 \[
 p(x,\beta) = p(x|\beta_i)r_i = f_i(x)r_i/Z_i, \]
- \(Z_i \) is unknown (except \(Z_1 = 1 \)) – approximated with \(\hat{Z}_k \):
 \[
 q(\beta_i) \propto f_i(x)r_i/\hat{Z}_i. \]
- The marginal distribution over \(\beta_i \) is
 \[
 q(\beta_i) \propto r_i\hat{Z}_i/\hat{Z}_k. \]

Rao-Blackwellized Tempered Sampling (RTS)

Main idea: partition function obtained from the marginal distribution of \(\beta_k \):
\[
Z_k = \sum_{\beta_k} q(\beta_k) f(\beta_k) / r_k q(\beta_k), \quad k = 2, \ldots, K.
\]

- Estimates of \(q(\beta_k) \) from tempered samples \(\{x^{(i)}/\beta_k\} \):
 - Simple estimate: \(q_i = \frac{1}{N} \sum_{i=1}^N \delta_{x^{(i)}}(\beta_k) \)
 - Rao-Blackwellized estimate:
 \[
 \hat{Z}_k = \frac{\sum_{i=1}^N q_i(\beta_k) x^{(i)}}{\sum_{i=1}^N q_i(\beta_k)} \]

 Plugging in the estimates yields the consistent estimator:
 \[
 \hat{Z}_k = \frac{\sum_{i=1}^N q_i(\beta_k) x^{(i)}}{\sum_{i=1}^N q_i(\beta_k)} = \frac{\sum_{i=1}^N q_i(\beta_k) x^{(i)}}{\sum_{i=1}^N q_i(\beta_k)}
 \]

- Issue: Tempered sampling mixes poorly with inaccurate \(\hat{Z}_k \).
- Solution: Update the \(\hat{Z}_k \) with small numbers of samples until stable

Relationships to Other Tempered Approaches
- Define simplified notation: \(\Delta_i = \log f(x) - \log p_i(x) \)

Multistate Bennett Acceptance Ratio (MBAR):
- Based on the identity \((\alpha(x) \text{ is arbitrary})\)
 \[
 Z_{\alpha} = \frac{\mathbb{E}_{(\alpha|x)}[\alpha(x)f(x)]}{\mathbb{E}_{(\beta|x)}[\alpha(x)f(x)]}
 \]
- MBAR estimate is given by maximizing a log-likelihood:
 \[
 L[Z] = \frac{1}{N} \sum_{i=1}^N \exp(-\log Z_i + \beta_r \Delta_{i}), \quad r = 1, \ldots, R
 \]
- \(n_k \) is number of samples at \(\beta_r \) and \(N = \sum_{k=1}^K n_k \)
- Solved by Newton-Raphson (high computational overhead)
- Surprise: If \(\beta_r \) is replaced by its expectation \(q(\beta_r) \), MBAR and RTS are equivalent estimators

Thermodynamic Integration (TI):
- Based on numerical integration
- For continuous \(\beta \in [0,1] \):
 \[
 \frac{d}{d\beta} \log Z(\beta) = \int \frac{1}{Z(\beta)} \frac{d}{d\beta} f(x)dx = \mathbb{E}_{(\beta|x)}[\Delta_i],
 \]
- Discrete temperatures used in practice (discretization error)
- Our Rao-Blackwellization strategy can also be applied to TI:
 \[
 \frac{d}{d\beta} \log Z(\beta) \bigg|_{\beta = \beta_r} \approx \frac{1}{n} \sum_{i=1}^N q(\beta_r|x) \Delta_i,
 \]
- Surprise: In the continuous limit, Rao-Blackwellized TI and RTS are equivalent estimators
- RTS has no discretization error

Example: RBM Partition Function
Mean and Root Mean Squared Error of \(Z_k \) in an RBM with 500 hidden units. RTS is compared to Annealed Importance Sampling (AIS) and Reverse Annealed Importance Sampling (RAISE). Gibbs swipes are performed over 100 parallel chains.

Robustness to Number of Temperatures
Performance of various estimators as a function of the number of temperatures. RTS is comparatively robust to the number of temperatures

Tracking Partition Functions While Learning
Since RTS requires a relatively low number of samples and the parameters are slowly changing, we are able to track the value of training and validation-set likelihoods during RBM training at minimal additional cost.