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Abstract

In this article, we define new “Greeks” for financial derivatives: sensitivities to the running maximum
and the running maximum drawdown of an underlying asset. Some types of portfolios, such as the net
asset value of a hedge fund or performance fees are sensitive to these parameters. In order to illustrate
the concept of the new “Greeks”, we derive probabilistic representations of sensitivities for two classes of
financial contracts: forwards on the maximum drawdown and lookback options. These results allow us
to interpret the delta-hedge of the contracts in a novel way.

1 Introduction

Portfolio sensitivities to various market variables, defined as the derivatives of the portfolio value with respect
to these variables, play an important role in risk management. When a portfolio consists of options, the
sensitivities are usually denoted by Greek letters and called the “Greeks”. The most commonly used Greeks
are: delta, vega, theta, and rho – the sensitivities of an option value to the underlying asset price, the
volatility of the underlying asset, the time to maturity, and the interest rate, respectively. Another Greek
letter, gamma, represents the sensitivity of delta to the underlying asset price. The Greeks, especially delta,
gamma, and vega, can be used to hedge a position in an option against the moves of the corresponding
market variables.

In this article, we define new types of sensitivities. First, we assume that the value of a financial contract
depends not only on the price of an underlying asset, but also on at least one of the following variables: the
running maximum of the underlying asset, the running minimum, the running maximum drawdown, or the
running maximum drawup. Subsequently, the new sensitivities are defined as the derivatives of the contract
value with respect to these variables. We denote these derivatives by Greek letters in order to emphasize the
similarity with the other Greeks.

Some types of portfolios are sensitive to the changes of the maximum and the maximum drawdown. Namely
performance fees of the hedge fund managers are typically tied to resetting a new “High water mark”,
representing sensitivity to the maximum net asset value of the fund. Similarly, withdrawal of the investors
from a given fund is typically triggered by a maximum drawdown of the net asset value.

In our paper we study forwards on the maximum drawdown or the maximum drawup and lookback options
as examples of contracts, whose values depend on some of the previously mentioned variables. We derive the
sensitivities of these contracts and show that they have a useful probabilistic representation. In addition, we
interpret the deltas of the contracts in a novel way. The main results are presented in Theorems 3.1 and 4.1.

We assume throughout this article that there is a risk-neutral measure and the price of the underlying asset
follows a geometric Brownian motion with constant parameters under this measure. However, some results
about the sensitivities to the maximum and the maximum drawdown hold under weaker assumptions, which
are discussed in Remark 3.2 and 4.2.

A closed form solution to the lookback option pricing problem was derived by Goldman et al. (1979), under
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the assumption that the underlying asset follows a geometric Brownian motion. This result can be used
to obtain an analytical formula for the sensitivity of a lookback option, which we define in this article.
Hobson (1998) found lower and upper bounds for the price of a lookback option, which are implied by the
market values of plain-vanilla call options, and therefore are independent of a model for the underlying asset.
Equivalence between floating and fixed strike lookback option was studied in Eberlein and Papapantoleon
(2005).

A formula for the expected maximum drawdown of a Brownian motion with a drift, containing integrals of
series expansions, is presented in Magdon-Ismail et al. (2004). Pospisil and Vecer (2007) employed numerical
methods for partial differential equations to price the maximum drawdown. However, an analytical expression
of the expected maximum drawdown has not been derived yet. Therefore, we do not have closed form solutions
for the sensitivities of the maximum drawdown.

This article is organized as follows. In Section 2, we define the new Greeks. We calculate the Greeks for a
forward on the maximum drawdown in Section 3, and a lookback option in Section 4. Section 5 contains
concluding remarks.

2 Sensitivities to the Maximum and the Maximum Drawdown

We assume that an asset S, which we will call the underlying asset, is traded in a market. Furthermore,
let us assume that there exists a risk-neutral probability measure Q, under which process S is a geometric
Brownian motion:

dSt = rStdt + σStdWt, t ∈ [0, T ].(1)

W is a Brownian motion under Q, r is the risk-free interest rate, and T > 0 is a fixed time. Symbol Ft will
denote the σ-field generated by process S up to time t : Ft = σ (Su, u ≤ t) .

We define the running maximum (M) and the running minimum (M) of the underlying asset at time t as
the maximum and the minimum value of S for period [0,t]:

Mt = max
u∈[0,t]

Su,

M t = min
u∈[0,t]

Su.

The running maximum drawdown (MDD) at time t is defined as the maximum drop of process S from M
on [0, t], while the running maximum drawup (MDU) is defined as the maximum surge of S from M :

MDDt = max
u∈[0,t]

(Mu − Su) ,

MDUt = max
u∈[0,t]

(Su −Mu) .

Let us consider a contract with payoff VT at time T, where VT is a function of some of the following variables:
ST , MT , MT , MDDT , or MDUT . Since there is a risk-neutral measure Q, we can write the price of this
contract at time t as:

Vt = e−r(T−t)E [VT |Ft] ,

where E stands for the expected value under Q. Process S defined by equation (1) has the Markov property,
therefore Vt is a function of t and some of the variables: St, Mt, M t, MDDt, or MDUt. We will denote this
function as v and its derivatives with respect to these variables as vs, vm, vm, vmdd, and vmdu.
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We define sensitivities of the contract to the running maximum, the running minimum, the running maximum
drawdown, and the running maximum drawup as:

µ = vm, µ = vm,

ζ = vmdd, ζ = vmdu.

In the following sections, we calculate µ, µ, ζ, and ζ for forwards on the maximum drawdown, the maximum
drawup, and for lookback options.

3 Forward on the Maximum Drawdown

A forward on the maximum drawdown of S is a contract with payoff MDDT at time T. Its price at time t
can be written as:

(2) Vt = e−r(T−t)E [MDDT | Ft] .

The Markov property of process S allows us to express Vt as a function of St, Mt, and MDDt (see Shreve
(2004), pages 107 and 309):

(3) Vt = v(t, St,Mt,MDDt) = e−r(T−t)E [MDDT |St,Mt,MDDt] .

The sensitivities of the forward to the running maximum and the running maximum drawdown are the
corresponding derivatives of function v(t, s, m,mdd):

µt = µ(t, St,Mt,MDDt) = vm(t, St,Mt,MDDt),
ζt = ζ(t, St,Mt,MDDt) = vmdd(t, St,Mt,MDDt).

The delta-hedge of the forward is:

∆t = ∆(t, St,Mt,MDDt) = vs(t, St,Mt,MDDt).

Let us introduce a stopping time τMt , the first time after t when Su attains the running maximum Mt. If S
does not reach Mt on [t, T ], we put τMt = T. Thus,

τMt = T ∧ inf{u ≥ t;Su = Mt}.(4)

The maximum drawdown on interval [t, τMt ] is:

MDD[t,τMt ] = Mt − min
u∈[t,τMt ]

(Su).

We set MDD[t,t] to be equal to zero.

In Theorem 3.1, we present probabilistic representations of µt, ζt, and ∆t.

Theorem 3.1 Let v be the value function of a forward on the maximum drawdown, defined in (3), and let
t be the actual time, t ∈ [0, T ]. Then

(5) v(t, St,Mt,MDDt) ≥ e−r(T−t)MDDt,

ζt = e−r(T−t) Q [MDDT = MDDt|St,Mt,MDDt] ,(6)

µt = e−r(T−t) Q
[
MDDT = MDD[t,τMt ]

∣∣∣ St,Mt,MDDt

]
,(7)

∆t =
1
St

(
Vt − Mt · µt − MDDt · ζt

)
.(8)
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Proof:

Proof of inequality (5):

According to the definition of the maximum drawdown, MDDT ≥ MDDt. Thus,

v(t, St,Mt,MDDt) = e−r(T−t)E [MDDT |St,Mt,MDDt]
≥ e−r(T−t)MDDt.

Proof of equation (6):

When t = T, formula (6) is true because v(T, s,m, mdd) = mdd and therefore both sides of the formula are
one. Hence, we will assume that t < T throughout this proof. Let us introduce the following notation:
MDD[t,T ] = maxu∈[t,T ](Mu − Su) and

Emdd
t [ . ] = E [ . |St,Mt,MDDt = mdd] , Et [ . ] = E [ . |St,Mt] ,

Qmdd
t [ . ] = Q [ . |St,Mt,MDDt = mdd] , Qt [ . ] = Q [ . |St,Mt] .

Let FMDD[t,T ](z) and fMDD[t,T ](z) be the conditional distribution function and the conditional density func-
tion of MDD[t,T ]. Using the independence of MDD[t,T ] and MDDt given (St,Mt), the expected maximum
drawdown is:

v(t, St,Mt,mdd) = e−r(T−t)Emdd
t [MDDT ]

= e−r(T−t)Emdd
t

[
MDDT I{MDD[t,T ]>MDDt}

]
+e−r(T−t)Emdd

t

[
MDDT I{MDD[t,T ]≤MDDt}

]
= e−r(T−t)Et

[
MDD[t,T ]I{MDD[t,T ]>mdd}

]
+ e−r(T−t)mdd Qt

[
MDD[t,T ] ≤ mdd

]
= e−r(T−t)

∫ ∞

mdd

zfMDD[t,T ](z)dz + e−r(T−t)mdd FMDD[t,T ](mdd).

Calculating the derivative of the expected maximum drawdown with respect to mdd, we have:

vmdd(t, St,Mt,mdd) = −e−r(T−t)mdd fMDD[t,T ](mdd) + e−r(T−t)FMDD[t,T ](mdd)

+e−r(T−t)mdd fMDD[t,T ](mdd)

= e−r(T−t)FMDD[t,T ](mdd) = e−r(T−t)Qt

[
MDD[t,T ] ≤ mdd

]
= e−r(T−t)Q [MDDT = mdd|St,Mt,mdd] .

Thus,

ζt = e−r(T−t) Q [MDDT = MDDt|St,Mt,MDDt] .

Proof of equation (7):

When t = T, then both sides of formula (7) are zero because v(T, s,m, mdd) = mdd is independent of m and
MDD[t,τMt ] = MDD[T,T ] = 0.

Suppose t ∈ [0, T ) is a fixed time. Throughout this proof, we will assume that St < m, which implies that
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Figure 1: MDDT is attained on one of the three intervals: [0, t], [t, τm], or [τm, T ]. We use this fact in the proof of
formula (7). Notation: t is the actual time; m is the running maximum at t; τm is the first time in the future when
S attains m (or T if S does not reach m by the time of maturity).

τm > t. When St = m and consequently τm = t, both sides of (7) are zero and the equation is true (see
boundary conditions (9) in Proposition 3.3).

The maximum drawdown must be attained on one of the following time intervals: [0, t], [t, τm], or [τm, T ]
(see Figure 1). If MDDT is attained on:

• [0, t], then MDDT = MDDt.

• [t, τm], then MDDT = MDD[t,τm] = m−minu∈[t,τm] Su. Note that Mu = m for u ∈ [t, τm].

• [τm, T ], then MDDT = MDD[τm,T ] = maxu∈[τm,T ](Mu − Su). Note that Mτm
= m and Sτm

= m if
τm < T .

Let us introduce a new notation for this part of the proof:

Em
t [ . ] = E [ . |St,Mt = m,MDDt] , Et [ . ] = E [ . |St,MDDt] ,

Qm
t [ . ] = Q [ . |St,Mt = m,MDDt] , Qt [ . ] = Q [ . |St,MDDt] .

Writing the maximum drawdown as a function of m :

MDDT (m) = MDDt I{MDDT =MDDt} + MDD[t,τm] I{MDDT =MDD[t,τm]}

+ MDD[τm,T ] I{MDDT =MDD[τm,T ]}

= MDDt I{MDDt≥max(m−min[t,τm] Su,MDD[τm,T ])}

+
(

m− min
u∈[t,τm]

Su

)
I{m−min[t,τm] Su≥max(MDDt,MDD[τm,T ])}

+MDD[τm,T ] I{MDD[τm,T ]≥max(MDDt,m−min[t,τm] Su)}.

These equalities hold on set:

A = {ω ∈ Ω; MDDT is greater than two of the values :MDDt, m− min
u∈[t,τm]

Su, MDD[τm,T ]}.
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This set has probability one, Q(A) = 1, because random variables m−minu∈[t,τm] Su and MDD[τm,T ] have
continuous distributions on (0,m) and (0,∞), respectively. MDD[τm,T ] has an atom at 0, but this fact does
not affect Q(A). Since (Su)u∈[t,T ] is independent of Mt given St, we have

Em
t [MDDT ] = Et [MDDT (m)] .

We can see that MDDT (m) depends on m through three terms: m, minu∈[t,τm] Su, and MDD[τm,T ]. We
want to find a set B on which these functions of m are continuous. Let us define

B = {ω ∈ Ω; lim
h→0

τm+h = τm}

for a fixed m > 0. This set has probability one because

Q(B) = 1−Q [τm < T & ∃ε > 0;Mτm+ε = m] = 1.

The last equality follows from the fact that Mτm+ε is a random variable with a continuous distribution.
Terms minu∈[t,x] Su and MDD[x,T ] are continuous functions of x. Therefore, minu∈[t,τm] Su and MDD[τm,T ]

are continuous functions of m for ω ∈ B.

Let us discuss how MDDT (m) changes if we increase or decrease m. First, we assume that h > 0. There are
only three cases when MDDT (m + h)−MDDT (m) 6= 0.

(a) If MDDT (m + h) is attained on [t, τm+h] and MDDT (m) on [t, τm],

MDDT (m + h)−MDDT (m) = h.

We can write this event as:

C1 = {ω; m− min
[t,τm]

Su ≥ MDDt, m− min
[t,τm]

Su ≥ MDD[τm,T ]}.

(b) If MDDT (m + h) is attained on [t, τm+h] and MDDT (m) on [0, t], then:

Diff2 = MDDT (m + h)−MDDT (m) = m + h− min
[t,τm+h]

Su −MDDt.

This event can be expressed as:

C2 = {ω; m + h− min
[t,τm+h]

Su ≥ MDDt ≥ m− min
[t,τm]

Su,MDDt ≥ MDD[τm,T ]}.

It can be shown that |Diff2| ≤ h on C2.

(c) If MDDT (m + h) is attained on [t, τm+h] and MDDT (m) on [τm, T ],

Diff3 = MDDT (m + h)−MDDT (m) = m + h− min
[t,τm+h]

Su −MDD[τm,T ].

This event can be written as:

C3 = {ω; m + h− min
[t,τm+h]

Su ≥ MDD[τm,T ] ≥ m− min
[t,τm]

Su,MDD[τm,T ] ≥ MDDt}.

The following inequality holds on C3: |Diff3| ≤ h.
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Thus, the finite difference of MDDT (m) is:

1
h

(MDDT (m + h)−MDDT (m)) = IC1 +
1
h

Diff2 IC2 +
1
h

Diff3 IC3

Note that
∣∣ 1
hDiff2

∣∣ and
∣∣ 1
hDiff3

∣∣ are bounded by 1. Since m, minu∈[t,τm] Su, and MDD[τm,T ] are continuous
functions of m on B, IC2 and IC3 converge to zero on A ∩B as h goes to zero, where Q[A ∩B] = 1. Hence,

1
h

(MDDT (m + h)−MDDT (m)) a.s.−→ I{m−min[t,τm] Su≥MDDt, m−min[t,τm] Su≥MDD[τm,T ]} as h ↓ 0.

Moreover, this convergence is dominated. If h < 0, we can use a similar approach to prove that

1
h

(MDDT (m + h)−MDDT (m)) a.s.−→ I{m−min[t,τm] Su≥MDDt, m−min[t,τm] Su≥MDD[τm,T ]} as h ↑ 0.

Term 1
h (MDDT (m + h)−MDDT (m)) is dominated by a sum of three indicator functions, therefore we can

conclude that:

vm(t, St,m, MDDt) =
∂

∂m
Em

t [MDDT ]

= Et

[
lim
h→0

MDDT (m + h)−MDDT (m)
h

]
= Qt

[
m− min

[t,τm]
Su ≥ max(MDDt,MDD[τm,T ])

]
= Qm

t

[
MDDT = MDD[t,τm]

]
= e−r(T−t)Q

[
MDDT = MDD[t,τm]

∣∣ St,m, MDDt

]
.

Hence,

µt = e−r(T−t)Q
[
MDDT = MDD[t,τMt ]

∣∣∣ St,Mt,MDDt

]
.

Proof of equation (8):

The price of the forward has a linear scaling property:

v(t, λs, λm, λmdd) = λv(t, s, m,mdd), λ > 0.

Thus, there is a function u(t, x, y) defined on [0, T ]× [1,∞)× [0,∞), such that

v(t, s, m,mdd) = s · u
(
t, m

s , mdd
s

)
.

Derivatives of v can be expressed in terms of u :

vs = u− m
s ux − mdd

s uy,

vm = ux,

vmdd = uy.

As a result,

∆t = vs(t, St,Mt,MDDt)
= u− Mt

St
· ux − MDDt

St
· uy

= 1
St

(
Vt −Mt · vm −MDDt · vmdd

)
= 1

St

(
Vt −Mt · µt −MDDt · ζt

)
.

�
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Remark 3.2 Formulas (5), (6), and (7) in Theorem 3.1 hold under the following assumptions:

• S is a continuous Markov process under Q.

• e−rtVt is a Q-martingale.

• Random variables min[t,τm] Su, MDD[t,T ], and Mτm+ε have continuous distributions under Q, given
(St,Mt), for t ∈ [0, T ) and τm < T. Stopping time τm is defined as τm = T ∧ inf{u ≥ t;Su = m}, where
m > St and ε is a positive number.

Proof: Note that the conditions listed in the Remark were the only assumptions we employed to prove the
formulas. In particular, we did not use the fact that S is a geometric Brownian motion. On the other hand,
claim (8) does not hold under these weaker assumptions because it is based on the linear scaling property of
v. �

The value function of a forward on the maximum drawdown, v, satisfies a partial differential equation, which
is presented in Proposition 3.3.

Proposition 3.3 The value function of a forward on the maximum drawdown,

v(t, St,Mt,MDDt) = e−r(T−t)E [MDDT |St,Mt,MDDt] ,

is a solution to the following partial differential equation:

vt + rsvs + 1
2σ2s2vss = rv

on (0, T )× {(s,m, mdd); 0 < s < m & m− s < mdd < m},

with terminal and boundary conditions

v(T, s,m, mdd) = mdd,
v(t, s, m,mdd) = e−r(T−t)mdd if s = 0 or m = mdd,

vm(t, s, m,mdd) = 0 if m = s,
vmdd(t, s, m,mdd) = 0 if m− s = mdd,

(9)

where t ∈ [0, T ).

Proof: See Pospisil and Vecer (2007). �

Let us discuss the interpretation of Theorem 3.1. Inequality (5) implies that the price of MDDT at time t
is at least the discounted value of the actual maximum drawdown MDDt.

Formula (6) states that the derivative of the price function v with respect to the actual maximum drawdown
mdd is

vmdd(t, St,Mt,MDDt) = e−r(T−t)Q [MDDT = MDDt|St,Mt,MDDt] .

The term on the right-hand side can be interpreted as the discounted conditional probability that the max-
imum drawdown for the entire period [0, T ] has been attained before t. This probability is zero only if the
drawdown at time t, Mt − St, equals its running maximum MDDt, which is consistent with boundary con-
ditions (9): vmdd = 0 if m − s = mdd. Another interpretation of this result was introduced in the proof of
Theorem 3.1: er(T−t)vmdd(t, St,Mt,mdd), as a function of mdd, is the cumulative distribution function of
MDD[t,T ] given St and Mt.

According to claim (7),

vm(t, St,Mt,MDDt) = e−r(T−t)Q
[
MDDT = MDD[t,τMt ]

∣∣∣ St,Mt,MDDt

]
.

8



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
950

1000

1050

1100

1150

1200

1250

1300

Time

P
ric

e 
of

 th
e 

U
nd

er
ly

in
g 

A
ss

et

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

Time

P
ro

ba
bi

lit
y

Figure 2: The upper figure contains paths of S and M. The corresponding path of
Q [MDDT = MDDt |St, Mt, MDDt ] , which was calculated as er(T−t)vmdd(t, St, Mt, MDDt), is displayed in
the lower figure. Process S is a geometric Brownian motion with parameters: S0 = 1000, T = 1, r = 4%, and
σ = 20%.

Thus, derivative vm can be interpreted as the discounted conditional probability that the maximum drawdown
for the entire period [0, T ] will be attained between the actual time t and τMt

, the first time after t when S
reaches its running maximum Mt. The probability equals zero only if St = Mt, which means that the value of
the running maximum is being reset at time t and τMt

= t. This result is consistent with boundary conditions
(9): vm = 0 if s = m.

Figures 2-5 illustrate these results. In Figures 2 and 3, we have plotted sample paths of probabilities
Q [MDDT = MDDt|St,Mt,MDDt] and Q

[
MDDT = MDD[t,τMt ]

∣∣∣ St,Mt,MDDt

]
, respectively. Figures

4 and 5 display the probabilities as functions of variables [Mt − St]/St and [MDDt − (Mt − St)]/St while
keeping the time to maturity fixed at 1 year or 3 months. We can represent the probabilities in this way due
to the linear scaling propery of v, which we discussed in the proof of Theorem 3.1:

er(T−t)vmdd(t, s, m,mdd) = er(T−t)uy

(
t, m

s , mdd
s

)
,

er(T−t)vm(t, s, m,mdd) = er(T−t)ux

(
t, m

s , mdd
s

)
.

Using formula (8), we can write the price of a forward on the maximum drawdown as:

Vt = ∆t · St + Mt · µt + MDDt · ζt.

Hence, in order to hedge the forward, an agent must invest amount Bt = Mt ·µt + MDDt · ζt in the money
market. If Bt exceeds Vt, the agent should make up for the difference by shorting the underlying asset. On
the other hand, if Bt is less than Vt, the difference Vt −Bt should be used to purchase the underlying asset.
At time T, VT = MDDT , ζT = 1, and µT = 0, which implies VT = BT and ∆T = 0. Thus, at the time of
maturity the agent should not hold the underlying asset and all the capital should be invested in the money
market.

Important properties of the delta-hedge are summarized in Proposition 3.4.
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Figure 3: Sample paths of S and its running maximum M, plotted in the first graph, are the same as in Figure 2. The
path in the second graph represents probability Q[MDDT = MDD[t,τMt

] |St, Mt, MDDt ], which was calculated as

er(T−t)vm(t, St, Mt, MDDt). Process S is a geometric Brwonian motion with parameters: S0 = 1000, T = 1, r = 4%,
and σ = 20%.

Proposition 3.4 Process ∆t has the following properties:

(i) ∆(t, St,Mt,MDDt) > −1 for any t ∈ [0, T ].

(ii) If St = Mt, then ∆(t, St,Mt,MDDt) ≥ 0.

(iii) If S0 = M0 and MDD0 = 0, then ∆(0, S0,M0,MDD0) = V0
S0

.

(iv) ∆(T, ST ,MT ,MDDT ) = 0.

Proof:
(i)+(ii): We will use inequality Vt ≥ e−r(T−t)MDDt (formula (5)) and the fact that ζt ≤ e−r(T−t) to prove
the first and the second claim:

∆t = 1
St

(
Vt −Mt · µt −MDDt · ζt

)
≥ 1

St

(
Vt − e−r(T−t)MDDt −Mt · µt

)
≥ −e−r(T−t) Mt

St
Qt[MDDT = MDD[t,τMt ]].

By definition, Mt

St
≤ 1. If Mt = St, then Qt[MDDT = MDD[t,τMt ]] = 0. This proves inequalities (i) and (ii).

(iii): If M0 = S0 and MDD0 = 0, Q0[MDDT = MDD[0,τM0 ]] = 0, and Q0 [MDDT = MDD0] = 0, this
implies that µ0 = 0, ζ0 = 0, and thus ∆(t, St,Mt,MDDt) = V0

S0
.
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Figure 4: This figure contains plots of probability Q[MDDT = MDDt |St, Mt, MDDt ] for times to maturity 1 year
(the left plot) and 3 months (the right plot). The probability is a function of two variables: [Mt − St]/St (drop of
the asset value St from its running maximum Mt, scaled by St) and [MDDt − (Mt − St)]/St (distance of the current
drawdown Mt − St from the running maximum drawdown MDDt, scaled by St). Parameters of the model: r = 4%
and σ = 20%.

(iv): Since v(T, s,m, mdd) = mdd,

∆(T, ST ,MT ,MDDT ) = vs(T, ST ,MT ,MDDT ) = 0.

�

Similar results to those we have proved for the maximum drawdown are true for the maximum drawup. We
will present them in Theorem 3.5. The value function of a forward on the maximum drawup, v, is:

v(t, St,M t,MDUt) = Vt = e−r(T−t)E [MDUT |St,M t,MDUt] .

Sensitivities of the forward to variables m, mdu, and s are:

µ
t

= vm(t, St,M t,MDUt),
ζ

t
= vmdu(t, St,M t,MDUt),

∆t = vs(t, St,M t,MDUt).

We define τMt
as the first time after t when Su drops to the running minimum M t. If S does not reach M t

on [t, T ], we put τMt
= T. Thus,

τMt
= T ∧ inf{u ≥ t;Su = M t}.

The maximum drawup on interval [t, τMt
] is:

MDU[t,τMt
] = max

u∈[t,τMt
]
(Su)−M t.

We set MDU[t,t] to be equal to zero.
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Figure 5: The two plots displayed in this figure represent probability Q[MDDT = MDD[t,τMt
] |St, Mt, MDDt ]

for two times to maturity: 1 year (the left plot) and 3 months (the right plot). The probability is expressed as a
function of two variables: [Mt − St]/St (drop of the asset value St from its running maximum Mt, scaled by St) and
[MDDt − (Mt − St)]/St (distance of the current drawdown Mt − St from the running maximum drawdown MDDt,
scaled by St). Parameters of the model: r = 4% and σ = 20%.

Theorem 3.5 Let v be the value function of a forward on the maximum drawup and t the actual time,
t ∈ [0, T ]. Then

v(t, St,M t,MDUt) ≥ e−r(T−t)MDUt,

ζ
t

= e−r(T−t) Q [MDUT = MDUt|St,M t,MDUt] ,

µ
t

= − e−r(T−t) Q
[
MDUT = MDU[t,τMt

]

∣∣∣ St,M t,MDUt

]
,

∆t =
1
St

(
Vt − M t · µt

− MDUt · ζt

)
.

Proof: Is analogous to the proof of Theorem 3.1. �

4 Lookback Option

A floating strike lookback call option is a contract with payoff VT = ST − MT at the time of maturity.
The payoff associated with a floating strike lookback put option is VT = MT − ST . Note that a fixed strike
lookback put option with a payoff VT = MT −K differs from the floating strike option by ST −K, the value
of a forward contract which is not sensitive to the changes of the running maximum. Thus we can focus our
analysis on the floating strike lookback option without any loss of generality.
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The values of floating strike lookback call and put options are the conditional expectations of the payoffs
under the risk-neutral measure Q:

Call option : Vt = e−r(T−t)E [ST −MT | Ft] ,
Put option : Vt = e−r(T−t)E [MT − ST | Ft] .

As in the case of a forward on the maximum drawdown, we can use the Markov property of process S to
conclude that there exist functions v(t, s, m) and v(t, s, m), such that:

Call option : v(t, St,M t) = Vt = e−r(T−t)E [ST −MT |St,M t] ,
Put option : v(t, St,Mt) = Vt = e−r(T−t)E [MT − ST |St,Mt] .

We define the sensitivities of lookback call and put options to the running minimum and the running maxi-
mum, respectively, as the derivatives of functions v(t, s, m) and v(t, s, m) :

Call option : µ
t

= µ(t, St,M t) = vm(t, St,M t),
Put option : µt = µ(t, St,Mt) = vm(t, St,Mt).

In the following theorem, we present a probabilistic interpretation of the floating strike lookback put option
sensitivity to the running maximum. Symbol ∆t will denote the delta-hedge of the option:

∆t = ∆(t, St,Mt) = vs(t, St,Mt).

Theorem 4.1 Let v be the value function of a floating strike lookback put option and t the current time,
t ∈ [0, T ]. Then:

(10) µt = e−r(T−t)Q [MT = Mt |St,Mt ] , t ∈ [0, T ].

∆t =
1
St

(
Vt − Mt · µt

)
, t ∈ [0, T ].(11)

Proof:
Proof of equation (10): If t = T, both sides of (10) are 1 and the formula is true. Thus, we will assume that
t < T in the remaining part of the proof. We will use the following notation for conditional expected values
and risk-neutral probabilities:

Em
t [ . ] = E [ . |St,Mt = m ] , Et [ . ] = E [ . |St ] ,

Qm
t [ . ] = Q [ . |St,Mt = m ] , Qt [ . ] = Q [ . |St ] .

The value function can be represented as:

v(t, St,m) = e−r(T−t)Em
t [MT − ST ]

= e−r(T−t)Em
t [MT ]− e−r(T−t)Em

t [ST ]

= e−r(T−t)Em
t

[
MT I{Mt<maxu∈[t,T ] Su}

]
+e−r(T−t)Em

t

[
MT I{Mt>maxu∈[t,T ] Su}

]
− St

= e−r(T−t)Et

[(
max

u∈[t,T ]
Su

)
I{m≤maxu∈[t,T ] Su}

]
+e−r(T−t)mQt

[
max

u∈[t,T ]
Su ≤ m

]
− St

= e−r(T−t)

∫ ∞

m

xfmax S(x)dx + e−r(T−t)mFmax S(m)− St.

13



Fmax S(x) and fmax S(x) are the conditional cumulative distribution function and the conditional probabil-
ity density function of maxu∈[t,T ] Su, given St. Note that if we condition on St, random variables Mt and
maxu∈[t,T ] Su are independent. We will calculate the derivative of v with respect to m :

vm(t, St,m) = −e−r(T−t)mfmax S(m)
+e−r(T−t)Fmax S(m) + e−r(T−t)mfmax S(m)

= e−r(T−t)Fmax S(m)

= e−r(T−t)Qt

[
max

u∈[t,T ]
Su ≤ m

]
= e−r(T−t)Q

[
max

u∈[t,T ]
Su ≤ Mt

∣∣∣∣ St,Mt = m

]
= e−r(T−t)Q [MT = Mt |St,Mt = m ] .

Hence,

µt = vm(t, St,Mt) = e−r(T−t)Q [MT = Mt |St,Mt ] .

Proof of equation (11): Let us define a function u (see Shreve (2004), pages 312-313):

v(t, s, m) = s · u
(
t, m

s

)
.

The derivatives of v(t, s, m) in terms of u(t, z) are:

vs(t, s, m) = u
(
t, m

s

)
− m

s uz

(
t, m

s

)
,

vm(t, s, m) = uz

(
t, m

s

)
.

Now we calculate the delta-hedge:

∆t = vs(t, St,Mt)

= u
(
t, Mt

St

)
− Mt

St
· uz

(
t, Mt

St

)
= v(t,St,Mt)

St
− Mt

St
· vm (t, St,Mt)

= Vt

St
− Mt

St
· µt

= 1
St

(Vt − Mt · µt) .

�

Remark 4.2 Formula (10) in Theorem 4.1 holds under the following assumptions:

• S is a continuous Markov process under Q.

• e−rtVt is a Q-martingale.

• Random variable maxu∈[t,T ] Su has a continuous distribution under Q, given St, for t ∈ [0, T ).

Proof: The conditions listed in this Remark are the only assumptions we needed to prove formula (10). In
particular, we did not use the fact that S is a geometric Brownian motion. Claim (11) is based on the linear
scaling property of v, therefore it would not hold under these weaker assumptions. �
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Remark 4.3 The value function of a floating strike lookback put option admits a closed form solution (see
Goldman et al. (1979)):

v(t, s, m) = m · e−rτ ·N
(

a−ντ
σ
√

τ

)
− σ2

2r · e
−rτ · s · (m

s )
2r
σ2 ·N

(
−a−ντ

σ
√

τ

)
+σ2

2r · s−
(
1 + σ2

2r

)
· s ·N

(
a−(ν+σ2)τ

σ
√

τ

)
,

implying

∆ = vs(t, s, m) = σ2

2r −
(
1 + σ2

2r

)
·N

(
a−(ν+σ2)τ

σ
√

τ

)
+

(
1− σ2

2r

)
· e−rτ · (m

s )
2r
σ2 ·N

(
−a−ντ

σ
√

τ

)
,

µ = vm(t, s, m) = e−rτ ·N
(

a−ντ
σ
√

τ

)
− e−rτ ·

(
m
s

)� 2r
σ2−1

�
·N

(
−a−ντ

σ
√

τ

)
,

where a = log(m
s ), ν = r − σ2

2 , and τ = T − t. One can easily check that

v(t, s, m) = s · vs(t, s, m) + m · vm(t, s, m),

which is equivalent to formula (11) in Theorem 4.1.

Figure 6: The upper figure contains paths of S and M. The lower figure shows the corresponding path of
Q [MT = Mt |St, Mt ] , which was calculated as er(T−t)vm(t, St, Mt). Process S is a geometric Brownian motion with
parameters: S0 = 1000, T = 1, r = 4%, and σ = 20%.

The value function of a floating strike lookback put option, v, solves the partial differential equation which
is presented in the following proposition.

Proposition 4.4 The value function of a floating strike lookback put option,

v(t, St,Mt) = e−r(T−t)E [MT − ST |St,Mt ] , t ∈ [0, T ],
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Figure 7: This figure displays probability Q [MT = Mt |St, Mt ] as a function of St
Mt

, which we call the relative drop.
We calculated the probability for three different times to maturity: 3 months, 1 year, and 2 years. Process S is
geometric Brownian motion with parameters: r = 4% and σ = 20%.

satisfies the following partial differential equation:

vt + rsvs + 1
2σ2s2vss = rv

on (0, T )× {(s,m); 0 < s < m},

with terminal and boundary conditions:

v(T, s,m) = m− s,
v(t, s, m) = e−r(T−t)m if s = 0 or m = mdd,

vm(t, s, m) = 0 if m = s,
(12)

where t ∈ [0, T ].

Proof: See Shreve (2004), page 309. �

Let us discuss the results presented in Theorem 4.1. Equality (10),

vm(t, St,Mt) = e−r(T−t)Q [MT = Mt |St,Mt ] ,

implies that the derivative of v with respect to the running maximum can be interpreted as the discounted
conditional probability that the price process S will not attain the running maximum on interval [t, T ]. This
probability equals zero if St = Mt, which is consistent with boundary conditions (12): vm(t, s, m) = 0 if
s = m. In the proof of Theorem 4.1, we showed that er(T−t)vm(t, St,m), as a function of m, is also the
cumulative distribution function of max[t,T ] Su given St.

Figure 6 contains a path of S and the corresponding probability Q [MT = Mt |St,Mt ] . In Figure 7, we have
plotted this probability as a function of s

m for three times to maturity: 3 months, 1 year, and 2 years. Note
that in the proof of Theorem 4.1, we used the following equality:

vm(t, s, m) = uz

(
t, m

s

)
.
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Therefore, the probability depends on variables s and m only through ratio s
m .

According to Theorem 4.1, we can write the value of a lookback put option as follows:

Vt = ∆t · St + Mt · e−r(T−t)Q [MT = Mt |St,Mt ] .

This representation allows us to interpret the dynamic hedging strategy for the option in a novel way. At
each time t ∈ [0, T ], an agent should invest the discounted value of Mt, multiplied by the probability that the
maximum for the entire period [0, T ] will be Mt, in the money market. If this amount is lower than Vt, the
difference should be invested in the underlying asset. If the amount invested in the money market exceeds
Vt, the agent should short the underlying asset to make up for the difference.

Let us consider two cases: St = Mt, and St being small compared to Mt. If the running maximum is being
reset, that is when St = Mt, then Q [MT = Mt |St,Mt ] = 0 and the entire amount Vt should be invested in
the underlying asset in order to hedge the option. On the other hand, when St is small compared to Mt, then
Q [MT = Mt |St,Mt ] will be close to one and Vt close to e−r(T−t)Mt − St. Hence, ∆t will be approximately
negative one, which means that the agent should short one share of the stock and invest e−r(T−t)Mt in the
money market.

Sensitivities of a lookback call option, µ
t

and ∆t, have similar probabilistic representations as those of a
lookback put option. We present this result in Theorem 4.5.

Theorem 4.5 Let v be the value function of a floating strike lookback call option and t actual time, t ∈ [0, T ].
Then:

µ
t
= −e−r(T−t)Q [MT = M t |St,M t ] ,

∆t =
1
St

(
Vt − M t · µt

)
.

Proof: Is analogous to the proof of Theorem 4.1. �

Finally, let us point out that Theorems 4.1 and 4.5 can be viewed as a generalization of similar formulas
for plain vanilla options. If v(t, St,K) = e−r(T−t)E[(K − ST )+|St] is the value function of a European put
option, the Black-Scholes formula can be used to show that

vK(t, St,K) = e−r(T−t)Q[ST ≤ K|St],
v(t, St,K) = ∆t · St + e−r(T−t)K ·Q[ST ≤ K|St].

We can see that formulas (10) and (11) are analogies to these properties of the plain-vanilla option.

5 Conclusion

In this article, we introduced new “Greeks” - sensitivities of a portfolio value to the running maximum (µ),
the running minimum (µ), the running maximum drawdown (ζ), and the running maximum drawup (ζ).

We calculated these sensitivities for a forward on the maximum drawdown, the maximum drawup, and for
a lookback option, and derived probabilistic representations of the sensitivities and the delta-hedge. These
results can be used to monitor risk-neutral probabilities that an asset price will not reach its running maximum
by the time of maturity, or that the maximum drawdown for a period [0, T ] has been attained on [0, t], where
t < T.
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