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Abstract

In this paper, we show that the Mean Comparison Theorem which is valid for Brownian
motion, cannot be extended to Poisson process. A counter example in the Poisson case, for
which the Mean Comparison Theorem does not hold, is provided.

1 Introduction

Problems of comparing expected values of convex functions corresponding to processes which are
related to each other have many applications in stochastic optimal control and in option pricing.
For the case of Ito’s processes driven by standard Brownian motion, it is true that the process
with the largest dWt term in absolute value has the largest expectation if evaluated in any convex
function. More specifically, the following theorem of Hajek (1985) holds:

Theorem 1 (Hajek’s Mean Comparison Theorem) Let Xt be a continuous martingale with
representation Xt = X0 +

∫ t

0
σsdWs. Assume that for some function ρ on R, we have |σs| ≤ ρ(Xs)

and there exists a unique (in the sense of probability law) solution Yt to the stochastic differential
equation

(1.1) Yt = X0 +
∫ t

0

ρ(Ys)dWs.

Then for any convex function Φ and any t ≥ 0,

(1.2) EΦ(Xt) ≤ EΦ(Yt).

The proof of this theorem is based on representing processes Xt and Yt as time changed Brow-
nian motions, see Hajek (1985) for details.

Similar problems arise in comparing option prices, which are computed as expectations of con-
vex payoffs corresponding to the stock price process. It has been shown in the Brownian motion
setup that under quite general conditions, stocks with higher volatility (which corresponds to the
leading dWt term) have higher price and thus higher expected convex payoffs. This case has been
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studied for instance in El Karoui, Jeanblanc-Picque and Shreve (1998), or in Hobson (1998).

Recently there has been some effort to extend these results to models which include jumps,
Poisson process being the simplest example. Interestingly enough, the comparison results were
mostly affirmative for problems considered. Kijima (2002) proved that if the jump size is inde-
pendent to the driving Poisson process and the expectation of the jump size is fixed, option prices
are increasing as a function of convex expectation of the jump size for any given convex function.
Several results involving comparison of option prices under jump-diffusion models were obtained
by Henderson and Hobson (2003). Their goal was to compare prices of options computed under
different choice of risk neutral measures. They also showed that option prices are not monotoni-
cally increasing in the jump intensity if there is more than one possible jump size. Večeř (2000)
showed that the Mean comparison theorem holds for Passport options if the stock is driven by a
Poisson process and when the contract is terminated at the time of k-th jump.

The present paper shows that Hajek’s Mean comparison theorem cannot be extended to the
Poisson case in general. Although there are some positive results in this direction under various
conditions mentioned in the above listed literature, we found a counter example for a specific
choice of random processes and for exponential payoff function. In the following text, we assume
the driving process is Poisson with fixed intensity λ and we show that the dominance of jump size
does not imply dominance of the expected convex payoff.

2 Counterexample in the Poisson model

Theorem 2 (Negative Result of Mean Comparison Theorem for Poisson Process)
There is a convex function Φ and processes Xt and Yt with representation

(2.3) Xt = X0 +
∫ t

0

σsd(Ns − λs),

(2.4) Yt = X0 +
∫ t

0

ρ(Ys−)d(Ns − λs),

where ρ is a function on R with |σs| ≤ ρ(Xs−), so that

(2.5) EΦ(XT ) > EΦ(YT )

for some T > 0. In particular, for a given fixed time T > 0, the following functions represent one
possible choice. For constants ε > 0, α0 > 1

2ελT , and c large enough, let

(2.6) σt = α01{
0≤t≤T

2

} + c1{
Xt−≤−α0λ

T
2 −cλ(t−T

2 )
}1{

T
2 <t≤T

},

(2.7) ρ(Yt−) = (α0 + ε)1{
0≤t≤T

2

} + c1{
Yt−≤−α0λ

T
2 −cλ(t−T

2 )
}1{

T
2 <t≤T

},

and Φ(x) = ex.

Remark 3 The proof of this result is based on the following idea. On the set {NT/2 = 0}, we
have XT/2 > YT/2. We can amplify this effect at time T by choosing a large c in (2.6) and (2.7).
For a particular choice of convex function Φ(x) = ex, it is possible to make this effect dominant.
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Proof of the Theorem. We have clearly |σt| ≤ ρ(Xt−) for the above choice of parameters. We
can also obtain representation for both processes XT and YT in terms of the underlying Poisson
process. Let us denote Mt = Nt − λt, and let τ be the stopping time of the first jump of the
Poisson process. We have

dXt = α01{
0≤t≤T

2

}dMt + α1(t)1{
T
2 <t≤T

}dMt,

where α1(t) = c1{
Xt−≤−α0λ

T
2 −cλ(t−T

2 )
} = c1{

Xt−=−α0λ
T
2 −cλ(t−T

2 )
},

i.e. α1(t) = c ⇔ Nt− = 0;

XT = α0(NT
2
− λT

2 )− cλT
2 1{NT =0} + c1{NT/2=0}1{NT >1}(1− λ(τ − T

2 ));

dYt = (α0 + ε)1{
0≤t≤T

2

}dMt + β1(t)1{
T
2 <t≤T

}dMt,

where β1(t) = c1{
Yt−≤−α0λ

T
2 −cλ(t−T

2 )
},

i.e. β1(t) = c ⇔ Nt− = 0, when α0 > 1
2ελT ;

YT = (α0 + ε)(NT
2
− λT

2 )− cλT
2 1{NT =0} + c1{NT/2=0}1{NT >1}(1− λ(τ − T

2 )).

Take
Φ(x) = ex.

Since for 0 ≤ t ≤ T
2 ,

P (τ ≤ t |NT/2 > 0) = P (Nt > 0 |NT/2 > 0) =
P (Nt > 0, NT/2 > 0)

P (NT/2 > 0)

=
P (Nt > 0)

P (NT/2 > 0)
=

1− e−λt

1− e−λ
T
2

,

we can compute

E[Φ(XT )] = E
[
e
α0(NT/2−λT/2)−cλ(T/2)1{NT =0}+c1{NT/2=0}1{NT >1}(1−λ(τ−T/2))

]
= E

[
eα0(NT/2−λT/2)E

[
e
−cλ(T/2)1{NT =0}+c1{NT/2=0}1{NT >1}(1−λ(τ−T/2))

∣∣∣FT/2

]]
= E

[
eα0(NT/2−λT/2)1{NT/2=0}E

[
e
−cλ(T/2)1{NT−NT/2=0}+c1{NT >1}(1−λ(τ−T/2))

∣∣∣FT/2

]
+eα0(NT/2−λT/2)1{NT/2>0}

]
= E

eα0(NT/2−λT/2)1{NT/2=0}

e−cλT/2e−λT/2 + (1− e−
λT
2 )

∫ T
2

0

ec(1−λt) · λe−λt

1− e−λT/2
dt


+ E

[
eα0(NT/2−λT/2)

]
− E

[
eα0(NT/2−λT/2)1{NT/2=0}

]
= E

[
eα0(NT/2−λT/2)1{NT/2=0}

(
e−(c+1)λT/2 + ec

c+1

(
1− e−(c+1)λT/2

))]
+ E

[
eα0(NT/2−λT/2)

]
− E

[
eα0(NT/2−λT/2)1{NT/2=0}

]
= e−(α0+1)λT/2

(
ec

c+1 − 1
) (

1− e−(c+1)λT/2
)

+ eλ(T/2)(eα0−α0−1).

For large choice of c, the above expectation will become decreasing as a function of α0. Therefore
we will have EΦ(XT ) > EΦ(YT ). �
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