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Abstract: We find optimal trading strategies for an insider who is trading in two convergent
stocks and is bound by margin constraints.

1 Introduction

The purpose of this paper is to find optimal strategies for trading in the stocks of two companies
(or the currencies of two countries) which will merge in the future (or join a monetary union in
the case of currencies). When the merger happens at time T , we assume that the ratio of the two
stock prices will be equal to some pre-specified constant C > 0:

S1
T

S2
T

= C. (1)

The constant C is the ratio in which the two companies exchange their old stocks for the newly
created merged company. We assume that this information is available to the insider, but not to
the rest of the market. There are many examples of convergent markets when there are two or more
processes (stock prices, exchange rates or interest rates) for which one can have some information
about their relative future evolution in the above form.

If otherwise unrestricted, the insider may achieve unbounded wealth in finite time if he or
she has enough additional information in comparison to the rest of the market. This is clearly
something that we wish to rule out. One possible recent approach presented in Hu and Øksendal
[HO] is to penalize trading strategies which are not smooth. In our paper, we follow the approach
of Liu and Longstaff [LL], and put constraints on the margin account positions. We assume that
the only additional information available to the insider is that the merger will happen at time T
as described in equation (1). We use a model where the two stocks are driven by two possibly
correlated Brownian motions and we consider strategies that maximize expected terminal wealth
or expected logarithm of terminal wealth. The strategies are restricted by margin constraints
that bound the short positions in terms of the current wealth. Interestingly enough, the optimal
strategy is often different from simply locking the arbitrage opportunity. See Theorems 2.1, 2.3
and 2.4.

Insider trading has previously been studied from many different points of view. Generally
speaking, the insider is assumed to have a larger information set (filtration) H = {Ht}0≤t≤T than
the information G = {Gt}0≤t≤T available to the rest of the market. Karatzas and Pikovski [KP]
studied a problem of optimal investment for strategies available to the insider (Ht-adapted) for
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a logarithmic choice of utility function. They use the result from the enlargement of filtration of
Jeulin and Yor [JY]. Subsequent work includes papers of Leon, Navarro and Nualart [LNN], or
Imkeller [I]. Recently, a general stochastic approach to this problem is presented in Biagini and
Øksendal [BO].

While many of the papers just mentioned work in a quite general setup, they focus on markets
with a single risky instrument. Our setup, on the other hand, naturally takes into account the
common geometric Brownian motion assumption on the two price processes together with the
merger information encapsulated in (1). We also obtain explicit expressions for the optimal trading
strategies.

As we show, the merger is equivalent to the conditioning on the final position of the linear
combination of the two Brownian motions governing the stock price processes. This is very similar
to the Brownian bridge process, except that the process is now two-dimensional. We refer to it
as a planar Brownian bridge process and we express it as the solution to an SDE driven by two
independent Brownian motions. This leads to an SDE for the two stock prices, and thus to the
dynamics of wealth, from which we find the optimal strategies. An independent (and different)
application of two (conditioned) Brownian motions to insider trading was studied by Föllmer, Wu
and Yor [FWY].

2 Results

In this section we give the precise setup for our analysis and present the main results of the paper
giving optimal strategies for trading in convergent markets. The proofs will be given in Section 3.

2.1 Setup and main results

Consider an investor trading in two stocks of companies that are about to merge, as well as in a
bank account. The stock prices evolve according to geometric Brownian motion

dS1
t

S1
t

= µ1 dt + σ1 dW 1
t

dS2
t

S2
t

= µ2 dt + σ2 dW 2
t

where W 1
t and W 2

t are two correlated Brownian motions with dW 1
t · dW 2

t = ρ dt, −1 < ρ < 1, and
where we condition on the merger event

S1
T = C · S2

T (2)

We assume that the interest rate is zero, something that can be achieved by appropriate discount-
ing. The initial wealth Y0 of the investor is fixed and the wealth Y π

t then follows

dY π
t

Y π
t

= π1
t

dS1
t

S1
t

+ π2
t

dS2
t

S2
t

, (3)

where πi
t is the fraction of wealth invested in stock i. Thus 1 − π1

t − π2
t is the fraction of wealth

held in the money market account. See [KS2].
The objective of the investor is to maximize his expected utility of wealth subject to some

trading constraints.
We first consider the case where no borrowing or short selling is allowed. In other words,

π1
t , π2

t ≥ 0 and π1
t + π2

t ≤ 1. The total wealth Yt then automatically remains non-negative. Let
us first assume that the investor wants to maximize the expected wealth, i.e. using he/she has a
linear utility function.
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Theorem 2.1 The strategy πt maximizing E[Y π
T ] using no borrowing or short-selling always sat-

isfies πt ∈ {(0, 0), (1, 0), (0, 1)} and only depends on Xt := 1
T−t log S1

t

CS2
t
. More precisely, define the

planar process Zt := (Z1
t , Z2

t ) := (−A1Xt + B1, A2Xt + B2), where

A1 =
σ1(σ1 − ρσ2)

σ2
1 − 2ρσ1σ2 + σ2

2

and A2 =
σ2(σ2 − ρσ1)

σ2
1 − 2ρσ1σ2 + σ2

2

(4)

B1 = µ1A2 + (µ2 + 1
2 (σ2

1 − σ2
2))A1 and B2 = µ2A1 + (µ1 + 1

2 (σ2
2 − σ2

1))A2. (5)

Then

πt =


(0, 0) if Z1

t ≤ 0 and Z2
t ≤ 0

(1, 0) if Z1
t ≥ 0 and Z2

t ≤ Z1
t

(0, 1) if Z2
t ≥ 0 and Z1

t ≤ Z2
t

(6)

Remark 2.2 The optimal strategy is depicted in Figure 2. The apparent inconsistency in the
definition (6) of the optimal strategy is to be interpreted as follows: in the (probability zero) cases
when the definition above is inconsistent, then the optimal strategy is not unique. For instance, if
Zt = (1, 1), then πt = (1, 0) and πt = (0, 1) are both optimal strategies.

Theorem 2.1 can be generalized to trading constraints of the form

(total short positions) ≤ λ (total wealth), (7)

where λ ≥ 0 is a fixed number. This is a margin constraint which can be written as πt ∈ Ωλ where
Ωλ is the convex set illustrated in Figure 1. The earlier constraint corresponds to λ = 0.
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Figure 1: The margin constraint restricts the strategy (π1
t , π2

t ) to be in the convex set Ωλ bounded
by the dotted lines.

Theorem 2.3 The strategy πt maximizing E[Y π
T ] subject to the margin constraint (7) only depends

on Xt := 1
T−t log S1

t

CS2
t

and satisfies πt ∈ {(−λ, 0), (0,−λ), (1+λ,−λ), (−λ, 1+λ), (1+λ, 0), (0,−λ)}.
More precisely, if Zt = (Z1

t , Z2
t ) is as in Theorem 2.1 then πt is given by Figure 2

The precise behavior of the optimal strategies in Theorems 2.1 and 2.3 as functions of Xt (or St)
depend on the constants Ai and Bi. Rather than going through all possibilities, we illustrate one
particular scenario in Figure 3.

Finally we turn to the case of a logarithmic utility function.
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Figure 2: The strategies maximizing expected wealth, illustrating Theorems 2.1 (left) and 2.3
(right). The vector Zt is given in Theorem 2.1 and depends only on 1

T−t log S1
t

CS2
t
. For instance,

if Zt belongs to the second quadrant, then πt = (−λ, 1 + λ) in Theorem 2.3 and πt = (0, 1) in
Theorem 2.1 (which corresponds to λ = 0). In other words, the optimal strategy is to go short a
fraction λ of the current wealth in the first stock, go long a fraction 1 + λ of the current wealth in
the second stock and put no money in the bank account.

Theorem 2.4 There is a unique strategy π∗t maximizing E[log Y π
T ] subject to the margin con-

straint (7). The strategy π∗t only depends on Xt := 1
T−t log S1

t

CS2
t
. Moreover, π∗t is a continuous and

piecewise affine function of Xt.

The exact form of the optimal strategy πt in Theorem 2.4 as a function of Xt (or of St) depends
on the constants Ai and Bi. We illustrate one particular case in Figure 4

2.2 Special case: one convergent stock

Now consider trading in a single stock with dynamics dSt = St(µdt + σ dWt), conditioned on
ST = C. The trading strategy is πt, i.e. the fraction of the wealth put into the stock. We may view
this as a special case of the above, by putting S1

t = St, π1
t = πt, σ2 = µ2 = π2

t = 0 and S2
t ≡ 1.

The margin condition (7) becomes
−λ ≤ πt ≤ 1 + λ. (8)

Let us first consider linear utility.

Corollary 2.5 The strategy trading in one convergent stock and maximizing E[Y π
T ] subject to the

margin condition (8) is given by

πt =

{
−λ if St ≥ C exp( 1

2σ2(T − t))
1 + λ if St ≤ C exp( 1

2σ2(T − t))

In the case of logarithmic utility, the result is the following.

Corollary 2.6 The strategy trading in one convergent stock and maximizing E[log Y π
T ] subject to

the margin constraint (8) is given by

πt =


−λ if Xt ≥ σ2( 1

2 + λ)
1
2 −

1
σ2 Xt if − σ2( 1

2 + λ) ≤ Xt ≤ σ2( 1
2 + λ)

1 + λ if Xt ≤ −σ2( 1
2 + λ)
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Figure 3: The strategies in Theorems 2.1 and 2.3 are shown as functions of St, for given parameters.
The dotted lines represent S1

t = CS2
t , to which all lines converge as t → T . Notice that it is possible

that S1
t > CS2

t and that the optimal strategy is to go long S1 and hold no S2, even though the
ratio S1

t /S2
t is bound to decrease. We used σ1 = 0.3, σ2 = 0.3, ρ = 0.2, µ1 = 0.3, µ2 = 0.2, C = 1

and T − t = 0.5 to get these pictures (qualitatively).

where Xt = 1
T−t log St

C .

Remark 2.7 As in Remark 2.2 the optimal strategies in Corollaries 2.5 and 2.6 are somewhat
surprising. In particular it can happen that the optimal strategy consists of holding the stock even
while knowing that the stock price eventually will drop.

3 Proofs

We now turn to the proofs of the main results. The idea is that the conditioning (1) leads to a
new SDE for the two stock price processes.

3.1 The one-dimensional Brownian bridge

Conditioning a Brownian motion (Xt)0≤t≤T on its terminal value XT leads to a Brownian
bridge [KS1]: if the starting value is X0 = a and the end value is XT = b, then

dXt =
b−Xt

T − t
dt + dWt, X0 = a. (9)

3.2 The planar Brownian bridge

We now derive the dynamics of a planar Brownian bridge, i.e. the two-dimensional version of (9).

Proposition 3.1 Suppose that W 1
t ,W 2

t are two Brownian motions starting at W 1
0 = W 2

0 = 0,
with instantaneous correlation dW 1

t · dW 2
t = ρ dt, and conditioned on

a1W
1
T + a2W

2
T = b, (10)
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Figure 4: The strategy maximizing expected logarithm of wealth with the margin constraint (7).
We used constants µ1 = 0.1, µ2 = 0.15, σ1 = 0.2, σ2 = 0.3, ρ = 0.1, C = 1, t−T = 0.5, λ = 0.5. The
optimal constrained strategy (Theorem 2.4) lies on the three upper-right line segments and travels
from right (down) to left (up) as Xt increases. For Xt ≤ −0.2359, −0.1734 ≤ Xt ≤ −0.0751,
0.1001 ≤ Xt ≤ 0.3412 and Xt ≥ 0.4098, πt is constant: πt = (1 + λ,−λ), πt = (1 + λ, 0),
πt = (0, 1 + λ) and πt = (−λ, 1 + λ), respectively. For all other values of Xt, πt is a nonconstant
affine function of Xt.

where ai and b are constants. Than the dynamics of W 1
t ,W 2

t can be written as

dW 1
t = (a1 + ρa2)

b−a1W 1
t −a2W 2

t

(T−t)(a2
1+2ρa1a2+a2

2)
dt + a1+ρa2√

a2
1+2ρa1a2+a2

2

dξ1
t −

a2

√
1−ρ2√

a2
1+2ρa1a2+a2

2

dξ2
t (11)

dW 2
t = (a2 + ρa1)

b−a1W 1
t −a2W 2

t

(T−t)(a2
1+2ρa1a2+a2

2)
dt + a2+ρa1√

a2
1+2ρa1a2+a2

2

dξ1
t + a1

√
1−ρ2√

a2
1+2ρa1a2+a2

2

dξ2
t (12)

where ξ1
t and ξ2

t are two independent standard Brownian motions.

Proof Let us introduce two new processes:

U1
t = a1W

1
t + a2W

2
t ,

U2
t = −(a2 + ρa1)W 1

t + (a1 + ρa2)W 2
t .

It is easy to show that U1
t and U2

t are independent. Now U1
t /

√
a2
1 + 2ρa1a2 + a2

2 is the condi-
tioning of a Brownian motion on its terminal value and is hence a Brownian bridge. Further,
U2

t /
√

(1− ρ2)(a2
1 + 2ρa1a2 + a2

2) is a Brownian motion. Thus we can write dynamics of U1
t and

U2
t in the form

dU1
t =

b− U1
t

T − t
dt +

√
a2
1 + 2ρa1a2 + a2

2 dξ1
t

dU2
t =

√
1− ρ2

√
a2
1 + 2ρa1a2 + a2

2 dξ2
t

where B1
t , B2

t are independent standard Brownian motions. This leads to

d(a1W
1
t + a2W

2
t ) = b−a1W 1

t −a2W 2
t

T−t dt +
√

a2
1 + 2ρa1a2 + a2

2 dξ1
t

d(−(a2 + ρa1)W 1
t + (a1 + ρa2)W 2

t ) =
√

1− ρ2

√
a2
1 + 2ρa1a2 + a2

2 dξ2
t .

Now we can solve for dW 1
t and dW 2

t to obtain (11) and (12).
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3.3 Stock Dynamics

Using the planar Brownian bridge we now derive the dynamics of two merging stocks.

Proposition 3.2 Assume that the dynamics of two stock prices is given by

dS1
t

S1
t

= µ1 dt + σ1 dW 1
t (13)

dS2
t

S2
t

= µ2 dt + σ2 dW 2
t (14)

where W 1
t and W 2

t are two correlated Brownian motions with dW 1
t · dW 2

t = ρ dt, and where we
condition on the event

S1
T = C · S2

T

Then the stock price dynamics can be expressed as

dS1
t

S1
t

= (−A1Xt + B1) dt + C1 dB1
t + D dξ2

t (15)

dS1
t

S1
t

= (A2Xt + B2) dt− C2 dB1
t + D dξ2

t (16)

where ξ1
t and ξ2

t are two independent standard Brownian motions, where Xt, A1, A2, B1, B2 are
as in Theorem 2.1 and where

C1 =
σ1(σ1 − ρσ2)√

σ2
1 − 2ρσ1σ2 + σ2

2

, C2 =
σ2(σ2 − ρσ1)√

σ2
1 − 2ρσ1σ2 + σ2

2

and D =
σ1σ2

√
1− ρ2√

σ2
1 − 2ρσ1σ2 + σ2

2

Proof. For geometric Brownian motion we have

Si
t = Si

0 exp((µi − 1
2σ2

i )t + σiW
i
t ) i = 1, 2. (17)

Therefore the condition S1
T /S2

T = C translates as

σ1W
1
T − σ2W

2
T =

(
µ2 − µ1 − 1

2 (σ2
2 − σ2

1)
)
T + log

(
CS2

0
S1

0

)
.

This identity defines a planar Brownian bridge with

a1 = σ1, a2 = −σ2 and b =
(
µ2 − µ1 − 1

2 (σ2
2 − σ2

1)
)
T + log

(
CS2

0
S1

0

)
.

The dynamics of the planar Brownian bridge was given in Proposition 3.1 in terms of two indepen-
dent standard Brownian motions ξ1

t and ξ2
t . Plugging expressions (11) and (12) into (13) and (14),

we conclude the proof.

Corollary 3.3 Assume that a single stock follows the dynamics
dSt

St
= µdt + σ dWt, (18)

conditioned on ST = C. Then

dSt

St
=

(
1

T − t
log

ST

St
+

1
2
σ2

)
dt + σ dξt, (19)

where ξt is a standard Brownian motion.

Proof. Special case of Proposition 3.2 with St = S1
t , µ = µ1, σ = σ1, µ2 = σ2 = 0, S2

t ≡ 1.

Remark 3.4 Notice that the actual drift µ has no relevance to the dynamics of the stock price if
we condition on its terminal price.
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3.4 Optimal strategies

We are now ready to prove the main results.
Proof of Theorem 2.1. By (15) and (16) we can write

E[Y π
T ] = Y0 + E

[∫ T

0

(
π1

t
dS1

t

S1
t

+ π2
t

dS2
t

S2
t

)
Y π

t

]

= Y0 + E

[∫ T

0

(
π1

t (−A1Xt + B1) + π2
t (A2Xt + B2)

)
Y π

t dt

]

= Y0 + E

[∫ T

0

〈πt, Zt〉Y π
t dt

]

since the dξ-integrals have expected value zero. Here 〈· , ·〉 denotes the standard inner product
in R2. Recall that Y π

t ≥ 0. Thus the two integrals are maximized if the quantity 〈πt, Zt〉 is
maximized for each t, subject to the constraint that πt is an admissible strategy. It is now easy to
check that this leads to the formula in Theorem 2.1, depicted in Figure 2. The proof is complete.

Proof of Theorem 2.3. The proof is exactly the same as above: we are still maximizing the quantity
〈πt, Zt〉 for each t, but the strategy πt is allowed to be in the larger set Ωλ depicted in Figure 1.

Proof of Theorem 2.4. We use Itô’s formula and Proposition 3.2 to compute

d log Y π
t =

dY π
t

Y π
t

− 1
2

(
dY π

t

Y π
t

)2

=
(

π1
t

dS1
t

S1
t

+ π2
t

dS2
t

S2
t

)
− 1

2

(
π1

t

dS1
t

S1
t

+ π2
t

dS2
t

S2
t

)2

= Qt(π1
t , π2

t ) dt + ? dB1
t + ? dB2

t ,

where ? are coefficients that are irrelevant for us, and where Qt is a quadratic function given by

Qt(π) = π1(−A1Xt + B1) + π2(A2Xt + B2)−
1
2
(C1π

1 − C2π
2)2 − 1

2
D2(π1 + π2)2.

Notice that Qt depends only on Xt (and on constants). Also notice that the pure quadratic part
of Qt is strictly negative definite, since if π1 +π2 = 0 and C1π

1−C2π
2 = 0, then (C1 +C2)π1 = 0.

But C1 + C2 =
√

σ2
1 − 2ρσ1σ2 + σ2

2 6= 0, so this gives π2 = −π1 = 0. Now

E[log Y π
T ] = log Y0 + E

[∫ T

0

Qt(π1
t , π2

t ) dt

]
. (20)

Since Ωλ is convex, the maximum of Qt over Ω is attained at a unique point πt. Moreover, πt

depends continuously on Xt. That πt is a piecewise affine function of Xt follows from the fact that
Ωλ is a polygon.

Proof of Corollary 2.5. Immediate consequence of Theorem 2.3.

Proof of Corollary 2.6. Immediate consequence of Theorem 2.4.
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