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Abstract. In this article we study arithmetic Asian options when the underlying stock is driven by special
semimartingale processes. We show that the inherently path dependent problem of pricing Asian options
can be transformed into a problem without path dependency in the payoff function. We also show that the
price satisfies a simpler integro-differential equation in the case the stock price is driven by a process with
independent increments, Lévy process being a special case.
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1 Introduction

Asian options are securities with payoff which depends on the average of the underlying stock price S over a
certain time interval. If we denote by λ the averaging factor of the option, we can write the general Asian
option payoff as

(1.1)

(
ξ ·

(∫ T

0

Stdλ(t)−K1ST −K2

))+

.

When K1 = 0, we have fixed strike option; when K2 = 0, we have floating strike option. The constant ξ = ±1
determines whether the option is call or put. The averaging factor λ has finite variation and is typically taken
to be

λ(t) = t
T

for the case of continuously sampled Asian options, or

λ(t) = 1
n ·
⌊

nt
T

⌋
for the case of discretely sampled Asian options. Other averaging is also possible (exponential, etc.), but less
frequently used in practice. Notice that European type options are just a special case of Asian option for the
following choice of parameters: λ(t) = 1{T}(t) and K1 = 0.
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There has been a growing concern in the literature on the lognormality assumption of the underlying
stock price, and a number of alternative approaches have been suggested. One of the most studied situations
is the case when the stock is driven by a particular Lévy process. Carr, Geman, Madan and Yor (2000)
have recently suggested the so-called CGMY model for the stock price, which shows a good match with
empirical data. Another alternative approach, namely the general hyperbolic model, is discussed in Eberlein
and Prause (1998).

The problem of pricing Asian options is already complicated when the underlying stock is a geometric
Brownian motion. Most of the literature we know studies only this type of model. A number of approxima-
tions that produce closed form expressions have appeared, most recently in Thompson (1999), who provides
tight analytical bounds for the Asian option price. Geman and Yor (1993) computed the Laplace transform
of the Asian option price, and Eydeland and Geman (1995) showed how it can be related to the Fast Fourier
Transform. More recently, Donato-Martin, Ghomrasni and Yor (2001) generalized Laplace transform ap-
proach for the case of continuously sampled Asian option where the underlying asset is driven by a Lévy
process. This method uses equivalence of law of certain exponentials of Lévy processes. Exponentials of Lévy
processes have been previously studied for instance by Carmona, Petit, Yor (2001).

Rogers and Shi (1995) have formulated a one-dimensional PDE that can model both floating and fixed
strike continuous average Asian options. They apply the technique of change of numeraire introduced in
Geman, El Karoui and Rochet (1995) to reduce the dimensionality of the pricing problem. Andreasen (1998)
has extended this approach for pricing discretely sampled Asian option. Linetsky (2002) computed the price
of continuously sampled Asian option using analytical expansion method, however this technique is limited
to diffusions.

Monte Carlo methods seem to work well, but sampling the entire path of the underlying asset greatly
reduces competitiveness of this approach, even with the help of variation reduction techniques (Fu, Madan,
Wang (1998/99)).

In the recent paper of Večeř (2002), it was shown that one can reformulate the problem of pricing
Asian options in a way which removes the inherent path dependency of the contract. This paper applies
the techniques developed in Shreve and Večeř (2000) for pricing options on a traded account. The model
discussed there assumes that the underlying stock is a geometric Brownian motion, in which case one can
obtain a simple one-dimensional partial differential equation for the price which is easy to solve numerically.
A similar formulation of the pricing partial differential equation appears in an independent work of Hoogland
and Neumann (2001).

We show in this article that the approach of removing the path dependency in the formulation of the
Asian option pricing problem can be generalized to the case when the underlying asset is driven by a special
semimartingale process. We also show that the price satisfies an integro-differential equation in the case
the stock price is driven by a process with independent increments, Lévy processes being a special case.
Integro-differential equations have been previously applied in a different context for modelling of perpetuities
or in the risk theory; see for instance Paulsen (1998).

2 Pricing Formula for Asian Options

Let S be a real-valued, strictly positive semimartingale on the stochastic basis (Ω,F ,F = (Ft)t∈R+ , P) that
satisfies the usual conditions. We will from now on assume P to be a risk-neutral measure and the interest
rate to be a constant r. In particular, we assume that e−rtSt is a martingale under P†.

In order to reformulate the pricing problem and to remove the path dependency in Asian option valuation,
we will define the Asian forward contract and use the following procedure of replicating the Asian forward
payoff. Without loss of generality, we assume ξ = 1.

†Here we will not discuss in detail how to choose this equivalent martingale measure for pricing purpose. Interested readers
are referred to Föllmer and Schweizer (1991) for the Föllmer-Schweizer minimal measure; Miyahara (2001) and Frittelli (2000)
for the minimal entropy martingale measure; Bellini and Frittelli (1998) for the minimax measure; Goll and Rüschendorf (2001)
for the minimal distance martingale measures; Elliott, Hunter, Kopp and Madan (1995) for the equivalent martingale measure
resulting from multiplicative decomposition; Gerber and Shiu (1994) for Esscher transform. A nice presentation of earlier results
for geometric Lévy processes can be found in Chan (1999).
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Definition 2.1 (Asian forward contract) An Asian forward contract has the following payoff at maturity
date T :

(2.1)
∫ T

0

Stdλ(t)−K,

where St is the underlying process, λ(t) is the averaging factor, and K is a constant.

The difference between Asian forward and Asian option is that the payoff of Asian option (with fixed
strike) is the positive part of the Asian forward payoff. An important feature of forward contracts is that
their price does not depend on the choice of the risk neutral measure. Thus the price of forwards is model
independent and there is a uniquely defined hedge qt. This fact is shown in the following proposition. By
simple observation that options and forwards differ only in the payoff while having the same pricing equation,
we will be able to characterize the Asian option price in the next section.

Proposition 2.2 (Replication of the Asian forward contract) Suppose that we have a self-financing
portfolio X evolving as

(2.2) dXt = qt−dSt + r(Xt− − qt−St−)dt,

where St is a semimartingale. If we set the shares invested in the stock to be

(2.3) qt = e−rT

∫ T

t

ersdλ(s)

where λ(t) is a deterministic function with finite variation, and start with the initial wealth

(2.4) X0 = q0S0 − e−rT K2,

then we will have

(2.5) XT =
∫ T

0

Stdλ(t)−K2.

Proof. For notational purpose, let Bt = e−rtSt. By the definition of quadratic variation and (2.2),

(2.6) e−rT XT −X0 =
∫ T

0

qt−dBt = qT BT − q0S0 −
∫ T

0

Bt−dqt − [q, B]T .

Since qt is of finite variation,∫ T

0

Bt−dqt + [q, B]t =
∫ T

0

Bt−dqt +
∑

0<u≤t

∆qu∆Bu =
∫ T

0

Btdqt =
∫ T

0

e−rtStdqt.

Given the formula (2.3) for qt (note that qT = 0), and the formula (2.4) for X0, (2.6) simplifies to

XT = erT X0 − erT q0S0 −
∫ T

0

er(T−t)Stdqt

=
∫ T

0

Stdλ(t)−K2.

�
For pricing Asian options, we can apply the change of numeraire technique introduced in Geman, El Karoui

and Rochet (1995). Let us define a new measure Q by

(2.7)
dQ
dP

∣∣∣∣
t

=
St

S0ert
,

and a numeraire process Zt = Xt

St
.
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Theorem 2.3 (Pricing Formula) Let V λ(0, S0,K1,K2), the price of the Asian option with the payoff (1.1)
when ξ = 1, be defined as

(2.8) V λ(0, S0,K1,K2) , EP

e−rT

(∫ T

0

Stdλ(t)−K1ST −K2

)+
 .

Then we have the following relationship

(2.9) V λ(0, S0,K1,K2) = S0 · EQ[(ZT −K1)+]

where Q is defined by (2.7), Xt is the self-financing portfolio (2.2) with the initial condition X0 and trading
strategy qt defined in (2.4) and (2.3), and Zt = Xt

St
.

Proof. An easy consequence of proposition 2.2 is

V λ(0, S0,K1,K2) = e−rT · EP

(∫ T

0

Stdλ(t)−K1ST −K2

)+


= e−rT · EP
[
(XT −K1ST )+

]
= e−rT · EQ

[
(XT −K1ST )+

S0e
rT

ST

]
= S0 · EQ[(ZT −K1)+].

�

3 Integro-Differential Equation

For our next analysis, we need the following result:

Lemma 3.1 Zt = Xt

St
is a local martingale under Q.

Proof. Recall that P is a risk-neutral measure. Equation (2.2) and the fact that qt is deterministic ensure
that e−rtXt is a martingale. For 0 ≤ u ≤ t,

EQ[Zt|Fu] =
S0e

ru

Su
EP
[

StZt

S0ert
| Fu

]
=

eru

Su
EP [e−rtXt | Fu

]
=

eru

Su
e−ruXu = Zu.

�
To derive the integro-differential equation, we need to impose more restrictions on the structure of the

stock price to get the Markovian property. Let H be a semimartingale on the same stochastic basis (Ω,F ,F =
(Ft)t∈R+ , P), with values in R and H0 = 0. Suppose the stock price has the following dynamics:

(3.1) dSt = St−dHt,

Since we have assumed e−rtSt to be a martingale under P, H is necessarily a special semimartingale. Following
the notation in Jacod and Shiryaev (2002), H has the canonical decomposition:

(3.2) Ht = rt + Hc
t +

∫ t

0

∫ ∞

−∞
x (µ(ds, dx)− ν(ds, dx)) ,
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where Hc
t is the continuous martingale part, µ(dt, dx) is the random measure associated with the jumps of

H and ν(dt, dx) is the compensator. According to II.2.9 and II.2.29 in Jacod and Shiryaev (2002), we can
always choose a good version of ν, i.e., ν({t}, R) ≤ 1, ν(R+, {0}) = 0 and

∫ t

0

∫∞
−∞(|x|2 ∧ |x|)ν(dt, dx) is a

process with locally integrable variation. The assumption of the strict positiveness of S translates to the
following assumption

Assumption 3.2 µ([0, t], (−∞,−1]) = 0 for all t ≥ 0.

The Doléans-Dade formula gives

(3.3) St = S0E(H) = S0 exp
(
Ht − 1

2 〈H
c〉t
) ∏

0<s≤t

(1 + ∆Hs)e−∆Hs .

If H is a PII (process with independent increments) with decomposition (3.2), then we can find a deter-
ministic function ct, a deterministic measure-valued function Kt and a deterministic increasing function At

such that {
d〈Hc〉t(ω) = ctdAt(ω),
ν(dt, dx) = Kt(dx)dAt(ω).

Further if H is a Lévy process, then we can take At = t, c to be a constant, and K(dx) (the Lévy measure)
to be independent of t, to integrate |x|2 ∧ |x|, and to satisfy K({0}) = 0.

Theorem 3.3 (Integro-differential equation for Asian options) Suppose that H is PII with canonical
decomposition (3.2). The value of the Asian option is a function of t and Zt, denoted by v(t, Zt), such that
V λ(0, S0,K1,K2) = S0 v(0, Z0). Assume vt, vz and vzz exist and are continuous. Then the following integro-
differential equation holds:

(3.4)
∫ t

0

[
vs(s, Zs−)ds + 1

2vzz(s, Zs−)(qs− − Zs−)2d〈Hc〉s

+
∫ ∞

−∞

{
v
(
s, Zs− + (qs− − Zs−) x

1+x

)
− v(s, Zs−)− vz(s, Zs−)(qs− − Zs−) x

1+x

}
ν(ds, dx)

]
= 0

for 0 ≤ t ≤ T .

Proof. Apply Ito’s formula to get

XT

ST
= X0

S0
+
∫ T

0

1
St−

dXt −
∫ T

0

Xt−
S2

t−
dSt −

∫ T

0

1
S2

t−
d〈Xc, Sc〉t

+
∫ T

0

Xt−
S3

t−
d〈Sc〉t +

∑
0<t≤T

(
Xt

St
− Xt−

St−
− 1

St−
∆Xt + Xt−

S2
t−

∆St

)
= X0

S0
+
∫ T

0

1
St−

(qt−St−dHt + r(Xt− − qt−St−)dt)

−
∫ T

0

Xt−
St−

dHt −
∫ T

0

qt−d〈Hc〉t +
∫ T

0

Xt−
St−

d〈Hc〉t

+
∑

0<t≤T

(
Xt

St
− Xt−

St−
− 1

St−
∆Xt + Xt−

S2
t−

∆St

)
.

Note that
∆St = St−∆Ht, ∆Xt = qt−St−∆Ht,
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Xt

St
− Xt−

St−
=
(
qt− − Xt−

St−

)(
1− 1

1+∆Ht

)
=
(
qt− − Xt−

St−

)(
∆Ht

1+∆Ht

)
.

We can write

d
(

Xt

St

)
=

(
qt− − Xt−

St−

)(
dHt − rdt− d〈Hc〉t

)
+
(
qt− − Xt−

St−

)(
∆Ht

1+∆Ht
−∆Ht

)
.

=
(
qt− − Xt−

St−

)(
dHt − rdt− d〈Hc〉t − ∆H2

t

1+∆Ht

)
=

(
qt− − Xt−

St−

)(
dHc

t − d〈Hc〉t +
∫ ∞

−∞
x (µ(dt, dx)− ν(dt, dx))−

∫ ∞

−∞

x2

1+x µ(dt, dx)
)

or

dZt = (qt− − Zt−)
(

dHc
t − d〈Hc〉t +

∫ ∞

−∞
x (µ(dt, dx)− ν(dt, dx))−

∫ ∞

−∞

x2

1+x µ(dt, dx)
)

.

Observe that Zt is a Markovian process under Q. Theorem 2.3 and the Markovian property give us the value
process

v(t, Zt) = EQ[(ZT −K1)+|Ft],

which is a martingale by definition.
Note d〈Zc〉t = (qt− − Zt−)2d〈Hc〉t and thus

dv(t, Zt) = vt(t, Zt−)dt + vz(t, Zt−)dZ + 1
2vzz(t, Zt−)d〈Zc〉t

+v(t, Zt)− v(t, Zt−)− vz(t, Zt−)∆Zt

= vt(t, Zt−)dt + vz(t, Zt−)dZ + 1
2vzz(t, Zt−)(qt− − Zt−)2d〈Hc〉t

+v
(
t, Zt− + (qt− − Zt−) ∆H

1+∆H

)
− v(t, Zt−)− vz(t, Zt−)(qt− − Zt−) ∆H

1+∆H

= Local Martingale + vt(t, Zt−)dt + 1
2vzz(t, Zt−)(qt− − Zt−)2d〈Hc〉t

+
∫ ∞

−∞

{
v
(
t, Zt− + (qt− − Zt−) x

1+x

)
−v(t, Zt−)− vz(t, Zt−)(qt− − Zt−) x

1+x

}
ν(dt, dx).

The fact that a predictable local martingale with finite variation starting at zero is zero concludes the proof.
�

Corollary 3.4 In the case when H is a Lévy process, the integro-differential equation simplifies to

(3.5) vt(t, z) + c
2vzz(t, z)(qt− − z)2

+
∫ ∞

−∞

{
v
(
t, z + (qt− − z) x

1+x

)
− v(t, z)− vz(t, z)(qt− − z) x

1+x

}
K(dx) = 0

for 0 ≤ t ≤ T and z ∈ R.

Proof. The canonical decomposition of H is

Ht = rt +
∫ t

0

√
c dWs +

∫ t

0

∫ ∞

−∞
x ( µ(ds, dx)−K(dx)dt )

where Wt is a standard Brownian Motion. Applying theorem 3.3, we get

(3.6) vt(t, Zt−) + c
2vzz(t, Zt−)(qt− − Zt−)2

+
∫ ∞

−∞

{
v
(
t, Zt− + (qt− − Zt−) x

1+x

)
− v(t, Zt−)− vz(t, Zt−)(qt− − Zt−) x

1+x

}
K(dx) = 0.

Since the support for Zt− is R, we get the above equation. �
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4 Applications to Different Lévy Models

1. Geometric Brownian Motion with Poisson Jump

Let us start with a model similar to the one suggested in Andreasen (1998). Suppose that the stock price
process evolves as

dSt = St−dHt = St−
(
rdt + σdWt + (eφt − 1)dMt

)
,

where Wt is a standard Brownian motion, and Mt is a compensated Poisson process, i.e., Mt = Nt − λt. Let
φt be a Gaussian process with independent increments, and be independent of both Wt and Nt, such that
E[φt] = µ and Var[φt] = γ2. Assume that γ > 0, σ > 0, µ are constants. In this case,

〈H〉t = σ2t, K(x) = λ√
2πγ

· exp
{
− (ln(x+1)−µ)2

γ2

}
,

and v(t, z) satisfies (3.4). If γ = 0, then the jump size reduces to a constant eµ−1, i.e., K(x) = λ δ({eµ−1})
and (3.4) simplifies to:

(4.1) vt(t, z) + σ2

2 vzz(t, z)(qt− − z)2

+
[
v
(
t, z + (qt− − z) φ

1+φ

)
− v(t, z)− (qt− − z)vz(t, z)

]
φ

1+φλ = 0,

for 0 ≤ t ≤ T . In the geometric Brownian model, dSt = St−dHt = St− (rdt + σdWt), φ = 0, and we simply
have

(4.2) vt(t, z) + σ2

2 (qt − z)2vzz(t, z) = 0,

as shown in Večeř (2001).

2. Pure Jump Processes Models: CGMY and General Hyperbolic

In our model (3.1),

(4.3) dSt = St−dHt,

the stock price is a stochastic exponential of H. Another usual approach in the literature is to let the stock
price to be a geometric exponential of the underlying:

(4.4) St = S0e
Ĥt .

Applying Ito’s lemma and rewriting (3.3):

dSt = eĤt−

(
dĤt +

1
2
d〈Ĥc〉t + e∆Ĥt − 1−∆Ĥt

)
,(4.5)

St = S0 exp

Ht −
1
2
〈Hc〉t +

∑
0<s≤t

(ln(1 + ∆Hs)−∆Hs)

 .(4.6)

We can easily find the relationship between H and Ĥ:

Ht = Ĥt +
1
2
〈Ĥc〉t +

∑
0<s≤t

(
e∆Ĥs − 1−∆Ĥs

)
,(4.7)

Ĥt = Ht −
1
2
〈Hc〉t +

∑
0<s≤t

(ln(1 + ∆Hs)−∆Hs) .(4.8)
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Therefore the two ways of modelling are equivalent with Assumption 3.2. If we are given the compensator
µ̂(dt, dx) for the model (4.4), then the IDE in corollary (3.4) becomes

(4.9) v̂t(t, z) + c
2 v̂zz(t, z)(qt− − z)2+∫ ∞

−∞

{
v̂
(
t, z + (qt− − z) ex̂−1

ex̂

)
− v̂(t, z)− v̂z(t, z)(qt− − z) ex̂−1

ex̂

}
K̂(dx̂) = 0,

because ∆Ht = e∆Ĥt − 1.
We mention here two geometric exponential models with pure jump processes. One is CGMY in Carr,

Geman, Madan, Yor (2000) with Lévy measure:

k̂CGMY =

{
C exp(−G|x̂|)

|x̂|1+Y , for x̂ < 0;

C exp(−M |x̂|)
|x̂|1+Y , for x̂ > 0.

The other is the General Hyperbolic Model in Eberlein and Prause (1998) with Lévy measure:

k̂EP =


eβx̂

|x̂|

(∫∞
0

exp
(
−
√

2y+α2|x̂|
)

π2y(J2
λ(δ

√
2y)+Y 2

λ (δ
√

2y))
dy + λe−α|x̂|

)
, if λ ≥ 0;

eβx̂

|x̂|

(∫∞
0

exp
(
−
√

2y+α2|x̂|
)

π2y(J2
−λ(δ

√
2y)+Y 2

−λ(δ
√

2y))
dy

)
, if λ < 0;

where Jλ and Yλ are the Bessel functions of the first and second kind respectively. In both models the value
of the Asian option satisfy:

(4.10) v̂t(t, z) +
∫ ∞

−∞

{
v̂
(
t, z + (qt− − z) ex̂−1

ex̂

)
− v̂(t, z)− v̂z(t, z)(qt− − z) ex̂−1

ex̂

}
K̂(dx̂) = 0,

for 0 ≤ t ≤ T .

3. Numerical Issues

Integro-differential equations can be solved numerically. The numerical procedures for solving integro-
differential equations in option pricing have been recently studied for instance in Hirsa and Madan (2001).
They have developed discretization scheme which applies to the case of Asian option as well.

There are several alternative methods for pricing Asian options in the geometric Brownian motion model,
especially for continuously averaged Asian. In this case our pricing equation becomes a two-term partial
differential equation which is simple to implement. Extensive comparisons of different methods are docu-
mented in Večeř (2002), with the conclusion that several alternative approaches obtain prices with arbitrary
precision. These methods include Večeř’s partial differential equation, Geman-Yor (1993) Laplace transform
and Linetsky’s (2002) analytical expansion method. The pricing partial differential equation presented here
is numerically stable and the convergence of the numerical scheme is not affected by the choice of underlying
parameters.

5 Conclusion

We have shown in this paper that we can remove the path dependency in the payoff function of all kinds of
Asian options regardless of the dynamics of the underlying asset. This reformulation of the problem gives us
an integro-differential equation for the price of the option when the stock is driven by an exponential Lévy
process. This equation simplifies even more if we assume a particular stock price model, such as Geometric
Brownian Motion with Poisson Jump model, the Carr, Geman, Madan, Yor model, or a general hyperbolic
model. In the case of Black-Scholes model, we obtain a one-dimensional PDE which is simple and robust to
implement.
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[23] Miyahara, Y. (2001): “ [Geometric Lévy Process & MEMM] Pricing Model and Related Estimation
Problems”, Asia-Pacific Financial Markets, Vol. 8, No. 1, 45–60.

[24] Paulsen, J. (1998): “Sharp conditions for certain ruin in a risk process with stochastic return on
investments”, Stochastic Processes and their Applications, Vol. 75, 135–148.

[25] Rogers, C., Z. Shi (1995): “The value of an Asian option”, Journal of Applied Probability, 32,
1077–1088.
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