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Abstract. In this paper, arithmetic average Asian options are studied. It is ob-
served that the Asian option is a special case of the option on a traded account.
The price of the Asian option is characterized by a simple one-dimensional par-
tial differential equation which could be applied to both continuous and discrete
average Asian option. The article also provides numerical implementation of the
pricing equation. The implementation is fast and accurate even for low volatility
and/or short maturity cases.
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1 Introduction

Asian options are securities with payoff which depends on the average of the
underlying stock price over certain time interval. Since no general analytical
solution for the price of the Asian option is known, a variety of techniques have
been developed to analyze arithmetic average Asian options. A number of ap-
proximations that produce closed form expressions have appeared, see Turnbull
and Wakeman [18], Vorst [19], Levy [13], Levy and Turnbull [14]. Geman and
Yor [8] computed the Laplace transform of the Asian option price, but numerical
inversion remains problematic for low volatility and/or short maturity cases (see
Geman and Eydeland [6] or Fu, Madan and Wang [5]). Monte Carlo simulation
works well, but it can be computationally expensive without the enhancement of
variance reduction techniques and one must account for the inherent discretiza-
tion bias resulting from the approximation of continuous time processes through
discrete sampling (see Broadie and Glasserman [3], Broadie, Glasserman and
Kou [4] and Kemma and Vorst [12]).
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†I would like to thank Fredrik Åkesson, Julien Hugonnier, Steven Shreve, Dennis Wong and

Mingxin Xu for helpful comments and suggestions on this paper.

1



In general, the price of an Asian option can be found by solving a PDE in
two space dimensions (see Ingersoll [10]), which is prone to oscillatory solutions.
Ingersoll [10] also observed that the two-dimensional PDE for a floating strike
Asian option can be reduced to a one-dimensional PDE. Rogers and Shi [17]
have formulated a one-dimensional PDE that can model both floating and fixed
strike Asian options. They reduced the dimension of the problem by dividing
K−S̄t (K is the strike, S̄t is the average stock price over [0, t]) by the stock price
St. However this one-dimensional PDE is difficult to solve numerically since the
diffusion term is very small for values of interest on the finite difference grid. The
dirac delta function also appears as a coefficient of the PDE in the case of the
floating strike option. Zvan, Forsyth and Vetzal [21] were able to improve the
numerical accuracy of this method by using computational fluid dynamics tech-
niques. Andreasen [2] applied Rogers and Shi’s reduction to discretely sampled
Asian option. More recently, Lipton [15] noticed similarity of pricing equations
for the passport and the Asian option, again using Rogers and Shi’s reduction.

In this article, an alternative one-dimensional PDE is derived by a similar
space reduction. It is noted that the arithmetic average Asian option (both
floating and fixed strike) is a special case of an option on a traded account. See
Shreve and Večeř [16] and [20] for a detailed discussion about options on a traded
account. Options on a traded account generalize the concept of many options
(passport, European, American, vacation) and the same pricing techniques could
be applied to price the Asian option. The resulting one-dimensional PDE for
the price of the Asian option is simple enough to be easily implemented to give
very fast and accurate results.

Section 2 of the article briefly describes options on a traded account. It is
shown in section 3 that the Asian option is a special case of the option on a
traded account. The one-dimensional PDE for the price of the Asian option is
given. Section 4 describes the numerical implementation and compares results
with results of other methods. Section 5 concludes the paper.

2 Options on a traded account

An option on a traded account is a contract which allows the holder of the
option to switch during the life of the option among various positions in an
underlying asset (stock). The holder accumulates gains and losses resulting from
this trading, and at the expiration of the option he gets the call option payoff
with strike 0 on his final account value, i.e., he keeps any gain from trading and
is forgiven any loss.

Suppose that the stock evolves under the risk neutral measure according to
the equation

dSt = St(rdt + σdWt), (2.1)

where r is the interest rate and σ is the volatility of the stock. Denote the option
holder’s trading strategy by qt, the number of shares held at time t. The strategy
qt is subject to the contractual constraint qt ∈ [αt, βt], where αt ≤ βt. It turns
out that the holder of the option should never take an intermediate position, i.e,
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at any time he should hold either αt shares of stock or βt shares. In the case of
Asian options, αt = βt, so option holder’s trading strategy is a priori given to
him.

In our model the value of the option holder’s account corresponding to the
strategy qt satisfies

dXq
t = qtdSt + µ(Xq

t − qtSt)dt (2.2)
Xq

0 = X0.

This represents a trading strategy in the money market and the underlying
asset, where X0 is the initial wealth and µ is the interest rate corresponding to
reinvesting the cash position Xq

t − qtSt (possibly different from the risk-neutral
interest rate r). The trading strategy is self-financing when µ = r. The holder
of the option will receive at time T the payoff [Xq

T ]+. The objective of the
seller of the option, who makes this payment, is to be prepared to hedge against
all possible strategies of the holder of the option. Therefore the price of this
contract at time t should be the maximum over all possible strategies qu of the
discounted expected value under the risk-neutral probability P of the payoff of
the option, i.e.,

V [α,β](t, St, Xt) = max
qu∈[α,β]

e−r(T−t)E[[Xq
T ]+|Ft], t ∈ [0, T ]. (2.3)

Computation of the expression in (2.3) is a problem of stochastic optimal control,
and the function V [α,β](t, s, x) is characterized by the corresponding Hamilton–
Jacobi–Bellman (HJB) equation

− rV + Vt + rsVs + max
q∈[α,β]

[(µx + q(r − µ))Vx

+ 1
2σ2s2(Vss + 2qVsx + q2Vxx)] = 0 (2.4)

with the boundary condition

V (T, s, x) = x+. (2.5)

The maximum in (2.4) is attained by the optimal strategy qopt
t .

The case αt = βt = 1 reduces to the European call, the case αt = βt = −1
reduces to the European put. The American call and put give the holder of
the option the right to switch at most once during the life of the option to zero
position (i.e., exercise the option), but it does not pay interest on the traded
account while the holder has a position in the stock market. These can be
modelled by setting µ = 0 in (2.2) and allowing only one switch in qt, either
from 1 to 0 (American call) or from −1 to 0 (American put). The passport
option has contractual conditions αt = −1, βt = 1, the so-called vacation call
has αt = 0, βt = 1 and the so-called vacation put has αt = −1, βt = 0.

By the change of variable
Zq

t = Xq
t

St
, (2.6)
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we can reduce the dimensionality of the problem (2.3), as we show below. The
same change of variable was used in Hyer, Lipton-Lifschitz and Pugachevsky
[9] and in Andersen, Andreasen and Brotherton-Ratcliffe [1] to price passport
options and in Shreve and Večeř [16] to price options on a traded account.
Applying Itô’s formula to the process Zq

t , we get

dZq
t = (qt − Zq

t ) (r − µ− σ2)dt + (qt − Zq
t ) σdWt. (2.7)

We next define a new probability measure P̃ by P̃(A) =
∫

A
DT dP, A ∈ F , where

DT = e−rT · ST

S0
= exp

(
σWT − 1

2σ2T
)
. (2.8)

Under P̃, W̃t = −σt+Wt is a Brownian motion, according to Girsanov’s theorem.
Notice that

e−rT E[Xq
T ]+ = e−rT Ẽ

[
Xq

T

DT

]+
= S0 · Ẽ

[
Xq

T

ST

]+
= S0 · Ẽ [Zq

T ]+ (2.9)

and
dZq

t = (qt − Zq
t ) (r − µ)dt + (qt − Zq

t ) σdW̃t. (2.10)

The corresponding reduced HJB equation becomes

ut + max
q∈[α,β]

(
(r − µ)(q − z)uz + 1

2 (q − z)2σ2uzz

)
= 0 (2.11)

with the boundary condition

u(T, z) = z+. (2.12)

The relationship between V and u is

V (0, S0, X0) = S0 · u
(
0, X0

S0

)
. (2.13)

Closed form solutions and optimal strategies are provided in Shreve and Večeř
[16] for the prices of the option on a traded account for any general constraints
of the type αt ≡ α and βt ≡ β when µ = r.

3 Asian option as an option on a traded account

Options on a traded account also represent Asian options. Notice that d(tSt) =
tdSt + Stdt, or equivalently,

TST =
∫ T

0

tdSt +
∫ T

0

Stdt. (3.1)

After dividing by the maturity time T and rearranging the terms we get

1
T

∫ T

0

Stdt =
∫ T

0

(
1− t

T

)
dSt + S0. (3.2)
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In the terminology of the option on a traded account, the Asian fixed strike call
payoff (S̄T −K)+ is achieved by taking qt = 1− t

T and X0 = S0−K and where
the traded account evolves according to the equation

dXt =
(
1− t

T

)
dSt, (3.3)

i.e., when µ = 0 so no interest is added or charged to the traded account. We
have then

XT =
∫ T

0

(1− t
T )dSt + S0 −K = S̄T −K. (3.4)

Thus the average of the stock price could be achieved by a selling off one share
of stock at the constant rate 1

T shares per unit time.
Similarly, the Asian fixed strike put payoff (K − S̄T )+ is achieved by taking

qt = t
T − 1 and X0 = K − S0. For the Asian floating strike call with payoff

(KST − S̄T )+ we take simply qt = t
T − 1 + K and X0 = S0(K − 1), for the

Asian floating strike put with payoff (S̄T − KST )+ we take qt = − t
T + 1 − K

and X0 = S0(1−K).
The discrete average Asian option payoff could be achieved by taking a step

function approximation of the stock position qt of its continous average option
counterpart. Let us take for example the case of the Asian fixed strike call when
qt = 1− t

T and X0 = S0 −K. A step function approximation of 1− t
T is

qt = 1− 1
n

[
n t

T

]
, (3.5)

where [ · ] denotes the integer part function. If we look directly at the Asian
option traded account equation

dXt = qtdSt, (3.6)

we get for the stock position qt given by (3.5)

XT = 1
n

n∑
k=1

S( k
n )·T − S0 + X0. (3.7)

Thus we get the discrete average Asian fixed strike call payoff(
1
n

n∑
k=1

S( k
n )·T −K

)+

(3.8)

by taking X0 = S0−K and qt = 1− 1
n

[
n t

T

]
. We get analogous results for other

Asian option types.
Since we showed that Asian options are options on a traded account, we can

apply the same pricing techniques to determine the price of Asian options. In
particular, we can use the HJB equation (2.11), which becomes for the case of
Asian options just a simple PDE

ut + r(qt − z)uz + 1
2 (qt − z)2σ2uzz = 0 (3.9)
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Asian option type Payoff Stock position qt Initial wealth X0

Fixed strike call (S̄T −K)+ 1− t
T S0 −K

Fixed strike put (K − S̄T )+ t
T − 1 K − S0

Floating strike call (KST − S̄T )+ t
T − 1 + K S0(K − 1)

Floating strike put (S̄T −KST )+ − t
T + 1−K S0(1−K)

Table 1: Asian options as options on a traded account

with the boundary condition

u(T, z) = z+. (3.10)

The price of the Asian option is then given in terms of u by (2.13).
The relationship between different kinds of Asian options and options on a

traded account is summarized in Table 1.

4 Numerical examples

Since there is very little hope that the partial differential equation (3.9) with
the boundary condition (3.10) admits a closed form solution, one must compute
the price of the Asian option numerically. Equation (3.9) is on the other hand
very easy to implement and since it is an equation of the Black-Scholes type,
it is also very stable and fast to compute. Numerical implementation of this
PDE gives answers within very tight analytical bounds even for low volatility
or short maturity contracts. The numerical implementation of the Asian option
PDE (3.9) is similar to the numerical implementation for the passport option
as described in Andersen, Andreasen and Brotherton-Ratcliffe [1] because of
the above mentioned similarity in the pricing equation for both options. The
Asian option pricing is even simpler compared to the passport option pricing.
The reason is that the position in the stock qt is deterministically given for
the Asian option, while the optimal position qt must be computed for the case
of the passport option. Results obtained in Andersen et al. [1] for the case
of the passport option show that the numerical implementation gave almost
indistinguishable results from the analytical solution (less than 0.01% off) within
less than a second of CPU time on 166 MHz Pentium.

Let us consider a finite difference discretization of PDE (3.9) with a uniform
mesh

zi = z0 + i · dz, tj = j · dt

for 0 ≤ i ≤ M , 0 ≤ j ≤ N , and tN = T , where z0 and zM represent −∞ and ∞.
Reasonable choices are z0 = −1 and zM = 1. One point represents the Asian
option with strike equal to zero, the other represents the Asian option with strike
equal to double of the stock price. Using the short notation ui,j = u(tj , zi) and
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qj = q(tj), a mixed implicit/explicit finite discretization scheme for (3.9) is given
by

θ[σ2(qj − zi)2 − dz · r(qj − zi)]ui−1,j − 2[θσ2(qj − zi)2 + ν]ui,j

+ θ[σ2(qj − zi)2 + dz · r(qj − zi)]ui+1,j =

− (1− θ)[σ2(qj − zi)2 − dz · r(qj − zi)]ui−1,j+1 + 2[(1− θ)σ2(qj − zi)2 − ν]ui,j+1

− (1− θ)[σ2(qj − zi)2 + dz · r(qj − zi)]ui+1,j+1, (4.1)

where 0 ≤ θ ≤ 1 and ν = dz2

dt . The boundary condition for this system of
equations is

ui,N = z+
i . (4.2)

Solving for ui,j is done in the usual way by solving the corresponding tridiagonal
system of equations in (4.1). For the boundary conditions at z0 and zM we can
take

u0,j = 0 and uM,j = 2uM−1,j − uM−2,j (linear interpolation).

The parameter θ in (4.1) determines at what time point the partial derivatives
with respect to z are evaluated. If θ = 0, the z derivatives are evaluated at tj+1

and the scheme is known as the explicit finite difference method or as a trinomial
tree. If θ = 1, the z derivatives are evaluated at tj and the scheme becomes fully
implicit finite difference method. The average of these two methods, i.e., when
θ = 1

2 , is known as a Crank-Nicolson method. Crank-Nicolson method is usually
preferred, because it has the highest convergence order in dt. This method was
used to get numerical results in this article.

Table 2 compares results of the above described method with results of Rogers
and Shi [17], Zvan, Forsyth and Vetzal [21] and with Monte Carlo methods. The
comparison for the fixed strike Asian call when r = 0.15, S0 = 100 and T = 1,
which they considered as the most difficult case is reported. Zvan et al. improved
the accuracy of the method of Rogers and Shi by using a nonuniform spatial grid
and techniques of computational fluid dynamics. To be consistent with the result
of Zvan et al., same number of points of space and time grid (200 space points,
400 time points) are used in (4.1).

The Monte Carlo method used here as a comparison uses techniques from
Glasserman, Heidelberger and Shahabuddin [7] together with Sobol numbers and
geometric Asian call option as control variate, which both reduces the variance
and the bias from the discretization (see Fu, Madan and Wang [5]).

The lower and upper analytical bounds mentioned here are according to
Rogers and Shi. As seen from the table, the accuracy of the method suggested
in this article is very good; it always gives prices within analytical bounds. It
is stable for low volatilities and short maturities contrary to numerical inversion
of the Laplace transform of the Asian option price or to other PDE methods for
the Asian option.

This implementation, done in MATLAB, gave accurate results in a few sec-
onds.
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σ K Večeř Zvan et al. Monte Carlo Lower Upper

0.05 95 11.094 11.094 11.094 11.094 11.114
100 6.795 6.793 6.795 6.794 6.810
105 2.744 2.744 2.745 2.744 2.761

0.10 90 15.399 15.399 15.399 15.399 15.445
100 7.029 7.030 7.028 7.028 7.066
110 1.415 1.410 1.418 1.413 1.451

0.20 90 15.643 15.643 15.642 15.641 15.748
100 8.412 8.409 8.409 8.408 8.515
110 3.560 3.554 3.556 3.554 3.661

0.30 90 16.516 16.514 16.516 16.512 16.732
100 10.215 10.210 10.210 10.208 10.429
110 5.736 5.729 5.731 5.728 5.948

Table 2: Comparison of results of different methods for fixed strike Asian call
when r = 0.15, S0 = 100 and T = 1. The upper and lower bounds were obtained
from Rogers and Shi [17].

5 Conclusion

The pricing method for Asian options suggested in this article connects pricing
of Asian options and options on a traded account. Options on a traded account
(passport, European, American, vacation, Asian) satisfy the same type of one-
dimensional PDE. The method suggested here has a simple form, is easy to
implement, has stable performance for all volatilities, is fast and accurate, and
is applicable for both continuous and discrete average Asian options.
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