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Abstract. A simple and numerically stable 2-term partial differential equation characterizing the
price of any type of arithmetically averaged Asian option is given. The approach includes both
continuously and discretely sampled options and it is easily extended to handle continuous or dis-
crete dividend yields. In contrast to present methods, this approach does not require to implement
jump conditions for sampling or dividend days.

Asian options are securities with payoff which depends on the average of the underlying stock
price over certain time interval. Since no general analytical solution for the price of the Asian
option is known, a variety of techniques have been developed to analyze arithmetic average Asian
options. There is enormous literature devoted to study of this option. A number of approxima-
tions that produce closed form expressions have appeared, most recently in Thompson (1999), who
provides tight analytical bounds for the Asian option price. Geman and Yor (1993) computed
the Laplace transform of the price of continuously sampled Asian option, but numerical inversion
remains problematic for low volatility and/or short maturity cases as shown by Fu, Madan and
Wang (1998). Very recently, Linetsky (2002) has derived new integral formula for the price of con-
tinuously sampled Asian option, which is again slowly convergent for low volatility cases. Monte
Carlo simulation works well, but it can be computationally expensive without the enhancement
of variance reduction techniques and one must account for the inherent discretization bias result-
ing from the approximation of continuous time processes through discrete sampling as shown by
Broadie, Glasserman and Kou (1999).

In general, the price of an Asian option can be found by solving a partial differential equation
(PDE) in two space dimensions (see Ingersoll (1987)), which is prone to oscillatory solutions.
Ingersoll also observed that the two-dimensional PDE for a floating strike Asian option can be
reduced to a one-dimensional PDE. Rogers and Shi (1995) have formulated a one-dimensional
PDE that can model both floating and fixed strike Asian options. However this one-dimensional
PDE is difficult to solve numerically since the diffusion term is very small for values of interest on
the finite difference grid. There are several articles which try to improve the numerical performance
of this PDE type. Andreasen (1998) applied Rogers and Shi’s reduction to discretely sampled Asian
option.
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There are several independent efforts in recent years to unify pricing techniques for different
types of options and relate these methods to pricing Asian option. Lipton (1999) noticed similarity
of pricing equations for the passport, lookback and the Asian option, again using Rogers and Shi’s
reduction. Shreve and Vecer (2000) developed techniques for pricing options on a traded account,
which include all options which could be replicated by a self-financing trading in the underlying
asset. These option include European, passport, vacation, as well as Asian options. Numerical
techniques for pricing contracts of this type are described in Vecer (2000). Hoogland and Neumann
(2001) developed alternative framework for pricing various types of options using scale invariance
methods and derived more general semianalytic solutions for prices of continuously sampled Asian
options.

This paper provides even simpler and unifying approach for pricing Asian options, for both
discrete and continuous arithmetic average. The resulting one-dimensional PDE for the price of
the Asian option can be easily implemented to give extremely fast and accurate results. Moreover,
this approach easily incorporates cases of continuous or discrete dividends.

Replication of Asian Forward

Suppose that the underlying asset evolves under the risk neutral measure according to the
equation
dS; = Si((r — v)dt + adWy), (1)

where r is the interest rate, v is a continuous dividend yield, and o is the volatility of the underlying
asset. Denote the trading strategy by ¢q;, the number of shares held at time . If we take the strategy

q: to be
q = 4(r—1a,)T(6_7(T_t) _ e—r(T—t)) (2)

and let the wealth evolve according to the following self-financing strategy

dXt = qtdSt —+ ’I"(Xt — tht)dt + Qt’}/Stdt (3)
= rXidt + q(dS; — rSidt + vS;dt) (4)

with the initial wealth
Xo = gyr(e " —e7)Sy, (5)

we have
T
Xr = €TXq+ / qter(T_t) (dSy — rSpdt + 7Sdt) (6)
0
T
= T Xo+qrSr —eTqoSo + / e" T8, (qydt — q)dt) (7)
0

T
- 2 / Sydt, (8)
0
because of the identity
d(e’"(T_t)tht) = " TV qdS, — re"TYq,S,dt + e" T S,dg,, (9)

or
T T
qrSt — T qoSo = / e" TV g, (dS; — rSydt) +/ "I98, dg;. (10)
0 0
Note that the above analysis does not require specification of the stock dynamics and thus is
model independent. Asian forward can be replicated in the exactly same way for stocks exhibiting



alternative dynamics, like stochastic volatility or jumps. It is possible to extend the technique
presented here for pricing Asian options on stocks driven by jump diffusion models, as shown in
Vecer and Xu (2002).

Relationship to Asian options

Using this idea that we can replicate the stock price average by self-financing trading in the
stock, we can apply this fact to pricing Asian options. The general payoff of the Asian option could
be written as

(ST—KlST—K2)+ or (KQ —KlsT—ST)+. (11)
Because of the Asian Put-Call parity

e "TE(Sy — K181 — K»)" — e " TE(Ky — K1S7 — S7)*

= eirTE(ST - KlsT - KQ) = W(Gi’yT - €7TT) . SO - Klei’yTSO - efTTKQ, (12)
it is enough to compute the value of the Asian option with the payoff (S — K1S7 — K5)*. In this
case, when K7 = 0, then we have the fixed strike Asian call option, when K5 = 0, then we have
the floating strike Asian put option. In order to replicate such option, hold at time ¢

g = (7,_1"{)T (ef'y(Tft) _ efr(Tft)) (13)

of the stock, start with the initial wealth
Xo=qoS — e K> (14)
and follow the self-financing strategy
dX: = qdSt + r (Xt — q:St) dt + qySedt. (15)
It turns out that X7 = Sy — K5 and the payoff of the option is then
(X7 — K1S7)t = (St — K1S7 — Ko)*. (16)

We can use the change of numeraire technique to reduce dimensionality of the problem by
defining

Xt

Zy = . 17
¢ E'YtSt ( )

According to Ito’s lemma,
dz, = (Zy—e ') o?dt — (2, — e Vqy) odW, (18)
= — (Zt — e_'ytqt) ath, (19)
where Wt = —ot+ W; is a Brownian motion under the numeraire measure. The price of Asian call

option could be written as
V (0,80, K1, K2) = ¢ "TE(Xyp — K1S7)" = Sy - E(Zr — K1)t (20)

If we introduce _

u(0, Zo) = E(Zr — K1), (21)



where Z; is a process defined by (19) with the initial condition

Zoy = %{? = (,r_%)T(eM*T —e Ty — efrTg—j, (22)
then the price of the option is
V(0, S, K1, K2) = So - u(0, Zo). (23)

It is easy to show that the function u satisfies the following partial differential equation

Uy + % (z — e_'ytqt)2 ou,, = 0, (24)
u(T,z) = (z— K1) . (25)

This unconditionally stable equation could be easily solved numerically by the finite difference
method. Similar partial differential equation was previously derived for a more general case of
the option on a traded account in Shreve and Vecer (2000) and subsequently in Hoogland and
Neumann (2001) in their independent work.

Generally Sampled Options on Stocks with General Dividends

The same technique could be applied for pricing discretely sampled Asian option, or for Asian
options with averaging with different weighting factors. We can also incorporate the case of general
dividends (continuous or discrete) in the evolution of the stock price; we can assume that the stock
price has the following dynamics:

dSt = St (Tdt — dl/t + O'th) (26)

under the risk neutral measure and v; is the measure representing the dividend yield. For example,
when div; = vdt, we have a continuous dividend yield at the rate ~.
Suppose that we want to price option whose payoff depends on

/0 " Sudutt), (27)

where p(t) represents a general weighting factor. For continuous averaging we had du(t) = #dt,
for discrete averaging (n points) we can set

du(t) =+ Zn: s(ET)at, (28)
k=1

so that fOT Sydp(t) becomes =377 | Sk, - the discretely sampled average. Here 6(-) is the Dirac
delta function. In order to replicate the payoff depending on (27), we would like to find a trading
strategy q; such that

Xy = /0 " Sudu(t) — K (29)
as in the previous section. The wealth evolves according to
dX; = ¢dSt + r (Xt — ¢St) dt + q:Sidvy, (30)
and therefore "
Xr=eTXo+ /O e" T, (dSy — rSpdt + Sydwy). (31)



We can use the identity
d |:€T(T7t)qtst:| = ST(Tit)qtdSt — Ter(Tit)thtdt + GT(Tit)Stdqt (32)

to simplify the expression for Xr:

T

Xr=eTXo+ qrSr — e qoSo + / eT(Tft)St(qtht —dqy). (33)
0

To get the desired result (29), we set gr = 0, e"” (Xo — qoSo) = —Ko and " T~ (qydv; — dg;) =

du(t). This leads to the following representation of the trading strategy:

qtap<LTdmg>.[Tap<mTs)+LTm4@)dM@, (34)

which is a result consistent with the previous section.
In particular, when the stock does not pay any dividends (dv; = 0), we have

T
%:e#T/ e dpu(s). (35)
t

For the case of discretely sampled options and no dividends we have dp(t) = 2 377" §(£T)dt, and

therefore
n

T n
q = %e*TT/ e’ Zé(%T)ds =1 Z exp (—r("T_k)T) , (36)
! k=1 k=[ %] +1
where [-] denotes the integer part function. The strategy which replicates discretely sampled average

is just a step function with jumps during sampling dates, and it is a discrete approximation of the
strategy for continuous average.

We conclude that the price of the Asian option with the payoff (fOT Sedp(t) — K157 — K3)1 on
a stock paying arbitrary dividends at the rate dv; is given by

V(O,So,Kl,KQ) = SO 'U(07Z0), (37)
where u(t, z) satisfies
. 2
up + 1 (Z _e lo dv(S)qt) o2u,, = 0, (38)
wT,z) = (z—Kp)". (39)

The strategy ¢; is given by (34) and Zy = )g—(‘)’ =qo — e‘TT%. The implementation differs from

the continuous average case only by the choice of the strategy.

It is worth noting the fact that the above PDE has a few obvious closed form solutions. For
example u(t,z) = 1 is a solution with the boundary condition u(7,2) = 1, and u(t,z) = z is a
solution with the boundary condition u(7), z) = z. It is not very difficult to generate more closed
form solutions for polynomial boundary conditions. Having enough closed form solutions in hand,
one can significantly enhance the numerical procedure for solving Asian option price.

Comparison to Other Methods

Present popular techniques for pricing Asian options include: Monte Carlo simulation, numeri-
cal inversion of the Laplace transform of the Asian option price derived by Geman and Yor (1993),



alternative PDE techniques suggested by Rogers and Shi (1995), and various approximations (for
instance, Turnbull and Wakeman (1992)). Numerical inversion of the Laplace transform or PDE
techniques of Rogers and Shi tend to give slowly convergent results for cases of short maturities or
small volatilities. These techniques could be improved, as shown for instance by Fu, Madan and
Wang (98/99) or by Zvan, Forsyth and Vetzal (97/98), but at the expense of the speed and the
complexity of the implementation. Monte Carlo simulation gives accurate results for all choices of
parameters. Although the speed of Monte Carlo simulation could be further enhanced by specific
choice of control variates, it is inherently computationally inefficient to price Asian options.

Since all present techniques are either computationally unstable, too slow or too complicated to
implement, there had not been a single technique which would be widely accepted to price Asian
options for all choices of market parameters. In contrast, the method presented in this paper is
stable for all choices of parameters (even for small volatilities and short maturities) and it gives
accurate results within 6 decimal digits in less than a second of computation time.

Table 1 gives a comparison of numerical results of this method with other techniques for pricing
continuously sampled Asian option. These techniques include: Geman—Eydeland (GE), Turnbull-
Wakeman (TW) and Monte Carlo (MC) results based on 10 daily readings and 100 daily readings
with standard errors based on 10 000 replications given in parentheses. The inversion of the
Laplace transform method of Geman—Eydeland was implemented with 6 digit precision by Shaw
(2000) and the result coincides with the prices of our PDE technique. These numbers also match
the very recent result of Linetsky (2002) who computed these prices with even higher precision
using his integral formula. Numerical results of techniques of Turnbull-Wakeman and Monte—Carlo
methods were reported in Fu, Madan and Wang (98/99). The comparison shows that the PDE
method suggested in this paper is consistent with all other methods.

r o T S(0) Vecer, GE (Shaw), Linetsky TW  MC10 MC100 Std Err

006 05 1 19 0.193174 0.195 0.192 0.196 (0.004)
006 05 1 20 0.246416 0.250  0.245 0.249 (0.004)
006 05 1 21 0.306220 0.311  0.305 0.309 (0.005)
002 01 1 20 0.055986 .0568  .0559 .0565 (.0008)
018 03 1 20 0.218388 0.220 0.219 0.220 (0.003)
0125 025 2 20 0.172269 0.173  0.173 0.172 (0.003)
0.06 05 2 20 0.350095 0.359 0.351 0.348 (0.007)

Table 1: Comparison of numerical techniques for pricing continuous Asian call option: Vecer,
Geman-Eydeland (GE), Linetsky, Turnbull-Wakeman (TW), Monte Carlo (MC). The fixed strike
is K =2, T is in years, no dividends.

The advantage of the method presented here is that it could be also used to price discretely
sampled Asian option. Table 2 gives a comparison of this method to results presented in Tavella
and Randall (2000) and in Curran (1995). Tavella and Randall use PDE techniques of Rogers
and Shi with jump conditions, while Curran gives geometrical conditioning approximation. As in
the case of continuously sampled Asian options, we get consistent results in less than a second of
computation time.

As another example of flexibility of this method, we consider discretely sampled Asian call
option with 125 sampling points on a stock paying discrete dividend. Prices from the PDE method
are comparable to results of Monte Carlo simulation as shown in Table 3. It is not surprising that
the sooner is the dividend payment, the lower is the Asian option price. The computation based
on the PDE method took less than a second of computation time. On the other hand, Monte Carlo
simulation implementation with control variate reduction techniques took more than 10 minutes



S(0) Samples  Vecer  Tavella-Randall ~Curran

95 10 9.2228 9.2149 9.2197
25 8.7080 8.6974 8.7053
50 8.5367 8.5383 8.5340
125 8.4339 8.4304 8.4314
250 8.4001 8.3972 8.3972
500 8.3826 8.3804 8.3801
1000 8.3741 8.3719 8.3715
00 8.3661 8.3640 —
100 10 12.0420 12.0348 12.0390
25 11.4906 11.4803 11.4881
50 11.3068 11.2982 11.3043
125 11.1967 11.1929 11.1940
250 11.1600 11.1573 11.1572
500 11.1416 11.1392 11.1388
1000 11.1322 11.1300 11.1296
00 11.1233 11.1215 —
105 10 15.2234 15.2168 15.2202
25 14.6510 14.6415 14.6483
50 14.4601 14.4519 14.4575
125 14.3455 14.3424 14.3430
250 14.3073 14.3054 14.3048
500 14.2881 14.2866 14.2857
1000 14.2786 14.2771 14.2762
00 14.2696 14.2681 —

Table 2: Comparison of numerical techniques for discretely sampled Asian call option, » = 0.1,
o =04, T =1, fixed strike K = 100, no dividends.

to get the prices within 0.01 standard error.
Pricing Asian Options after Starting Date

We can easily modify this approach to price the situation where the option is not newly issued
and some prices used to determine the average have already been observed. Suppose that the
contract was initiated at time 0, expires at time 7" with the payoff (S — K1S7 — K5)*, and we
observe it at time t. The price at time ¢ is then

e " TR, (57 — K1 Sp — Ko)* = e 7T OE, (L [T Syds + £5; — K1 Sp — Ko)* =

e T OIRE (S — F557 — (75 K2 — 75 8)) T = T V(S F17 75K — 7550).

~

This is a value of an Asian call option with different strikes IA(l = I:,fl_j;, Ky %Kg — ﬁSt.

American Asians

It should be noted that this technique does not enable to solve for the American Asian style
option. The reason is that the pricing equation (24) explicitly depend on the maturity of the



S(0) dividend day Vecer Monte Carlo

105 0.25 9.5688 9.5609
0.50 10.9470 10.9618

0.75 12.5335 12.5455

100 0.25 7.1974 7.2057
0.50 8.3238 8.3323

0.75 9.6522 9.6418

95 0.25 5.2026 5.1978
0.50 6.0879 6.1026

0.75 7.1605 7.1788

Table 3: Comparison of our technique to Monte Carlo simulation for discretely sampled Asian
option with 125 sampling points on a stock paying discrete dividend at the rate 10%, T = 1,
r = 0.1, o = 0.4, fixed strike K = 100. Standard errors for Monte Carlo prices are in all cases
equal to 0.01.

option and the price of the American style option cannot be related to the pricing function at any
other time than at expiration. Consequently, in order to solve the American style problem, we
would have to keep track of both the stock price and its running average, which leads back to the
two-dimensional formulation of the problem. However, as pointed out by Andreasen (1998), it is
possible to reduce the dimensionality of the American Asian option pricing equation for the case
of the floating strike by introducing a new reduction space variable ‘;—:7 the ratio of the running
average and the stock price. The case of Amerian Asian option cannot be reduced to one dimension
for the case of the fixed strike.

Conclusion

The pricing method for Asian options suggested in this article unifies pricing of arithmetic
average Asian options of both discrete and continuous types. The method suggested here has
a simple form, is easy to implement, has stable performance for all volatilities, and is fast and
accurate. It is also shown how to price easily options on dividend paying stocks.
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