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This paper studies drawdown and drawup processes in a general
diffusion model. The main result is a formula for the joint distribution
of the running minimum and the running maximum of the process
stopped at the time of the first drop of size a. As a consequence, we
obtain the probabilities that a drawdown of size a precedes a drawup
of size b and vice versa. The results are applied to several examples
of diffusion processes, such as drifted Brownian motion, Ornstein-
Uhlenbeck process, and Cox-Ingersoll-Ross process.

1. Introduction. In this article, we study properties of a general dif-
fusion process {Xt} stopped at the first time when its drawdown attains a
certain value a. Let us denote this time as TD(a). The drawdown of a process
is defined as the current drop of the process from its running maximum. We
present two main results here. First, we derive the joint distribution of the
running minimum and the running maximum stopped at TD(a). Second, we
calculate the probability that a drawdown of size a precedes a drawup of
size b, where the drawup is defined as the increase of {Xt} over the run-
ning minimum. All formulas are expressed in terms of the drift function, the
volatility function, and the initial value of {Xt}. In addition to the main
theorems, this paper contains other results that help us to understand the
behavior of diffusion processes better. For example, we relate the probability
that the drawup process stopped at TD(a) is zero to the expected running
minimum stopped at TD(a).

We apply the results to several examples of diffusion processes: drifted
Brownian motion, Ornstein-Uhlenbeck process (OU), and Cox-Ingersoll-
Ross process (CIR). These examples play important roles in change point
detection and in finance. We also discuss how the results presented in this
paper are related to the problem of quickest detection and identification of
two-sided changes in the drift of general diffusion processes.

Our results extend several theorems stated and proved in Gihman and
Skorokhod (1972), Taylor (1975), and Lehoczky (1977). These results include
the distribution of a diffusion process stopped at the first time it hits either
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2 L. POSPISIL, J. VECER, AND O. HADJILIADIS

a lower or an upper barrier, and the distribution of the running maximum
of a diffusion process stopped at time TD(a). The formulas for a drifted
Brownian motion presented here coincide with the results in Hadjiliadis and
Vecer (2006). The approach used in Hadjiliadis and Vecer (2006) is based on
a calculation of the expected first passage times of the drawdown and drawup
processes to levels a and b. However, while this approach applies to a drifted
Brownian motion, it cannot be extended to a general diffusion process. In
this paper, we derive the joint distribution of the running maximum and
minimum stopped at TD(a), which can be obtained for a general diffusion
process. Subsequently, we use this result to calculate the probability that a
drawdown precedes a drawup.

Properties of drawdown and drawup processes are of interest in change
point detection, where the goal is to test whether an abrupt change in a
parameter of a dynamical system has occurred. Drawdowns and drawups of
the likelihood ratio process serve as test statistics for hypotheses about the
change point. Details can be found, for example, in Poor and Hadjiliadis
(2008), Hadjiliadis and Moustakides (2006) and Khan (2008).

The concept of a drawdown has been also been studied in applied proba-
bility and in finance. The underlying diffusion process usually represents a
stock index, an exchange rate, or an interest rate. Some characteristics of
its drawdown, such as the expected maximum drawdown, can be used to
measure the downside risks of the corresponding market. The distribution
of the maximum drawdown of a drifted Brownian motion was determined in
Magdon-Ismail et al. (2004). Cherny and Dupire (2007) derived the distribu-
tion of a local martingale and its maximum at the first time when the corre-
sponding range process attains value a. Salminen and Vallois (2007) derived
the joint distribution of the maximum drawdown and the maximum drawup
of a Brownian motion up to an independent exponential time. Vecer (2006)
related the expected maximum drawdown of a market to directional trading.
Several authors, such as Grossman and Zhou (1993), Cvitanic and Karatzas
(1995), and Chekhlov et al. (2005), discussed the problem of portfolio op-
timization with drawdown constraints. Meilijson (2003) used stopping time
TD(a) to solve an optimal stopping problem based on a drifted Brownian
motion and its running maximum. Obloj and Yor (2006) studied properties
of martingales with representation H(Mt, M̄t), where Mt is a continuous
local martingale and M̄t its supremum up to time t. Nikeghbali (2006) as-
sociated the Skorokhod’s stopping problem with a class of submartingales
which includes drawdown processes of continuous local martingales.

This paper is structured in the following way: notation and assumptions
are introduced in Section 2. In Section 3, we derive the joint distribution of
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STOPPING TIMES BASED ON DRAWDOWNS AND DRAWUPS 3

the running maximum and the running minimum stopped at the first time
that the process drops by a certain amount (Theorem 3.1 and Theorem
3.2), and in Section 4, we calculate the probability that a drawdown of size
a will precede a drawup of size b (Theorem 4.1 and Theorem 4.2). Special
cases, such as drifted Brownian motion, Ornstein-Uhlenbeck process, Cox-
Ingersoll-Ross process, are discussed in Section 5. The relevance of the result
in Section 4 to the problem of quickest detection and identification of two-
sided alternatives in the drift of general diffusion processes is also presented
in Section 5. Finally, Section 6 contains concluding remarks.

2. Drawdown and Drawup Processes. In this section, we define
drawdown and drawup processes in a diffusion model and present the main
assumptions.

Consider an interval I = (l, r), where −∞ ≤ l < r ≤ ∞. Let (Ω,F , P)
be a probability space, {Wt} a Brownian motion, and {Xt} a unique strong
solution of the following stochastic differential equation:

dXt = µ(Xt)dt + σ(Xt)dWt, X0 = x ∈ I,(1)

where Xt ∈ I for all t ≥ 0. Moreover, we will assume that functions µ(.) and
σ(.) meet the following conditions:

σ(y) > 0, for ∀y ∈ I,(2) ∫ r

x

Ψ(x, z)∫ z
z−a Ψ(x, y)dy

dz = ∞, for all a > 0 such that x− a ∈ I,(3) ∫ x

l

Ψ(x, z)∫ z+b
z Ψ(x, y)dy

dz = ∞, for all b > 0 such that x + b ∈ I,(4)

where Ψ(u, z) = e−2
∫ z

u
γ(y)dy and γ(y) = µ(y)

σ2(y)
. Drifted Brownian motion,

Ornstein-Uhlenbeck process, and Cox-Ingersoll-Ross process are examples of
diffusion processes satisfying these assumptions. Functions µ(.) and σ(.) will
be referred to as the drift and the volatility functions. Note that a process
given by (1) has the strong Markov property. If we need to emphasize that
x is the starting value of {Xt}, we will write Px[ . ].

Let us define the running maximum, {Mt}, and the running minimum,
{mt}, of process {Xt} as:

Mt = sup
s∈[0,t]

Xs, mt = inf
s∈[0,t]

Xs.

The drawdown and the drawup of {Xt} are defined as:

DDt = Mt −Xt, DUt = Xt −mt.
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4 L. POSPISIL, J. VECER, AND O. HADJILIADIS

We denote by TD(a) and TU (b) the first passage times of the processes {DDt}
and {DUt} to the levels a and b respectively, where a > 0, b > 0, x− a ∈ I,
and x + b ∈ I. We set TD(a) = ∞ or TU (b) = ∞ if process DDt does not
reach a or process DUt does not reach b:

TD(a) = inf{t ≥ 0;DDt = a}, TU (b) = inf{t ≥ 0;DUt = b}.

Conditions (3) and (4) ensure that

Px[TD(a) < ∞] = lim
v→r−

Px[MTD(a) ≤ v] = 1,

Px[TU (b) < ∞] = lim
u→l+

Px[mTU (b) > u] = 1,

Thus, we assume that TD(a) < ∞ and TU (b) < ∞ almost surely for any
a > 0 and b > 0, such that x− a ∈ I and x + b ∈ I.

In the following sections, we derive the joint distribution of
(mTD(a),MTD(a)) (Section 3) and a formula for the probability
Px[TD(a) < TU (b)] (Section 4).

3. Joint Distribution of the Running Minimum and the Run-
ning Maximum Stopped at TD(a). The distribution of random vari-
able MTD(a) was derived in Lehoczky (1977). In our paper, we focus on the
joint distribution of (mTD(a),MTD(a)).

Note that the running minimum stopped at time TD(a) is bounded by
x − a and x : x − a ≤ mTD(a) ≤ x. The joint distribution of the running
minimum and maximum stopped at time TD(a) will be denoted as H :

Hx(u, v) = Px[mTD(a) > u,MTD(a) > v],

where u ∈ [x−a, x] and v ∈ [x,∞). In the following theorem, we will express
H in terms of function Ψ(u, z) = e−2

∫ z

u
γ(y)dy, where γ(y) = µ(y)

σ2(y)
.

Theorem 3.1 Let a > 0 such that x− a ∈ I. The random variables mTD(a)

and MTD(a) have the following joint distribution:

Hx(u, v) =
∫ x
u Ψ(u, z)dz∫ u+a

u Ψ(u, z)dz
e
−

∫ v

u+a

Ψ(u+a,z)∫ z

z−a
Ψ(u+a,y)dy

dz

,(5)

where u ∈ [x−a, x], v ∈ [u+a,∞), Ψ(u, z) = e−2
∫ z

u
γ(y)dy and γ(y) = µ(y)

σ2(y)
.

If u ∈ [x− a, x] and v ∈ [x, u + a), then:

Hx(u, v) =
∫ x
u Ψ(u, z)dz∫ u+a

u Ψ(u, z)dz
.(6)
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Proof: The process {Xt} is given by (1) and X0 = x. First, let us assume
that u ∈ [x− a, x] and v ∈ [u + a,∞). The event {mTD(a) > u,MTD(a) > v}
occurs if and only if the process {Xt} attains u + a without dropping below
u and then exceeds v before the drawdown reaches a. Due to the Markov
property of the process {Xt}, we can write the probabilities of these events
as follows:

Hx(u, v) = Px[mTD(a) > u,MTD(a) > v]
= Px[Xτ(u,u+a) = u + a] Pu+a[MTD(a) > v]

=
∫ x
u Ψ(u, z)dz∫ u+a

u Ψ(u, z)dz
e
−

∫ v

u+a

Ψ(u+a,z)∫ z

z−a
Ψ(u+a,y)dy

dz

,(7)

where τ(u, u + a) = inf{t ≥ 0;Xt = u or Xt = u + a}. The formula for the
first probability in (7) follows from Gihman and Skorokhod (1972), page 110.
The second probability in (7), representing the survival function of MTD(a),
was derived in Lehoczky (1977), page 602. Finally, if v < u + a, we have
{mTD(a) > u, MTD(a) > v} = {mTD(a) > u} = {Xτ(u,u+a) = u + a} because
MTD(a) ≥ mTD(a) + a. Thus,

Hx(u, v) =
∫ x
u Ψ(u, z)dz∫ u+a

u Ψ(u, z)dz
.

�
The distribution function, the survival function, and the density function

of mTD(a) will be denoted as F, F , and f, respectively:

F x(u) = 1− Fx(u) = Px[mTD(a) > u], fx(u) = dFx(u)
du ,

where u ∈ [x−a, x]. We can derive the marginal distribution of mTD(a) from
the results in Theorem 3.1.

Corollary 3.2 Let a > 0 such that x − a ∈ I. The distribution function,
the density function, and the expected value of random variable mTD(a) are:

F x(u) =
∫ x
u Ψ(u, z)dz∫ u+a

u Ψ(u, z)dz
,(8)

fx(u) =
Ψ(u,u+a)

∫ x

u
Ψ(u,z)dz+

∫ u+a

x
Ψ(u,z)dz(∫ u+a

u
Ψ(u,z)dz

)2 ,(9)
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6 L. POSPISIL, J. VECER, AND O. HADJILIADIS

Ex

[
mTD(a)

]
= x−

∫ x

x−a

∫ u+a
x Ψ(u, z)dz∫ u+a
u Ψ(u, z)dz

du,(10)

where u ∈ [x− a, x], Ψ(u, z) = e−2
∫ z

u
γ(y)dy, and γ(y) = µ(y)

σ2(y)
.

Let us denote the distribution function and the survival function of the
running maximum stopped at TD(a) as G and G:

Gx(v) = 1−Gx(v) = Px[MTD(a) > v], x ≤ v < r.

Note that the joint distribution of (mTD(a),MTD(a)) can be represented by
the marginal distributions F and G :

Hx(u, v) = F x(u) Gu+a(v),(11)

where u ∈ [x − a, x] and v ∈ [u + a,∞). Let us calculate the derivative
of Hx(u, v) with respect to u, which will be used in the proof of the main
theorem.

Lemma 3.3 Let a > 0 such that x−a ∈ I. Let u ∈ [x−a, x] and v ≥ u+a.
Then

−∂Hx

∂u
(u, v) = e

−
∫ v

u+a

Ψ(u+a,z)∫ z

z−a
Ψ(u+a,y)dy

dz ∫ u+a

x
Ψ(u,z)dz(∫ u+a

u
Ψ(u,z)dz

)2 ,(12)

where Ψ(u, z) = e−2
∫ z

u
γ(y)dy and γ(y) = µ(y)

σ2(y)
.

Proof: According to (11),

∂Hx

∂u
(u, v) =

∂F x(u)
∂u

Gu+a(v) + F x(u)
∂Gu+a(v)

∂u
.

Note that the function Ψ has the following property: Ψ(a, b)Ψ(b, c) = Ψ(a, c).

Therefore,
∫ .

.
Ψ(u,z)dz∫ .

.
Ψ(u,z)dz

=
∫ .

.
Ψ(C,z)dz∫ .

.
Ψ(C,z)dz

and Ψ(u,y)∫ .

.
Ψ(u,z)dz

= Ψ(C,y)∫ .

.
Ψ(C,z)dz

for any con-

stant C. Thus, the first variable of Ψ is redundant in such fractions and can
be omitted during the calculation of their derivative with respect to u. Using
formula (9), we have

∂F x(u)
∂u = −fx(u) =

−
∫ u+a

x
Ψ(u,z)dz−Ψ(u,u+a)

∫ x

u
Ψ(u,z)dz(∫ u+a

u
Ψ(u,z)dz

)2 .

The derivative of Gu+a(v) with respect to u is given by:

∂Gu+a(v)
∂u

=
1∫ u+a

u Ψ(u + a, z)dz
e
−

∫ u+a

x

Ψ(u+a,z)∫ z

z−a
Ψ(u+a,y)dy

dz

=
Ψ(u, u + a)∫ u+a

u Ψ(u, z)dz
Gu+a(v).
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STOPPING TIMES BASED ON DRAWDOWNS AND DRAWUPS 7

Combining these results yields formula (12). �
Formula (9) allows us to decompose the density of mTD(a) into two parts:

fx(u)du = Px[DUTD(a) > 0,mTD(a) ∈ (u, u + du)](13)
+ Px[DUTD(a) = 0,mTD(a) ∈ (u, u + du)].

The set {DUTD(a) = 0} corresponds to the event that the process attained
its running minimum at time TD(a) : XTD(a) = mTD(a). In the following
lemma, we calculate the probabilities introduced in (13).

Lemma 3.4 Let a > 0 such that x− a ∈ I. Then

Px[DUTD(a) > 0,mTD(a) ∈ (u, u + du)] =
∫ u+a
x Ψ(u, z)dz(∫ u+a
u Ψ(u, z)dz

)2 du,(14)

Px[DUTD(a) = 0,mTD(a) ∈ (u, u + du)] =
Ψ(u, u + a)

∫ x
u Ψ(u, z)dz(∫ u+a

u Ψ(u, z)dz
)2 du,(15)

Px[DUTD(a) = 0] =
∫ x

x−a

Ψ(u, u + a)
∫ x
u Ψ(u, z)dz(∫ u+a

u Ψ(u, z)dz
)2 du,(16)

where Ψ(u, z) = e−2
∫ z

u
γ(y)dy and γ(y) = µ(y)

σ2(y)
.

Proof: Let us use the relationship MTD(a) = mTD(a) + DUTD(a) + a to
rewrite probability (14) in terms of the function Hx(u, v):

Px[DUTD(a) > 0,mTD(a) ∈ (u, u + du)] =

= Px[MTD(a) > u + a,mTD(a) ∈ (u, u + du)] = −∂Hx

∂u
(u, u + a)du

for u ∈ [x − a, x]. Thus, result (14) follows from Lemma 3.3. Formula (15)
can be obtained using the decomposition of f in (13) and equations (9) and
(14). The result (15) also implies (16):

Px[DUTD(a) = 0] =
∫ x

x−a
Px[DUTD(a) = 0,mTD(a) ∈ (u, u + du)].

�
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Remark 3.5 If a > 0 such that x− a ∈ I,

Px[DUTD(a) = 0] = − ∂

∂a
Ex

[
mTD(a)

]
.(17)

Proof: Formula (17) can be verified by calculating the derivative of
Ex[mTD(a)], which is given by (10), and comparing the result with (16). �

Let us heuristically explain Remark 3.5 using the following expression:

mTD(a) = (MTD(a) − a) I{DUTD(a)=0} + mTD(a) I{DUTD(a)>0}.

Shifting a by a small number h has an impact on mTD(a) only if the process
{Xt} attained its running minimum m at time TD(a) :

DUTD(a) = XTD(a) −mTD(a) = 0.

In this case, mTD(a) = MTD(a) − a and the change in mTD(a) is −h because
the running maximum MTD(a) remains the same. On the other hand, if {Xt}
is greater than mTD(a), that is, DUTD(a) > 0, then small changes in a do not
affect mTD(a). As a result,

mTD(a+h) −mTD(a) ≈ −h I{DUTD(a)=0}

for h small. Applying the expected value to this relationship and letting
h → 0 leads to the equation (17).

The knowledge of the joint distribution Hx(u, v) allows us to determine
the distribution and the expected value of the range process, Rt = Mt−mt,
stopped at time TD(a).

Corollary 3.6 Let a > 0 such that x− a ∈ I. The distribution of the range
process Rt = Mt −mt, stopped at time TD(a) is:

Px[RTD(a) > r] =
∫ x

x−a
Gu+a(u + r)

∫ u+a

x
Ψ(u,z)dz(∫ u+a

u
Ψ(u,z)dz

)2 du,(18)

Px[RTD(a) = a] =
∫ x

x−a

Ψ(u, u + a)
∫ x
u Ψ(u, z)dz(∫ u+a

u Ψ(u, z)dz
)2 du,(19)

where r > a. The expected value of RTD(a) :

Ex[RTD(a)] =
∫ ∞

x
Gx(v)dv +

∫ x

x−a

∫ u+a
x Ψ(u, z)dz∫ u+a
u Ψ(u, z)dz

du,(20)
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where

Gu+a(v) = e
−

∫ v

u+a

Ψ(u+a,z)∫ z

z−a
Ψ(u+a,y)dy

dz

,

Ψ(u, z) = e−2
∫ z

u
γ(y)dy, and γ(y) =

µ(y)
σ2(y)

.

4. Probability of a Drawdown Preceding a Drawup. In this sec-
tion, we derive formulas for the probabilities that a drawdown of size a
precedes a drawup of size b and vice versa. The calculation is based on the
knowledge of the joint distribution of (mTD(a),MTD(a)), which appears in
Theorem 3.1.

Theorem 4.1 Assume that {Xt} is a unique strong solution of equation (1)
and that conditions (2), (3), and (4) are satisfied. Let b ≥ a > 0 such that
x− a ∈ I and x + b ∈ I. Then:

Px[TD(a) < TU (b)] = 1−
∫ x

x−a
Gu+a(u + b)

∫ u+a

x
Ψ(u,z)dz(∫ u+a

u
Ψ(u,z)dz

)2 du,(21)

Px[TD(a) > TU (b)] =
∫ x

x−a
Gu+a(u + b)

∫ u+a

x
Ψ(u,z)dz(∫ u+a

u
Ψ(u,z)dz

)2 du,(22)

where

Gu+a(v) = e
−

∫ v

u+a

Ψ(u+a,z)∫ z

z−a
Ψ(u+a,y)dy

dz

,

Ψ(u, z) = e−2
∫ z

u
γ(y)dy, and γ(y) =

µ(y)
σ2(y)

.

Proof: Let b ≥ a > 0. First, we will show that

{TD(a) < TU (b)} = {0 < DUTD(a) < b− a} ∪ {DUTD(a) = 0}.(23)

The range of the process {Xt} at t is defined as Rt = Mt−mt, which implies
Rt = DUt + DDt. One can also prove that

Rt = max{sup
[0,t]

DUu, sup
[0,t]

DDu}.(24)
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The process on the right hand side of (24) is non-decreasing and equals zero
at time t = 0. Moreover, it increases only if sup[0,t] DUu or sup[0,t] DDu

changes, which occurs when either Xt = Mt or Xt = mt. In this case, the
right hand side is Mt −mt, which justifies (24).

According to the formula (24), DUTD(a) + a = max{sup[0,TD(a)] DUu, a}.
Thus, DUTD(a) = max{sup[0,TD(a)] DUu − a, 0} and

{TD(a) < TU (b)} = { sup
[0,TD(a)]

DUu < b}

= {0 < DUTD(a) < b− a} ∪ {DUTD(a) = 0},

which proves (23). Furthermore, using the relationship MTD(a) = mTD(a) +
DUTD(a) + a, we have:

Px[DUTD(a) > b− a,mTD(a) ∈ (u, u + du)] =

= Px[MTD(a) > u + b, mTD(a) ∈ (u, u + du)] = −∂Hx

∂u
(u, u + b)du.

Now let us calculate the probability of the event {TD(a) < TU (b)} :

Px[TD(a) < TU (b)] = Px[DUTD(a) = 0] + Px[0 < DUTD(a) < b− a]
= 1− Px[DUTD(a) > b− a]

= 1−
∫ x

x−a
Px[DUTD(a) > b− a,mTD(a) ∈ (u, u + du)]

= 1−
∫ x

x−a
Px[MTD(a) > u + b, mTD(a) ∈ (u, u + du)]

= 1−
∫ x

x−a

{
−∂Hx

∂u
(u, u + b)

}
du.(25)

The derivative of H is calculated in Lemma 3.3. If we replace{
−∂Hx

∂u (u, u + b)
}

in (25) with that result, we obtain formula (21). Prob-
ability (22) is the complement of (21). �

If b < a, the formula for Px[TD(a) < TU (b)] is a modification of (21).

Theorem 4.2 Assume that {Xt} is a unique strong solution of equation (1)
and that conditions (2), (3), and (4) are satisfied. Let 0 < b < a such that
x− a ∈ I and x + b ∈ I. Then:

Px[TD(a) < TU (b)] =
∫ x+b

x
G∗

v−b(v − a)
∫ x

v−b
Ψ(v,z)dz(∫ v

v−b
Ψ(v,z)dz

)2 dv,(26)
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Px[TD(a) > TU (b)] = 1−
∫ x+b

x
G∗

v−b(v − a)
∫ x

v−b
Ψ(v,z)dz(∫ v

v−b
Ψ(v,z)dz

)2 dv,(27)

where

G∗
v−b(u) = e

−
∫ v−b

u

Ψ(v−b,z)∫ z+b

z
Ψ(v−b,y)dy

dz

,

Ψ(u, z) = e−2
∫ z

u
γ(y)dy, and γ(y) =

µ(y)
σ2(y)

.

Proof: The proof is analogous to the proof of Theorem 4.1. �
The procedure we used in the proof of Theorem 4.1 allows us to interpret

equations (21) and (22) as follows:

Px[TD(a) < TU (b)] = 1−
∫ x

x−a
Px[MTD(a) > u + b, mTD(a) ∈ (u, u + du)]

=
∫ x

x−a
Px[MTD(a) ≤ u + b, mTD(a) ∈ (u, u + du)],

Px[TD(a) > TU (b)] =
∫ x

x−a
Px[MTD(a) > u + b, mTD(a) ∈ (u, u + du)].

Let us discuss this interpretation. If mTD(a) lies in a neighborhood of u, the
event of {TD(a) > TU (b)} coincides with {MTD(a) > u + b}. Probability
Px[TD(a) > TU (b)] is then the integral of Px[MTD(a) > u + b, mTD(a) ∈
(u, u + du)] over all possible values of mTD(a).

When a = b in (21) and (22), we have {TD(a) < TU (a)} = {DUTD(a) = 0}:

Px[TD(a) < TU (a)] =
∫ x

x−a

Ψ(u, u + a)
∫ x
u Ψ(u, z)dz(∫ u+a

u Ψ(u, z)dz
)2 du,

Px[TD(a) > TU (a)] =
∫ x

x−a

∫ u+a
x Ψ(u, z)dz(∫ u+a
u Ψ(u, z)dz

)2 du.

5. Application of the Results. In this section, we apply the results
from Theorem 3.2 and Theorem 4.1 to the following examples of diffusion
processes: Brownian motion, Ornstein-Uhlenbeck process, Cox-Ingersoll-
Ross process. We also present an application of the result in Theorem 4.1
to the problem of quickest detection and identification of two-sided changes
in the drift of general diffusion processes.
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Process I µ(y) σ(y) Ψ(u, z)

Brownian motion R µ σ e−
2µ
σ2 (z−u)

Ornstein-Uhlenbeck process R κ(θ − y) σ e
κ

σ2 [(z−θ)2−(u−θ)2]

Cox-Ingersoll-Ross process (0,∞) κ(θ − y) σ
√

y
(

z
u

)− 2κθ
σ2 e

2κ
σ2 (z−u)

Table 1
Function Ψ(u, z) for examples of diffusion processes.

5.1. Examples of Diffusion Processes. The formulas for Gx(v),
F x(v), Hx(u, v), and Px[TD(a) < TU (b)] depend on function Ψ(u, z). Ta-
ble 1 shows specific forms of this function for several examples of diffusion
processes dXt = µ(Xt)dt + σ(Xt)dWt, where Xt ∈ I and X0 = x.

We assume that conditions (2), (3), and (4) are satisfied for all these pro-
cesses. In the cases of a drifted Brownian motion and an Ornstein-Uhlenbeck
process, the conditions hold true for any combination of the parameters. In
the case of a Cox-Ingersoll-Ross process, we need to make an additional
assumption: kθ > σ2/2.

One can derive an analytical expression of the function Hx(u, v) and the
probability Px[TD(a) < TU (b)] for Brownian motion:

Hx(u, v) =
e

2µ

σ2 a − e
2µ

σ2 (u−(x−a))

e
2µ

σ2 a − 1
exp

{
−(v − x)

2µ
σ2

e
2µ

σ2 a − 1

}
,

where u ∈ [x− a, x] and v ∈ [u + a,∞), implying

Gx(v) = Px[MTD(a) > v] = exp

{
−(v − x)

2µ
σ2

e
2µ

σ2 a − 1

}
, v ∈ [x,∞),

F x(u) = Px[mTD(a) > u] =
e

2µ

σ2 a − e
2µ

σ2 (u−(x−a))

e
2µ

σ2 a − 1
, u ∈ [x− a, x],

Ex

[
mTD(a)

]
= x− σ2

2µ
+

a

e
2µ

σ2 a − 1
,

Px[TD(a) < TU (b)] = 1 − exp

{
−(b− a)

2µ
σ2

e
2µ

σ2 a − 1

}
e

2µ

σ2 a − 2µ
σ2 a− 1

e
2µ

σ2 a + e−
2µ

σ2 a − 2
,
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Fig 1. Densities of MTD(a) and mTD(a), where a = 1, for a drifted Brownian motion:
Xt = µt + σWt. The densities depend on the parameters through ratio µ/σ2. MTD(a) has
an exponential distribution on [0,∞), while mTD(a) has a uniform distribution on [−1, 0]
if µ = 0 and a truncated exponential distribution on [−1, 0] otherwise.

where b ≥ a > 0. If a = b,

Px[TD(a) < TU (a)] =
e−

2µ

σ2 a + 2µ
σ2 a− 1

e
2µ

σ2 a + e−
2µ

σ2 a − 2
.

Random variable MTD(a) has an exponential distribution on [x,∞) and
mTD(a) has a truncated exponential distribution on [x − a, x]. Note that
the formula for Px[TD(a) < TU (b)] is identical with the results presented in
Hadjiliadis and Vecer (2006).

When the drift µ equals to zero, the formulas further reduce to:

Hx(u, v) = Px[mTD(a) > u, MTD(a) > v] =
x− u

a
e−

v−(u+a)
a ,

where u ∈ [x− a, x] and v ∈ [u + a,∞), implying

Gx(v) = Px[MTD(a) > v] = e−
v−x

a , v ∈ [x,∞),

F x(u) = Px[mTD(a) > u] =
x− u

a
and Ex

[
mTD(a)

]
= x− a

2
,

imsart-aap ver. 2007/09/18 file: ProbabilitiesMDD-V23.tex date: January 17, 2009



14 L. POSPISIL, J. VECER, AND O. HADJILIADIS

−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

µ/ σ2

P
ro

ba
bi

lit
y 

− 
P

 [ 
T

1(a
) <

 T
2(b

) ]

Drawdown:  a=1
Drawup:  b=1

Drawdown:  a=1
Drawup:  b=10

Drawdown:  a=1
Drawup:  b=2

Fig 2. Probability Px[TD(a) < TU (b)] as a function of µ/σ2 for different values of a
and b. We assume that {Xt} is a drifted Brownian motion, Xt = µt + σWt. Note that
Px[TD(1) < TU (1)] = 0.5 for µ = 0.

Px[TD(a) < TU (b)] = 1− 1
2
e−

b−a
a ,

where b ≥ a > 0. If a = b,

Px[TD(a) < TU (a)] = Px[TD(a) > TU (a)] =
1
2
.

Hence, MTD(a) has an exponential distribution on [x,∞) with parameter 1
a

and mTD(a) has a uniform distribution on [x− a, x].
Calculation of Px[TD(a) < TU (b)] for an Ornstein-Uhlenbeck process and

a Cox-Ingersoll-Ross process involves numerical integration.
In Figures 1, 3, and 5, we have plotted densities of MTD(a) and mTD(a) for

various diffusion processes. Figures 2, 4, and 6 capture dependence of the
probability Px[TD(a) < TU (b)] on the parameters of the processes.

Let us discuss the interpretation of Figure 4, which shows the probability
Px[TD(1) < TU (1)] as a function of κ/σ2. When κ = 0, the drift term of
{Xt} vanishes and the probability is 1

2 . Moreover, if the process starts at its
long-term mean, x = θ, it is symmetric and Px[TD(1) < TU (1)] = 1

2 for any
value of κ/σ2. Now let us assume that x = θ + 1. As κ/σ2 increases, the
drift term will prevail over the volatility term and the process will be pushed
down from x to θ. As a result, a drawdown of size 1 will tend to occur before
a drawup of size 1, which explains the convergence of Px[TD(a) < TU (a)] to
1 as κ/σ2 →∞. Similar reasoning can be used to justify the convergence of
Px[TD(1) < TU (1)] to 0 if x = θ − 1.

imsart-aap ver. 2007/09/18 file: ProbabilitiesMDD-V23.tex date: January 17, 2009



STOPPING TIMES BASED ON DRAWDOWNS AND DRAWUPS 15

2.5 3 3.5 4 4.5 5 5.5
0

0.5

1

1.5

2

2.5

3

3.5

4

D
en

si
ty

 o
f M

T 1(a
) 

x = 2.5,   θ = 3,   κ / σ2 = 10

1.5 2 2.5
0

1

2

3

4

5

6

D
en

si
ty

 o
f m

T 1(a
) 

3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4
x = 3,   θ = 3,   κ / σ2 = 4

2 2.2 2.4 2.6 2.8 3
0

1

2

3

4

5

6

4 5 6 7
0

0.5

1

1.5

2

2.5

3

3.5

4
x = 4,   θ = 3,   κ / σ2 = 4

3 3.2 3.4 3.6 3.8 4
0

1

2

3

4

5

6

Fig 3. Densities of MTD(a) and mTD(a), where a = 1, assuming that {Xt} is an Ornstein-
Uhlenbeck process: dXt = κ(θ−Xt)dt+σdWt, X0 = x. The densities depend on parameters
κ and σ through ratio κ/σ2. Note that if x = θ, process {Xt} is symmetric and conse-
quently, mTD(a) has a symmetric distribution.

5.2. The problem of quickest detection and identification. In this
example, we present the problem of quickest detection and identification of
two-sided changes in the drift of a general diffusion process. More specifically,
we give precise calculations of the probability of misidentification of two-
sided alternatives. In particular, let {Xt} be a diffusion process with the
initial value X0 = x and the following dynamics up to a deterministic time
τ :

dXt = σ(Xt)dWt, t ≤ τ.(28)

For t > τ, the process evolves according to one of the following stochastic
differential equations:

dXt = µ(Xt)dt + σ(Xt)dWt t > τ,(29)
dXt = −µ(Xt)dt + σ(Xt)dWt t > τ.(30)

with initial condition y = Xτ . We assume that the functions µ(.) and σ(.) are
known and the stochastic differential equations (28), (29), and (30) satisfy
conditions (2), (3), and (4) stated in Section 1.
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Fig 4. Probability Px[TD(a) < TU (b)], where a = b = 1, as a function of κ/σ2. Process
{Xt} is an Ornstein-Uhlenbeck process: dXt = κ(θ − Xt)dt + σdWt, X0 = x. If x = θ,
then the process is symmetric and the probability is 0.5 for any value of κ/σ2.

The time of the regime change, τ, is deterministic but unknown. We ob-
serve the process {Xt} sequentially and our goal is to identify which regime
is in effect after τ .

In this context suppose that the first passage time of the drawup process
to a threshold a, TU (a), can be used as a means of detecting the change
of dynamics of {Xt} from (28) to (29). Similarly, suppose that the first
passage time of the drawdown process to a threshold b, TD(b) may be used
as a means of detecting the change of dynamics of {Xt} from (28) to (30)
(see Khan (2008), Poor and Hadjiliadis (2008)). The simplest example is
when µ(Xt) = µ.

The probability measures Pτ,(1)
x and Pτ,(2)

x are the measures generated on
the space of continuous functions C[0,∞) by the process {Xt}, if the regime
changes at time τ from (28) to (29) and from (28) to (30), respectively.
The stopping rule proposed and used widely in the literature for detecting
such a change is known as the two-sided CUSUM (Cumulative Sum) test,
T (a) = min{TD(a), TU (a)}. This rule was proposed in 1959 by Barnard. Its
properties have been widely studied by many authors (Kemp (1961), van
Dobben de Bruyn (1968) Bisell (1969), Woodall (1984), Khan (2008)) and
a version of this rule was also proven asymptotically optimal in Hadjiliadis
and Moustakides (2006). It is thus the rule that has been established in the
literature for detecting two-sided changes in the set-up described above.

Theorem 4.1 can be used to compute the probability of a false identifica-
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Fig 5. Densities of MTD(a) and mTD(a), where a = 1. {Xt} is a Cox-Ingersoll-Ross process:
dXt = κ(θ − Xt)dt + σ

√
XtdWt, X0 = x. We use the same values of parameters as in

Figure 3.

tion of the change. More specifically,

P0,(1)
x [T (a) = TD(a)] = P0,(1)

x [TD(a) ≤ TU (a)]

=
∫ x

x−a

Ψ(u, u + a)
∫ x
u Ψ(u, z)dz(∫ u+a

u Ψ(u, z)dz
)2 du,(31)

with Ψ(u, z) = e−2
∫ z

u
γ(y)dy and γ(y) = µ(y)

σ2(y)
, expresses the probability that

an alarm indicating that the regime switched to (30) will occur before an
alarm indicating that the regime switched to (29) given that in fact (29) is
the true regime. Thus (31) can be seen as the probability of a false regime
identification. Moreover, in the case that the density of the random variable
Xτ admits a closed-form representation, we can also compute∫

Pτ,(1)
y [T (a) = TD(a)]fXτ (y|x)dy =

∫
Pτ,(1)

y [TD(a) ≤ TU (a)]fXτ (y|x)dy,

which can be seen as the aggregate probability (or unconditional probability)
of a false identification for any given change-point τ .
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Fig 6. Probability Px[TD(a) < TU (b)], where a = b = 1, as a function of κ/σ2, where
κθ > σ2/2. Process {Xt} is a Cox-Ingersoll-Ross process: dXt = κ(θ−Xt)dt+σ

√
XtdWt,

X0 = x. We use the same values of parameters as in Figure 4.

6. Conclusion. In this paper, we discussed properties of a diffusion
process stopped at time TD(a), the first time when the process drops by
amount a from its running maximum. We derived the joint distribution of
the running minimum and the running maximum stopped at time TD(a).
This allowed us to obtain a formula for the probability that a drawdown of
size a precedes a drawup of size b.

A possible extension of our work is the calculation of the probability that
a drawup precedes a drawdown in a finite time horizon. This would require a
combination of our results with the distributions of times TD(a) and TU (b).
We do not expect this would lead to a closed form solution.
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