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Abstract

Maximum drawdown is a risk measure that plays an important role in portfolio management. In
this paper, we address the question of computing the expected value of the maximum drawdown using
a partial differential equation (PDE) approach. First, we derive a two-dimensional convection-diffusion
pricing equation for the maximum drawdown in the Black-Scholes framework. Due to the properties of
the maximum drawdown, this equation has a nonstandard boundary condition. We apply an alternating
direction implicit method to solve the equation numerically. We also discuss stability and convergence of
the numerical method.

1 Introduction

Maximum drawdown of an asset is defined as the largest drop of the asset price within a certain time
period. Maximum drawdown can be viewed as a contingent claim that can be priced and hedged using the
standard risk-neutral valuation techniques. Moreover, the replication of payoffs that depend on the maximum
drawdown can serve as insurance against adverse movements of the asset price during a market turmoil. In
this paper, we focus on computing the expected value of the maximum drawdown for period [0, T ], a value
that can be viewed as the price of a forward on the maximum drawdown. This expected value does not have
a known analytical expression, therefore we develop a numerical method for pricing the forward.

We first present the derivation of a partial differential equation for the forward value in the Black-Scholes
model. The equation has three spatial dimensions. We show that one can use a linear scaling property of
the forward to transform the equation into a two-dimensional convection-diffusion equation with constant
coefficients on a rectangular domain. Subsequently, we apply an alternating direction implicit method to
find a numerical solution to the equation. There are several issues we must pay attention to. First, the
cross-derivative term in the equation makes the diffusion matrix singular. Thus the equation is not parabolic
in the strict sense. Second, the value function at the time of maturity does not satisfy a boundary condition
of the equation. Third, one of the boundary conditions is of neither Dirichlet nor Neumann type. Finally,
we analyze stability and convergence of the numerical method.

A contract on the maximum drawdown can be used as financial insurance in the following way. Many investors
want to be exposed to a market while being protected from the adverse downturns of the market. Insurance
is typically provided by buying out-of-the-money put options. However, the market may rally before it drops
down. Therefore, the insurance provided by the put option might not come in effect even in the midst of a
clear market crisis.

Figure 1 shows a simulated joint distribution of the S&P 500 and its maximum drawdown for 3 month period
in the future. We used closing values from March 20, 2008 (index value 1329.5, volatility 19% from the
historical data). Notice that some significant drawdowns occur when the value of the index is above the
initial starting level of 1329.5.

Maximum drawdown is also important for directional traders. In particular, momentum traders believe
that current trends will continue, which implies that the realized drawdown, drawup, or range are believed
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Figure 1: Simulated 3 month joint distribution of the S&P 500 index and its maximum drawdown. We use values
from March 20, 2008 (index value 1329.5, volatility 19% from the historical data, drift 6%). The outcomes above the
line will not be protected by the out of the money put options since the final value of the index will be above the
initial value of the index. However, some of these scenarios exhibit quite significant drawdowns.

to end up higher than expected. Contrarian traders believe the opposite, namely that trends will revert.
In effect, contrarian traders believe that the realized drawdown, drawup, or range will be smaller than
expected. Traditionally, the trends have been determined mainly from a regression analysis of the market
data. Replicating contracts on the maximum drawdown can provide traders with additional tools to construct
momentum trading strategies.

Maximum drawdown has been previously studied in the literature. A formula for the expected maximum
drawdown of a drifted Brownian motion was derived in Magdon-Ismail et al. (2004). However, the formula
contains an infinite sum of integrals without an analytical solution. Salminen and Vallois (2007) calculated
the joint distribution of the maximum drawdown and the maximum drawup of a Brownian motion up to an
independent exponential time.

Several authors discussed the use of maximum drawdowns in finance. Vaz de Melo Mendes and Ratton
Brandi (2004) proposed the maximum drawdown as a risk measure. Grossman and Zhou (1993), Cvitanic
and Karatzas (1995), and Chekhlov et al. (2005), addressed the problem of portfolio optimization with
drawdown constraints. Vecer (2006) proposed that forwards and options on the maximum drawdown can be
priced and hedged as derivative contracts. Pospisil and Vecer (2008) derived a probabilistic representation
for the hedge of a forward on the maximum drawdown.

The alternating direction approach for solving multi-dimensional parabolic equations has been described in
Strikwerda (1989) and Duffy (2006). The particular finite difference schemes we use in this paper were
introduced in Peaceman and Rachford (1955) and Douglas and Rachford (1956). The stability and the
convergence of alternating direction methods were analyzed, for example, in Hout and Welfert (2007) and
Hundsdorfer and Verwer (1989).

This paper is organized as follows: In Section 2, we derive the two-dimensional partial differential equation
for a forward on the maximum drawdown. In Section 3 and Section 4, we propose a numerical method for
solving the equation. Then we discuss the stability and the convergence of the method, and carry out several
numerical experiments. Section 5 contains concluding remarks.
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2 Forward on the Maximum Drawdown

In this section, we define a forward on the maximum drawdown in the Black-Scholes model. We show
that its value function satisfies a three-dimensional partial differential equation that can be reduced to a
two-dimensional convection-diffusion equation.

Throughout this paper, we will use the following notation. Let St be the value of an asset at time t. Its
running maximum Mt is given by:

Mt = max
u∈[0,t]

Su.

Maximum drawdown MDDt is defined as the largest drop of the asset price from the running maximum up
to time t :

MDDt = max
u∈[0,t]

(Mu − Su) .

Suppose that the asset value St evolves according to a geometric Brownian motion under the risk-neutral
measure Q:

(1) dSt = rStdt + σStdWt, t ≥ 0,

where r denotes a risk-free interest rate and σ the asset volatility. Process W is a Brownian motion under
Q. Let (Ft)t≥0 be the σ-field generated by W.

We define a forward on the maximum drawdown as a contract whose holder receives amount MDDT at
time T. The standard no-arbitrage argument implies that its value at time t, Vt, is given by the conditional
expectation under the risk-neutral measure Q:

(2) Vt = e−r(T−t)E [MDDT |Ft] .

Since St is a geometric Brownian motion, the three-dimensional process (St,Mt,MDDt)0≤t≤T has the
Markov property and the distribution of MDDT depends on the information contained in Ft only through
(St,Mt,MDDt). As a result, there is a function v, such that:

(3) Vt = v(t, St,Mt,MDDt) = e−r(T−t)E [MDDT |St,Mt,MDDt] .

We are using a similar argument to that presented in Shreve (2004) for lookback options (see page 308). Note
that function v(t, s, m,mdd) is defined on the following domain:

0 ≤ t ≤ T, 0 ≤ s < ∞, s ≤ m < ∞, m− s ≤ mdd < m.

According to (2), the discounted value of the forward, e−rtVt, is a Q-martingale. We use this fact in the
following proposition, where we derive an equation for function v, including boundary conditions. Let us
denote the partial derivatives of v(t, s, m,mdd) as vt, vs, vss, vm, and vmdd.

Proposition 2.1 The value function of a forward on the maximum drawdown,

v(t, St,Mt,MDDt) = e−r(T−t)E [MDDT |St,Mt,MDDt] ,

satisfies the following partial differential equation:

vt(t, s, m,mdd) + rsvs(t, s, m,mdd) + 1
2σ2s2vss(t, s, m,mdd) = rv(t, s, m,mdd)

on (0, T )× {(s,m, mdd); 0 < s < m & m− s < mdd < m}.(4)
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with the terminal and the boundary conditions given by:

v(T, s,m, mdd) = mdd,

v(t, s, m,mdd) = e−r(T−t)mdd if s = 0 or m = mdd, t ∈ [0, T ),

vm(t, s, m,mdd) = 0 if m = s, t ∈ [0, T ),

vmdd(t, s, m,mdd) = 0 if m− s = mdd, t ∈ [0, T ).

(5)

Proof: This proof is analogous to the derivation of the equation for a lookback option presented in Shreve
(2004) (see pages 309-312). Process e−rtv(t, St,Mt,MDDt) is an Ft measurable martingale under the risk-
neutral measure Q, which follows from (2). Let us apply the Itô formula to this process:

de−rtv(t, St,Mt,MDDt) = −re−rtvdt + e−rtdv(t, St,Mt,MDDt)

= −e−rtrvdt + e−rtvtdt + e−rtvsdSt +
+ e−rtvmdMt + e−rtvmdddMDDt + e−rt 1

2vssd〈St〉

= −e−rtrvdt + e−rtvtdt + e−rtrStvsdt + e−rt 1
2σ2S2

t vssdt +
+ e−rtσStvsdWt + e−rtvmdMt + e−rtvmdddMDDt

= e−rt
{
−rv + vt + rStvs + 1

2σ2S2
t vss

}
dt +(6)

+ e−rtvmdMt + e−rtvmdddMDDt + e−rtσStvsdWt.

According to the martingale representation theorem, there exists a process Θt, such that de−rtv = ΘtdWt.
This condition is consistent with result (6) if and only if∫ t

0

e−ru
{
−rv + vt + rSuvs + 1

2σ2S2
uvss

}
du = 0, t ≥ 0,(7) ∫ t

0

e−ruvmdMu = 0, t ≥ 0,(8) ∫ t

0

e−ruvmdddMDDu = 0, t ≥ 0,(9)

almost surely. The reason is that none of these terms can be expressed as an integral with respect to W
because they have finite first variations.

Condition (7) is satisfied if function v solves the following partial differential equation:

vt(t, s, m,mdd) + rsvs(t, s, m,mdd) +
1
2
σ2s2vss(t, s, m,mdd) = rv(t, s, m,mdd).

A path of the process Mt is constant except for the set {t ≥ 0;St = Mt}. Thus, (8) holds if vm(t, s, m,mdd) = 0
for s = m. A similar argument can be used for (9). A path of MDDt is constant except for the set
{t ≥ 0;Mt − St = MDDt}, which leads to condition vmdd(t, s, m,mdd) = 0 for m− s = mdd.

Now we will discuss the case when the asset value drops to zero, that is, when St = 0 and Mt = MDDt.
In this case, S will not recover and the maximum drawdown for the entire period will be MDDt. Hence,
v(t, s, m,mdd) = e−r(T−t)mdd for s = 0 or m = mdd.

4



Since v(T, ST ,MT ,MDDT ) = MDDT , the terminal condition for function v is v(T, s,m, mdd) = mdd. �

The equation in Proposition 2.1 has three spatial variables defined on a domain which is not rectangular.
Nonetheless, a forward on the maximum drawdown has a linear scaling property:

v(t, λs, λm, λmdd) = λv(t, s, m,mdd), λ > 0,

which allows us to reduce the number of spatial variables to two. Moreover, a certain transformation of
variables leads to an equation on a rectangular domain. Hence, let us introduce a function u(t, x, y), such
that

(10) v(t, s, m,mdd) = s · u
(
t, log

(
m
s

)
, log

(
s

m−mdd

))
.

According to (10), u is a function of two spatial variables x and y on a rectangular domain [0,∞)× [0,∞):

x = log
(

m
s

)
,

y = log
(

s
m−mdd

)
.

Note that the function u can be interpreted as the value of a forward on the maximum drawdown relative to
the price of the underlying asset S. We derive a partial differential equation for u in the following proposition.

Proposition 2.2 Function u(t, x, y), defined in (10), satisfies the following partial differential equation:

(11) ut −
(
r + 1

2σ2
)
ux +

(
r + 1

2σ2
)
uy + 1

2σ2uxx − σ2uxy + 1
2σ2uyy = 0

on (0, T )× {(x, y); x > 0 & y > 0}.

The terminal and the boundary conditions of u are given by:

u(T, x, y) = ex − e−y,

ux(t, x, y) = eyuy(t, x, y) if x = 0, t ∈ [0, T ),

uy(t, x, y) = 0 if y = 0, t ∈ [0, T ).

(12)

Proof: Let us express the derivatives of function v in terms of function u :

vt = sut,

vs = u + s
[
− 1

sux + 1
suy

]
= u− ux + uy,

vss = − 1
sux + 1

suy −
(
− 1

suxx + 1
suxy

)
+

(
− 1

suxy + 1
suyy

)
= − 1

sux + 1
suy + 1

suxx − 2
suxy + 1

suyy,

vm = s
(

1
mux − 1

m−mdduy

)
= e−xux − eyuy,

vmdd = s 1
m−mdduy = eyuy.

If we substitute v with su and the corresponding derivatives in equation (4), we have

sut + rsu− rsux + rsuy + 1
2σ2s (−ux + uxx + uy + uyy − 2uxy) = rsu,
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or
ut −

(
r + 1

2σ2
)
ux +

(
r + 1

2σ2
)
uy + 1

2σ2uxx − σ2uxy + 1
2σ2uyy = 0,

which proves result (11). Similarly, conditions (12) can be obtained by replacing v with u in (5). �

In Section 3, we will discuss a numerical method for solving equation (11) with conditions (12). Let us point
out three properties of the equation. First, the terminal condition, u(T, x, y) = ex − e−y, is inconsistent
with the boundary condition for y = 0 : uy(t, x, y) = 0. We denote the coefficients at uxx, uxy, and uyy as
axx = (1/2)σ2, axy = −σ2, and ayy = (1/2)σ2. It holds that

axxayy = 1
4a2

xy,

implying that the diffusion matrix with entries axx, (1/2)axy, (1/2)axy, and ayy is singular. Thus, one can
find new spatial variables, so that the equation contains a second derivative with respect to only one variable.
However, the domain would not be rectangular after this transformation. Third, the boundary condition
ux(t, x, y)− eyuy(t, x, y) = 0 for x = 0 is not of Neumann type because the vector (1,−ey) is not orthogonal
to the boundary x = 0. The impact of these properties on the stability of the numerical method will be
discussed in Section 4.

Before we focus on numerical issues, we state further results on a forward on the maximum drawdown. In
the standard Black-Scholes framework, a ∆-hedge is the sensitivity of a contract value to the price of the
underlying asset. In our case, the ∆-hedge depends on variables s, m, and mdd through x and y because

∆(t, s, m,mdd) = vs(t, s, m,mdd) = u(t, x, y)− ux(t, x, y) + uy(t, x, y)

according to the definition of u. In the following Proposition 2.3, we present probabilistic representations of
the delta hedge and of the value function sensitivities to the running maximum and the running maximum
drawdown: vm and vmdd. Details about these results can be found in Pospisil and Vecer (2008).

We use the following notation: τMt = T ∧ inf{u ≥ t;Su = Mt} and MDDt
τMt

= maxu∈[t,τMt ](Mu − Su). We
denote by τMt the first time after t when Su attains the value of the running maximum Mt, and by MDDt

τMt

the maximum drawdown on [t, τMt ].

Proposition 2.3 Let v be the value function of a forward on the maximum drawdown,

v(t, St,Mt,MDDt) = e−r(T−t)E [MDDT |St,Mt,MDDt] .

Then

vmdd(t, St,Mt,MDDt) = e−r(T−t)Qt[MDDT = MDDt],
vm(t, St,Mt,MDDt) = e−r(T−t)Qt[MDDT = MDDt

τMt
],

∆(t, St,Mt,MDDt) = Vt

St
− e−r(T−t)

(
Mt

St
Qt[MDDT = MDDt

τMt
] + MDDt

St
Qt[MDDT = MDDt]

)
,

where Qt is the conditional risk-neutral probability, given St, Mt, and MDDt. Process ∆(t, St,Mt,MDDt)
has the following properties:

(i) if M0 = S0 and MDD0 = 0, then ∆(0, S0,M0,MDD0) = V0
S0

,

(ii) ∆(t, St,Mt,MDDt) > −1 for any t ∈ [0, T ],

(iii) if St = Mt, then ∆t(St,Mt,MDDt) ≥ 0,

(iv) ∆(T, ST ,MT ,MDDT ) = 0.

6



Proof: A proof can be found in Pospisil and Vecer (2008). �

According to Proposition 2.3, sensitivity vmdd can be interpreted as the discounted conditional risk-neutral
probability that MDDT has been attained on [0, t] and sensitivity vm as the probability that MDDT will
be attained on [t, τMt

]. This interpretation is consistent with the boundary conditions in (5): vmdd = 0 if
m− s = mdd and vm = 0 if m = s.

3 Numerical Solution of the Partial Differential Equation

In this section, we present a numerical method for solving the partial differential equation introduced in
Proposition 2.2:

(13) ut −
(
r + 1

2σ2
)
ux +

(
r + 1

2σ2
)
uy + 1

2σ2uxx − σ2uxy + 1
2σ2uyy = 0.

Function u(t, x, y) is defined on [0, T ]× [0,∞)× [0,∞). At the time of maturity, we have:

u(T, x, y) = ex − e−y.(14)

The boundary conditions for the equation are given as follows:

ux(t, x, y) = eyuy(t, x, y) if x = 0, t ∈ [0, T ),(15)
uy(t, x, y) = 0 if y = 0, t ∈ [0, T ).(16)

According to Proposition 2.1 and Proposition 2.2, u is the value of a forward on the maximum drawdown
relative to the underlying asset price:

u
(
t, log

(
Mt

St

)
, log

(
St

Mt−MDDt

))
= Vt

St
.

At the end of this section we provide numerical examples of solutions to the partial differential equation.

Equation (13) is a two-dimensional convection-diffusion equation on a rectangular domain, which can be
solved numerically using an alternating direction implicit method. In this paper, we implement two standard
examples of this method, the Peaceman-Rachford and Douglas-Rachford schemes. The questions of stability
and convergence of these schemes are discussed in Section 4.

For the sake of notation, we define the following operators:

Ax = −
(
r + 1

2σ2
)

∂
∂x +

1
2
σ2 ∂2

∂x2 ,

Ay =
(
r + 1

2σ2
)

∂
∂y +

1
2
σ2 ∂2

∂y2 ,

Axy = −σ2 ∂2

∂x∂y .

Hence, we can write equation (13) as

ut + Axu + Ayu + Axyu = 0.(17)

In order to define a numerical solution to the equation, we need to truncate the spatial domain to a bounded
area: {(x, y); 0 ≤ x ≤ xmax, 0 ≤ y ≤ ymax} . Let us introduce a grid of points in the time interval and in the
truncated spatial domain:

ti = iT
I , i = 0, . . . , I,

xk = k xmax

K , k = 0, . . . ,K,

yl = l ymax

L , l = 0, . . . , L.
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The steps of this grid are dt = T/I, dx = xmax/K, and dy = ymax/L. Function u at a point of the grid
will be denoted as ui

k,l = u(ti, xk, yl). If we need to refer to the solution at a specific time point, we will use
notation ui = (ui

k,l)k,l. Furthermore, let symbols Adx, Ady, and Adxdy denote second-order approximations
to the operators Ax, Ay, and Axy.

0
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0.3

0.4

0.5

0

0.1
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0.3

0.4

0.5
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0.8

1

x = log ( M
t
 / S

t
 )y = log ( S

t
 / (M

t
−MDD

t
) )

u(
t,x

,y
)

Figure 2: Value of a forward on the maximum drawdown relative to the underlying asset price, u(t, x, y), as
a function of x and y. Parameters: time to maturity T − t = 1 year, interest rate r = 4%, volatility σ = 19%.

Now we describe an implementation of the alternating direction methods. First, the terminal condition (14)
determines the value of the solution at tI :

uI
k,l = exk − e−yl .

As mentioned earlier, we use the Peaceman-Rachford and Douglas-Rachford schemes to obtain ui from ui+1,
where i = I − 1, I − 2, . . . , 0. A derivation of these methods can be found, for example, in Strikwerda (1989)
(Chapter 7.3) or Duffy (2006) (Chapter 19). The Peaceman-Rachford scheme is defined as:(

I− dt
2 Adx

)
ui+1/2 =

(
I + dt

2 Ady

)
ui+1 + dt

2 Adxdyui+1,(18) (
I− dt

2 Ady

)
ui =

(
I + dt

2 Adx

)
ui+1/2 +

dt

2
Adxdyui+1/2(19)

where I denotes the identity operator. Auxiliary function ui+1/2 links equations (18) and (19). The Douglas-
Rachford scheme is defined in the following way:

(I− dtAdx) ui+1/2 = (I + dtAdy)ui+1 + dtAdxdyui+1,(20)

(I− dtAdy) ui = ui+1/2 − dtAdyui+1.(21)

Note that both schemes have similar structures. In the first step, (18) or (20), we calculate ui+1/2 using ui+1.
This step is implicit in direction x, therefore we need to specify boundary conditions for x = 0 and x = xmax.
Values at x = 0 can be obtained by discretization of (15), where we use values at time i + 1 for direction y
and at time i + 1/2 for direction x :

eyl
ui+1

0,l+1 − ui+1
0,l−1

2dy
=
−3u

i+1/2
0,l + 4u

i+1/2
1,l − u

i+1/2
2,l

2dx
.(22)
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Figure 3: Value of a forward on the maximum drawdown relative to the underlying asset price, u(t, 0, 0), as a
function of t. Parameters: time of maturity T = 1 year, interest rate r = 4%. Volatilities: σ = 10%, σ = 19%
(historical volatility of S&P 500 from March 26, 2007 to March 20, 2008), and σ = 30%.

If x = xmax, then s is small if compared to m. Let us assume that in this case, condition v(t, s, m,mdd) =
e−r(T−t)mdd in (5) approximately holds. Thus, u grows at the rate e−r(T−ti+dt/2)exmax in the direction of x
when x = xmax, which gives us the following second-order approximation:

ui
K,l = 1

3

(
4ui

K−1,l − ui
K−2,l + 2dx e−r(T−ti+dt/2)exK

)
, l = 1, . . . , L.(23)

As a result, we can solve the system of equations (18) or (20) with conditions (22) and (23) to obtain ui+1/2.

In the second step, defined by equations (19) or (21), we use ui+1/2 to calculate ui. This step is implicit in the
direction of y. Thus, we need to approximate boundary conditions for y = 0 and y = ymax. A second-order
discretization of (16) gives us an equation for values at y = 0 :

−3ui
k,0 + 4ui

k,1 − ui
k,2

2dy
= 0.(24)

If y = ymax, then m − mdd is small if compared to s. Let us assume that condition v(t, s, m,mdd) =
e−r(T−t)mdd for m−mdd = 0 holds in this case and u is approximately e−r(T−t)(ex − e−ymax). Hence,

ui
k,L = e−r(T−ti)(exk − e−yL), k = 1, . . . ,K.(25)

Equations (19) or (21) together with (24) and (25) allow us to calculate ui,k,l for k ≥ 1. To complete this
step, we need to determine values ui

0,l, l = 1, . . . , L. This can be done by a second-order discretization of
ux(t, x, y) = eyuy(t, x, y) on boundary x = 0 :

−3ui
0,0 + 4ui

0,1 − ui
0,2

2dy
= 0,

ui
0,l+1 − ui

0,l−1

2dy
= e−yl

−3ui
0,l + 4ui

1,l − ui
2,l

2dx
, l = 1, . . . , L− 1,

3ui
0,L − 4ui

0,L−1 + ui
0,L−2

2dy
= e−yl

−3ui
0,L + 4ui

1,L − ui
2,L

2dx
.
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Figure 4: The path in the upper figure represents the historical values of S&P 500 from March 26, 2007 to
March 20, 2008. The lower figure shows the corresponding path of v(t, St,Mt,MDDt), the price of a forward
on the maximum drawdown of S&P 500, where March 26, 2007 is the beginning of the contract and March
20, 2008 is the day of maturity. We use the following parameters: interest rate 4% and volatility 19%.

The first equation follows from the fact that uy = 0 for x = y = 0.

Now all values (ui
k,l)k,l are available. By repeating this procedure for i = I − 1, I − 2, . . . , 0, we obtain ui at

all time points. The price of a forward on the maximum drawdown at time t = 0 can be approximated as:

v(0, S0,M0,MDD0) ≈ S0 u0
0,0.(26)

Examples of numerical solutions to equation (13) are shown in Figures 3 - 6. All of the results were obtained
using the Douglas-Rachford alternating direction method. Figure 3 displays u(t, x, y) as a function of x and
y. Recall that u represents the value of a forward on the maximum drawdown relative to the price of the
underlying asset S. The time to maturity is T − t = 1 year, interest rate r = 4%, and volatility σ = 19%.
In Figure 3, we have plotted u(t, 0, 0) as a function of t, for three different volatilities: σ = 10%, σ = 19%,
and σ = 30%. The parameters for this figure are T = 1 year and r = 4%. Figure 4 shows a path of the
process v(t, St,Mt,MDDt), where S represents S&P 500 index from March 26, 2007 to March 20, 2008. The
empirical annual volatility of S over this period was 19%.

Figure 5 shows the ∆−hedge of a forward on the maximum drawdown as a function of x and y, ∆(t, x, y) =
u(t, x, y)−ux(t, x, y)+uy(t, x, y). As in Figure 3, the time to maturity is T − t = 1 year, interest rate r = 4%,
and volatility σ = 19%. Finally, Figure 6 shows a path of the process ∆(t, St,Mt,MDDt) for S&P 500 from
March 26, 2007 to March 20, 2008.

4 Stability and Convergence of the Numerical Solution

In this section, we discuss stability and convergence of the numerical methods introduced in Section 3. The
stability analysis has two components. First, we determine when the methods are stable if they are applied
to a terminal-value problem with periodic boundary conditions. This part can be accomplished using known
theoretical results. Second, we examine the influence of boundary conditions (15) and (16) on the stability
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Figure 5: ∆-hedge of a forward on the maximum drawdown: ∆(t, x, y) = u− ux + uy. Parameters: time to
maturity T − t = 1 year, interest rate r = 4%, and volatility σ = 19%.

results from the first part. The conclusion we draw about the stability of the boundary conditions is based
on numerical experiments.

We first analyze the stability of the Peaceman-Rachford and Douglas-Rachford schemes for (13), assuming
that the boundary conditions are periodic. In this case, we can use the von Neumann analysis to establish the
conditions of stability. This approach was described in Strikwerda (1989) (Chapter 2.2). The von Neumann
analysis is based on calculating the amplification factor of a scheme, g, and deriving conditions under which
|g| ≤ 1.

Recall that I is the number of time steps in interval [0, T ] and K and L the numbers of steps in [0, xmax]
and [0, ymax], respectively. For the simplicity of notation, we assume that xmax = ymax and K = L. The
amplification factor of the Peaceman-Rachford scheme (18) and (19) is:

|g(θ, φ)|2 =

=
[(1− 4a sin2(θ/2) + 2a sin θ sinφ)2 + 4b2 sin2 θ] [(1− 4a sin2(φ/2) + 2a sin θ sinφ)2 + 4b2 sin2 φ]

[(1 + 4a sin2(θ/2))2 + 4b2 sin2 θ] [(1 + 4a sin2(φ/2))2 + 4b2 sin2 φ]
,

where

a = 1
2

T
I

K2

x2
max

σ2

2 ,

b = 1
2

T
I

K
2xmax

(
r + σ2

2

)
.

One can show that a sufficient condition for the amplification factor to be bounded by 1, |g(θ, φ)| ≤ 1, is
a ≤ 1, or:

I ≥ K2σ2T

4x2
max

(27)

Thus, the Peaceman-Rachford scheme is stable if the number of steps in the time interval, I, and in the
spatial domain, K, satisfy inequality (27). This condition is a consequence of the cross-derivative term in
equation (13), represented by 2a sin θ sinφ in the formula for the amplification factor. In the absence of this
term, the scheme would be unconditionally stable.
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Figure 6: In the upper figure, we have plotted the evolution of S&P 500 from March 26, 2007 to March 20,
2008. The lower figure shows the corresponding path of ∆(t, St,Mt,MDDt), the ∆-hedge of a forward on the
maximum drawdown. S&P 500 is the underlying asset, March 26, 2007 is the beginning of the contract and
March 20, 2008 is the day of maturity. We use the following parameters: interest rate r = 4% and volatility
σ = 19%. Note that process ∆(t, St,Mt,MDDt) exhibits the properties listed in Proposition 2.3.

The stability of the Douglas-Rachford scheme (20) and (21) was analyzed by in’t Hout and Welfert (2007),
who proved that this scheme, including the cross-derivative term, is unconditionally stable.

Let us discuss the impact of boundary conditions (15) and (16) and their finite difference approximations on
the stability of the numerical methods. According to the numerical experiments we carried out, the boundary
conditions does not change the stability results from the first part of the analysis. In other words, even after
including conditions (15) and (16), the Peaceman-Rachford scheme is stable if I and K satisfy (27) and the
Douglas-Rachford scheme is unconditionally stable.

The remaining issue we need to address is the convergence of the numerical methods to the true value of a
forward on the maximum drawdown. We focus only on the Douglas-Rachford scheme due to its unconditional
stability. According to Strikwerda (1989), this scheme is first-order accurate in time and second-order accurate
in space. As pointed out in Section 1, no analytical expression for the expected maximum drawdown is known.
However, if we change the terminal condition for the equation (13) to

uLB(T, x, y) = ex − 1,(28)

we have:

vLB(T, ST ,MT ,MDDT ) = ST uLB

(
t, log

(
MT

ST

)
, log

(
ST

MT−MDDT

))
= ST

(
exp

(
log

(
MT

ST

))
− 1

)
= MT − ST .

Note that this is the payoff of a floating strike lookback put option. Thus, the numerical methods introduced
in Section 3 with terminal condition (28) can be used to price this lookback option. Since there is a formula
for the value of the option, we can compare the results obtained from the numerical method with the true
value of the option.

Results of this convergence study are summarized in Table 1. The relative pricing errors for the finest mesh
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Douglas-Rachford Method
I K,L σ = 10% σ = 19% σ = 30%

100 100 83.9095 184.8068 316.9884
400 200 83.9591 184.9738 317.2532
900 300 83.9684 185.0044 317.2989
Analytical price 83.9759 185.0284 317.3161

Table 1: Convergence of the Douglas-Rachford method introduced in Section 3 for a lookback put option.
Parameters: S0 = 1329.5 (S&P 500 on March 20, 2008), time to maturity T = 1 year, r = 4%, and
xmax = ymax = 0.6. We study the convergence for three different levels of volatilities: σ = 10%, σ = 19%
(historical volatility of S&P 500 from March 26, 2007 to March 20, 2008), and σ = 30%. I denotes the number
of time steps, while K and L are the numbers of steps in the spatial domain.

in the table, I = 900 and K = L = 300, are: 0.0089% (for σ = 10%), 0.0130% (for σ = 19%), and 0.0054%
(for σ = 30%).

5 Conclusion

In this paper, we study a forward on the maximum drawdown. This contract can serve as insurance against
adverse market movements and its price as a risk measure in portfolio management. Since there is no known
analytical formula for the expected maximum drawdown, we propose a partial differential equation approach
to price the forward. First, we derive a three-dimensional partial differential equation for the forward in the
Black-Scholes framework, and then we reduce its dimensionality to two using the linear scaling argument.

We apply two standard alternating direction implicit methods to solve the equation - the Peaceman-Rachford
scheme and the Douglas-Rachford scheme. There are several issues related to the equation that requires
attention. One of them is that a boundary condition is neither Dirichlet nor Neumann type. Finally, we
discuss the stability and the convergence of the schemes.
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