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Public owners face a constant demand for developing new projects and for funding the
renewal, maintenance and operation of existing infrastructure projects. One way to raise
capitals to provide new financial resources to constrained budgets is to securitize a stream
of revenue cash flows from a portfolio of mature infrastructure projects. We present a
new type of PBS, the revenue performance-linked project backed securities (PBS), with
embedded call and put options. In this new PBS setting, risks for issuers and buyers can
be confined within a cut-off area. This risk hedging feature is expected to facilitate the
trading of such products.
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1. Background

Infrastructure project expenditures in the world economy have been growing sub-
stantially in the last two decades. The World Bank estimated that 2% of world GDP
is spent annually on infrastructure development and maintenance. Public develop-
ers/owners of infrastructure projects must face the daunting challenge of balancing
the huge spending demand within a constrained budget. As a result, developers
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have welcomed private participation in infrastructure (PPI) as an opportunity for
augmenting their infrastructural capital budgets [7, 13]. However, PPI is only a
viable alternative for relieving the economic burdens of developers if investment
risks are shared fairly between the developers and private investors.

Among all the alternative opportunities to raise capitals through PPI, project
backed securities (PBSs) play an important role in supplying long term and low
interest rate infrastructure funds [8]. A PBS is a synthetic, tradable debt asset
created by securitizing cash flows generated from one project or a pool of projects
[15]. PBSs are offered to investors in both public and private markets. Because PBSs
are only backed by revenue cash flows, they are usually considered marketable only
after the generating infrastructure projects are completed and operating at full
capacity. In essence, marketable PBSs need to be backed by mature and profitable
projects. Very few exceptions are high-profile projects, whose future cash flows can
be securitized during the construction or initial operation phase as it occurred, for
instance, in the expansion of London City Airport [7].

Different from regular, fixed income PBSs, which pay investors periodical fixed
coupon payment, Yoshino [11] proposed a revenue performance-linked coupon PBS,
whose floating coupon payment depends on the revenue level generated by the
underlying infrastructure projects. While revenue performance-linked PBSs imple-
ment project finance “more efficiently and effectively than conventional PBSs” [11],
they shift the revenue risk from developers to the investors. As a result, perspective
investors would require a contingent claim to hedge the risk that the underlying
projects may generate lower revenues than expected.

Such contingent claim can take the form of an American put option, which enti-
tles investors to sell the PBS back to the developers. Thus, through exercising this
option, investors can terminate the contract, collect the de-investment proceedings
and invest them in more profitable assets. On the other hand, developers would
require a different contingent claim to hedge the missed gains that occur when the
underlying projects generates higher revenues than expected. Such a contingent
claim can be modeled as an American call option, which entitles developers to buy
back the PBS from the investors. Thus, through exercising this option, developers
can terminate the contract and sell a new set of PBSs at a higher price, which is
consistent with the updated expected revenues.

Furthermore, a complementary advantage for incorporating the call and put
options in the performance-linked PBS lies in protecting both investors and issuers
from potential losses due to interest rate fluctuations. Recognizing and pricing the
economic benefits of these contractual options embedded in the performance-linked
PBSs are critical in preserving a fair distribution of risks and rewards between
developers and investors. However, due to the unpredictability of future cash flows
and high volatility of risk-free interest rates, pricing PBSs embedded with call
and put options is not a trivial task. Moreover, there are no analytical formulas
even under very simplified assumptions. Brennan and Schwartz [3] are credited to
have presented one of the first approaches to price bonds embedded options. Their
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approach was based on a conventional finite difference method. Hull and White [10]
proposed a tree based method using trinomial trees in a generalized version with
time-dependent parameters. Büttler and Waldvogel [4] priced callable bonds using
Green’s functions. d’Halluin et al. [6] presented a valuation method for callable
bonds based on finite difference approach using finite elements, flux limiters and
appropriate time stepping. Ben-Ameur et al. [2] proposed a dynamic programming
procedure to price options embedded in bonds in which the possibility of default of
the issuer was neglected.

All of the abovementioned methods were developed under the assumption that
the bond value depends only on one state variable, the interest rate. For a callable
and putable performance-linked PBS, one more uncertain variable, the generated
revenue of the bundled projects, needs to be added into the valuation model. Con-
sequently, the optimal exercise policy of the embedded options is affected by the
resulting combination of the interest rate and revenue value, along with the different
optimization objectives of the developers and private investors.

This paper presents a fast and easy-to-implement pricing method for
performance-linked PBS with embedded options based on the multilinear regres-
sion method (MRM), a combined approximate dynamic programming and Monte
Carlo simulation approach. The paper is organized as follows. Section 2 reviews
the stochastic processes of the two state variables and their formulas for simula-
tion representation. Section 3 introduces the mechanism of callable and putable
performance-linked PBS. Section 4 illustrates the multilinear regression method
for pricing the option embedded performance-linked PBS. Numerical analyses of
a hypothetical example are presented in Secs. 5 and 6. Finally, Sec. 7 draws and
highlights the conclusions.

2. Underlying Stochastic Processes

2.1. Stochastic process for revenue

A performance-linked PBS is linked to revenues of projects that have been in oper-
ation for several years. At this advanced operation stage, a steady revenue trend
can be established. Under the assumption that the net revenue cash flows may be
negative [1], we use an Ornstein-Uhlenbeck process to simulate the total revenue of
the pool of projects

dR = kR (uR −R)dt+ σRdZR (2.1)

where kR is the speed at which the revenue R reverts to the average revenue, uR.
The corresponding revenue volatility is σR, and ZR is the standard Wiener process.
Furthermore, the drift of Eq. (2.1) is α = kR(uR −R).

The revenue risk-adjusted discount rate can be dually defined as u = r + λσR

(i.e. the sum of the risk-free rate r and the revenue market risk premium λσR) or
u = α + δ (i.e. the sum of the process drift α and a yield δ). The market price of
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revenue risk, λ, can be estimated through the capital asset pricing model (CAPM)
as follows

λ = ρR,m

[
m− r

σm

]
(2.2)

where ρR,m is the correlation coefficient between the market return and the revenues,
m is the expected return of the market portfolio, σm is the standard deviation of
the return on the market, and r is the risk-free interest rate. By comparing the dual
definition of u, it yields

α− λσR = r − δ (2.3)

δ = u− α = u− kR (uR −R) (2.4)

The risk-neutralized drift that changes the probability measure of the process from
real to risk-neutral is [9]

α′ = α− λσR (2.5)

Thus, after factoring Eqs. (2.3) and (2.4) into (2.5) we obtain the risk-neutral drift

α′ = kR

(
uR − u− r

kR
−R

)
(2.6)

Replacing the process drift α with the risk neutral drift α′ yields the risk neutral
equivalent process

dR = kR

(
uR − u− r

kR
−R

)
dt+ σRdZ

′
R (2.7)

It follows that the mean and variance of the distribution Ri are:

E[Ri] = R0 exp(−kRti) +
(
uR − u− r

kR

)
(1 − exp(−kRti))

V ar(Ri) = (1 − exp(−2kRti))
σ2

R

2kR

Under a risk-neutrality assumption, the equation to perform the Monte Carlo sim-
ulation of the ω(k)−th path, for k = 1, . . . , N , is given by

R
ω(k)
i = [(Rω(k)

i−1 ) · exp(−kR∆t)] +
[(
uR − u− r

kR

)
(1 − exp(−kR∆t))

]

+
[
σR

√
1 − exp(−2kR∆t)

2kR
ε

ω(k)
R

] (2.8)

with εR ∼ N(0, 1) and ∆t is the discrete time unit.

2.2. Stochastic process for interest rate

We assume that the annualized risk-free interest rate follows the generic Vasicek
model process [16]

dr = kr(ur − r)dt + σrdZr (2.9)
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where kr is the speed at which the risk-free interest rate r reverts to the average of
risk-free interest rate, ur. The corresponding volatility is σr, and Zr is the standard-
ized Wiener process. Hereafter, we assume that R and r are statistically correlated
with correlation coefficient ρ.

The mean and variance of the distribution ri are:

E[ri] = r0 exp(−krti) + ur(1 − exp(−krti))

V ar(ri) = (1 − exp(−2krti))
σ2

r

2kr

The equation for the Monte Carlo simulation of the ω(k)−th path is given by

r
ω(k)
i = r

ω(k)
i−1 · exp(−kr · ∆t) + ur · (1 − exp(−kr · ∆t))

+ σr

√
1 − exp(−2 · kr · ∆t)

2 · kr
ε

ω(k)
r

(2.10)

with εr ∼ N(0, 1) and ∆t the discrete time unit.

3. Mechanism of Callable or Putable Performance-Linked PBS

Project-backed securities are types of bonds backed by a pool of projects that are
capable of generating positive revenues. Revenue performance-linked PBSs [11] are
bonds whose floating periodical coupon payments is proportional to the amount of
revenues generated by the pool of projects. The indenture of the performance-linked
PBSs requires the issuer to pay the holder a known amount, the principal at the
maturity of the contract. Furthermore, the issuer is required to periodically pay
investors floating coupons linked to the generated project revenues.

The tenor structure considered is (t0 = 0) < (t1 = 1) < · · · < (tn−1 = n− 1) <
(tn = n), where t0 is the initial time and tn is the maturity date of the PBS.
Accordingly, the coupon payments are denoted by c1 < · · · < cn, respectively.
Under a risk neutral evaluation, the contractual value of the performance-linked
PBS without embedded options a time t0 is given by

V̄0 =


 n∑

j=1

(E[cj ] ·Dj,0)


+ PnDn,0 (3.1)

where
cj , the coupon payment at time t = j, is the α% share of the project revenues Rj ,

i.e. cj = α%Rj ;
Rj is the revenue at time j, which can be modeled as presented in Sec. 2.1;
Dj,0 = 1

(1+E[rj ])j is the expected discount factor from time j to time 0;
rj is the interest rate at time j, which can be modeled as presented in Sec. 2.2;
Pn is the principal the issuers are supposed to pay the holders at maturity tn, and

it is calculated as
∑n

j=1[((1−α%)E[Rj ]) ·(1+E[rj,n])n−j ], where (1−α%)E[Rj ]
is the unit time step revenue share that is not included in the floating coupon, i,
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and rj,n is computed trough a bootstrapping procedure by solving the following
equation

(1 + rj)j(1 + rj,n)(n−j) = (1 + rn)n

Furthermore, the “residual value” of the PBS without embedded options at the
generic time ti is defined as

V̄i =
n∑

j=i+1

(E[cj ] ·Dj,i) + PnDn,i (3.2)

with Dj,i = 1
(1+E[ri,j ])j−i the discount factor from time j to time i, and rj,i is

computed by solving

(1 + ri)i(1 + ri,j)(j−i) = (1 + rj)j

Both issuers (developers) and investors of performance-linked PBSs can be nega-
tively affected by the volatility of the future revenue cash flows and interest rates.
From an investment point of view, investors’ returns will decrease and issuers’
returns will increase when low revenues and high interest rates occur. Conversely,
high revenues and low interest rates will increase investors’ returns and will dimin-
ish issuers’ returns. In order to augment the marketability of performance-linked
PBSs, issuers and investors would need to hedge their risk exposures. Under normal
circumstances, issuers would be hesitant to offer third parties guarantees because,
beside the additional fees associated with these guarantees, third parties usually
demand a tight control of the project operations. A more viable alternative solu-
tion is to integrate performance-link PBSs with risk hedging contracts such as a
call option for the issuers and a put option for the investors. Both put and call
are American-type options (Bermudan) that allow the option’s holders an early
exercise. The Bermudan call option embedded in the performance-linked PBS gives
issuers the right to purchase back their debts for a known amount, the call strike
price, at the specified times before maturity. Conversely, the embedded Bermu-
dan put option gives the holders the right to have issuers pay the debt back for
a different known amount, the put strike price. Pricing PBSs within this option
framework require considering the options as an integral part of the bond instead
of simply adding separately the options’ values to the bond’s value. This occurs
because the value of this hybrid bond is affected by the equal right to terminate
the contract offered to both issuers and buyers. In fact, the put and call options are
used as protection tools when the state variables move to their negative potential
of uncertainties. As soon as the issuers or buyers think the present value of their
expected future payoffs is less than their immediate payoffs, they will terminate
the contract. At any possible coupon payment date {ti}i=1,...,n, if issuers want to
terminate the PBS contract, they can exit the contract by paying, in addition to
the due coupon payment ci, the pre-established residual PBS value, Eq. (3.2), plus
a penalty fee, ψ↑

i , as compensation for early termination. On the other hand, if
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buyers want to terminate the PBS contract, they would receive, in addition to the
due coupon payment ci, the pre-established PBS residual value, Eq. (3.2), minus a
penalty fee, ψ↓

i , as compensation for early termination. The contract termination
rights of the issuers and buyers are modeled as a call option with strike price K↑

i

and a put option with strike price K↓
i . Accordingly, the two option strike prices

have two time-dependent components: the pre-established residual value V̄i and the
penalty fee ψi. More specifically



K↑
i = V̄i + ψ↑

i =


 n∑

j=i+1

(E[cj ] ·Dj,i) + PnDn,i


+ ψ↑

i

K↓
i = V̄i − ψ↓

i =


 n∑

j=i+1

(E[cj ] ·Dj,i) + PnDn,i


− ψ↓

i

(3.3)

where V̄i is the residual value given by Eq. (3.2), and ψ↑
i and ψ↓

i are the penalty fee
the issuers and investors are obliged to pay the counterpart if an option is exercised
at ti; two common penalty fee functions

ψi =

{
(tn − ti) · Constant

Constant(tn−ti)
(3.4)

are shown in Fig. 1.

Fig. 1. Illustration of two penalty fee functions.
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4. Pricing via Dynamic Programming

We first provide a precise formulation of the model considered for pricing the
performance-linked PBSs with their embedded call and put options. It is assumed
that the bond vest period covers the time interval [0, 1] and the tenor structure is:
(t0 = 0) < (t1 = 1) < · · · < (tn−1 = n− 1) < (tn = n), where t0 is the initial time
and tn is the maturity date of the PBS. Accordingly, the corresponding coupon
payments are denoted by c1 < · · · < cn. For i = 1, . . . , n − 1, the unit time steps,
∆ti+1

i , are equally spaced, while the vest period, ∆t10, can have a different time
length. The possible option exercise dates are any of the coupon payment dates
t1 <, . . . , < tn. The non-constant call and put strike prices at time i are K↑

i and
K↓

i , as defined in Eq. (3.3), respectively. If investors “put” the bond at time i, they
will receive K↓

i + ci from the issuers. On the other hand, if issuers “call” the bond
at time i, they will pay K↑

i + ci to the investors. It is worth noting that the strike
price is composed by two time-functions, the pre-established residual value V i and
the penalty fees ψi, that are both monotonically decreasing with time. As a result,
K↑

1 ≥ · · · ≥ K↑
n−1 ≥ K↑

n and K↓
1 ≤ · · · ≤ K↓

n−1 ≤ K↓
n, that is the earlier the

issuers call the PBS, the higher is the monetary amount the issuers will pay to the
investors; and the earlier the investors put the PBS, the less they will receive from
the issuers (see Fig. 2).

At time ti, the value of callable and put performance-linked PBS, Vi, is derived
by considering investors and issuers’ decision making strategies that maximize the
profits. Issuers should call the PBS at time i if the present value of the expectation of

Fig. 2. Illustration of two strike prices.
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the future PBS payoffs, E[Di+1,iVi+1|Fi], conditional on the information Fi known
at time i, is greater than the call strike price K↑

i , where Dj,i = 1
(1+ri,j)j−i the dis-

count factor from time j to time i, and rj,i is computed as shown in section Sec. 3.
Conversely, investors should put the bond at time i if the put strike price K↓

i is
greater than the expected present value of the future PBS payoffs, E[Di+1,iVi+1|Fi]
conditional on the information Fi known at time i. Accordingly, the decision
making strategies of the issuers and investors are min {K↑

i , E[Di+1,iVi+1|Fi]} and
max {K↓

i , E[Di+1,iVi+1|Fi]}, respectively. It is worth noting that it is unnecessary
to include an exercise priority rule between the parties because they will never
exercise their rights simultaneously as it occurs that K↑

i > K↓
i for any i.

The recurrent backward Bellman equations [14] that define the value of the
PBS are:

— At time n, when the issuers are contractually obliged to liquidate the debt, the
value of the PBS is given by

Vn = Pn + cn (4.1)

— At a generic time 1 ≤ i ≤ n− 1, the value of the PBS is

Vi =




max {min {K↑
i , E[Di+1,i Vi+1|Fi]}, K↓

i } + ci

or equivalently

min {max{K↓
i , E[Di+1,iVi+1|Fi]}, K↑

i } + ci

(4.2)

— At time 0, the PBS value is calculated by adding the present value of Vi=1 to
the present value of any vest period coupon payments cj , that is

V0 = V1 ·D1,0 +
0<j<1∑

cjDj,0 (4.3)

The PBS value and the optimal option exercise time are computed by solving
Eqs. (4.1), (4.2) and (4.3) backward from time tn to t0 using an approximate
dynamic programming approach combined with Monte Carlo simulation that
extends the Longstaff and Schwartz’s approach [5, 12]. In Eq. (4.2), the exact value
of K↑

i and K↓
i are easily calculated from Eq. (3.3), while the approximate value of

E[Di+1,iVi+1 |Fi] can be calculated using the multi-linear regression Monte Carlo
method (MRMC), which is a two factor model extension of the least-squares method
proposed by Longstaff and Schwartz [12]. MLRM least-squares regresses the two
simulated state variables {Rω(k)

1 , . . . , R
ω(k)
n }k=1,...,N and {rω(k)

1 , . . . , r
ω(k)
n }k=1,...,N

to estimate the conditional expectation E[Di+1,iVi+1|Fi]. Similarly to the Longstaff
Schwartz’s approach [12], we define the conditional continuation value at time i
as Conti = E[Di+1,iVi+1 |Fi]. The continuation value at time i is the expected
present value of the stream of cash flows the investors should receive if neither the
investors nor the issuers have terminated the contract at time i or earlier. The con-
tinuation value at time ti is calculated by estimating the conditional expectation
Conti = E[Di+1,iVi+1|Ri, ri] by regressing the N -simulated present values of the
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future PBS payoffs {(Dω(1)
i,i+1 ·V ω(1)

i+1 ), . . . , (Dω(n)
i,i+1 ·V ω(N)

i+1 )} with the two current state

variables at time ti, the N -simulated risk-free interest rates {rω(1)
i , . . . , r

ω(N)
i } and

revenues {Rω(1)
i , . . . , R

ω(N)
i }. The continuation value Conti can be represented as

a liner function of the elements of orthonormal countable basis,

Conti =
∞∑

k=1

(ak · pr
k (ri) + bk · pR

k (Ri)) (4.4)

where pr
k and pR

k are the kth elements of the basis; while ak and bk are the associ-
ated kth constant coefficients. The simplest and most efficient approximate form of
Eq. (4.4) can be derived through linear multiple regression [17], that is

Conti ≈ (airi + biRi) (4.5)

where ai and bi are the associated constant coefficients for ri and Ri, respectively.
The set of coefficients ai and bi can be estimated by least-squares regression onto
the basis

{âi, b̂i} = arg min ‖ (air
ω(k)
i + biR

ω(k)
i ) −D

ω(k)
i+1,i · V ω(k)

i+1, ‖ (4.6)

The basic equations of the algorithm of the backward dynamic programming
approach for each of the kth simulated path ω(k), with k = 1, . . . , N , can be derived
adapting Eqs. (4.1), (4.2) and (4.3) as follows

At(t = n) → V ω(k)
n = Pn + α%Rω(k)

n (4.7)

At (t = i)i=1,...,n−1

→ V
ω(k)
i =



K↑

i + α%Rω(k)
i if Cont

ω(k)

i > K↑
i

K↓
i + α%R

ω(k)
i if Cont

ω(k)

i < K↓
i

D
ω(k)
i+1,i · V ω(k)

i+1, + α%R
ω(k)
i if K↓

i � Cont
ω(k)

i � K↑
i

(4.8)

At(t = 0) → V
ω(k)
0 = V

ω(k)
1 ·Dω(k)

1,0 +
0<j<1∑

R
ω(k)
j D

ω(k)
j,0 (4.9)

Then the expected value of the callable and putable PBS can be calculated as

V0 =
1
N

N∑
k=1

V
ω(k)
0 (4.10)

It is worth noting from Eq. (4.8) that if the K↓
i ≤ Conti ≤ K↑

i , no parties will
exercise their option rights. Therefore, the putable and callable PBS creates a pro-
tection for both parties outside the range[ψ↓

i , ψ
↑
i ] around the residual value Eq. (4.3).

Furthermore, because at initialization of the contract the simple performance–linked
PBS is worth V̄0 , Eq. (3.1), and the callable and putable performance-linked PBS
is worth V0, Eq. (4.10), the actual value of the embedded put and call options θ at
time t0 is the difference between the two values, θ = (V0 − V̄0).
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If θ > 0, the hedging protection of the investors is more valuable than the
hedging protection of the issuers. In this case, issuers are entitled to receive as much
as (V0 − V̄0)to make the deal fair. If θ < 0, the protection values are reverse and the
investors are entitled to receive the compensation (V̄0−V0)from the issuers. Finally,
protection equilibrium occurs when θ = 0, that is when the issuers’ protection value
counterbalances the investors’ protection value, and no compensation is required.

5. Numerical Example

The assumed PBS indenture specifies that the term period equals to 10 years,
coupon payments are due every 6 months, and no vest period. The tenor structure
is (t0 = 0) < (t1 = 1) <, . . . , < (tn−1 = n − 1) < (tn = n), where t0 is the
initial time, and there are n = 20 payment dates. Both contractual parties, issuer
and investor, can terminate the transaction every six months, i.e. at each coupon
payment date. The other parameters are all listed in Table 1.

It is assumed that each semiannual coupon payment is 40% of the corresponding
semiannual revenues generated by the pool of infrastructure projects. The two types
of strike functions from Eq. (3.3) are shown in Fig. 3 along with the initial and
residual value of the PBS, which is calculated using Eqs. (3.3) and (3.2).

The approximate dynamic programming multi-linear regression method is car-
ried out by first simulating the revenue and risk-free rate paths, {Rω(k)

1 , . . . ,

R
ω(k)
n }k=1,...,N and {rω(k)

1 , . . . , r
ω(k)
n }k=1,...,N , and then calculating recursively

Eq. (4.4), Eq. (4.7) and Eq. (4.8) for each simulated path ω(k). Convergence studies
of the callable and putable performance-linked PBS were performed by ranging the
number of simulated paths N from 10,000 to 100,000, with Ni = 10, 000 + 1000 · i
and i = 1, . . . , 99. The convergence results for the two types of strike functions are
shown in the left side of Fig. 4.

If the relative error, RENi = (θNi+1−θNi )

θNi
, is set equal to a tolerated error of

0.5%, the number of paths that makes the error converge, i.e. burn-in path N∗
i , is

93, 000 and 14, 000 for the 1st strike price function and 2nd strike price function,
respectively. The error convergence results are presented in the right side of Fig. 4.

Table 1. Input parameters for monte carlo numerical analysis.

Risk-free Interest Rate Revenue

Mean Reverting Speed kr = 0.05 Mean Reverting Speed kR = 0.05
Long-run Equilibrium Level ur = 0.05 Long-run Equilibrium Level uR = 100

Volatility σr = 0.004 Volatility σR = 4
Correlation coefficient b/w r and R rho = 0.5

Maturity T = 10
Interval ∆t = 0.5

risk-adjusted discount rate u = 0.055
Revenue α% Share 40%

Constant Parameter in ψ1 15
Constant Parameter in ψ2 3
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Fig. 3. Residual value and strike prices relative to ψ1 and ψ2.

Fig. 4. Value and error convergence results for specific N path numbers.
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6. Numerical Example Extension

The numerical example can be extended to the case where the strike prices K↑
i and

K↓
i are not anymore deterministic but random processes depending on the revenue

Ri as in Eq. (6.1).


K↑
i =


 n∑

j=i+1

(E[cj |Ri] ·Dj,i) + PnDn,i


+ ψ↑

i

K↓
i =


 n∑

j=i+1

(E[cj |Ri] ·Dj,i) + PnDn,i


− ψ↓

i

(6.1)

Unlike deterministic residual PBS value in Eq. (3.3), the first component of Eq. (6.1)
gives the expected payout, given the revenue and the interest rate at time i, if
both the issuer and investor do not exercise their options until maturity. This new
formulation of the strike prices would be more fair to both issuer and the investor
than the definition of Eq. (3.3). This is because when Ri is high, the investor expects
the residual PBS payoff to be high. Therefore it seems unfair to the investor if the
issuer exercises her call option using the strike price K↑

i defined in Eq. (3.3), which
might be lower than the investor’s expected payoff. On the other hand, when Ri

is low, the issuer expects the residual PBS payoff to be low. If K↓
i is defined as in

Eq. (3.3), the issuer would pay more than she expects when the investor exercise
her option. It is worth noting that, due to the mean reverting feature of the revenue
process (2.1), the values of the random strike prices of Eq. (6.1) closely float around
the deterministic strike prices defined in Eq. (3.3). For the computational analysis,
the conditional expected payoff in Eq. (6.1) is given by

E[cω(k)
i+1 |Rω(k)

i ] = α%Rω(k)
i exp(−kR ∆t)

+

(
uR − u− r

ω(k)
i

kR

)
(1 − exp(−kR∆t)) (6.2)

For each simulated path ω(k), the corresponding pairs of strike price sequences is


K
↑,ω(k)
i =


 n∑

j=i+1

(E[cω(k)
j |Rω(k)

i ] ·Dj,i) + PnDn,i


+ ψ↑

i

K
↓,ω(k)
i =


 n∑

j=i+1

(E[cω(k)
j |Rω(k)

i ] ·Dj,i) + PnDn,i


− ψ↓

i

(6.3)

The convergence results for the two types of strike functions are shown in the left
side of Fig. 5. If the relative error and tolerated error is defined the same as section
§5, the number of paths that makes the error converge, i.e. burn-in path N∗

i , is
47,000 and 18,000 for the 1st strike price function and 2nd strike price function,
respectively. The error convergence results are presented in the right side of Fig. 5.



August 17, 2010 14:35 WSPC/S0219-0249 104-IJTAF SPI-J071
S021902491000598X

764 F. Dong, N. Chiara & J. Vecer

Fig. 5. Value and error convergence results for specific N path numbers under stochastic strike
prices.

7. Conclusions

We have shown how to implement the pricing of callable and putable revenue
performance-linked PBS with two random factors, the revenue generated by a
pool of projects and the risk-free interest rate. This debt instrument allows both
issuers and investors to hedge the risks against the detrimental fluctuation of project
revenues and interest rates. Under the reasonable assumptions of non-arbitrage and
no default, the pricing of the performance-linked PBS, along with the embedded
options, is performed with a new dynamic programming procedure, the multi-linear
regression Monte Carlo method, which is both fast and precise.
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[4] H. J. Büttler and J. Waldvogel, Pricing callable bonds by means of green’s function,
Mathematical Finance 6 (1996) 53–88.

[5] N. Chiara, M. J. Garvin and J. Vecer, Valuing simple multiple-exercise real options
in infrastructure projects, J. Infrastruct. Syst. 13(2.2) (2007) 97–104.

[6] Y. d’Halluin, P. A. Forsyth, K. R. Vetzal and G. Labahn, A numerical PDE approach
for pricing callable bonds, Applied Mathematical Finance 8 (2001) 49–77.

[7] H. A. Davis, Project Finance: Practical Case Studies (Euromoney Books, London,
2003).

[8] H. A. Davis, Infrastructure Finance: Trends and Techniques (Euromoney Books,
London, 2008).

[9] J. C. Hull, Options, Futures, and Other Derivatives (Prentice Hall, NJ, 2003).
[10] J. C. Hull and A. White, Pricing interest-rate derivative securities, Review of Finan-

cial Studies 3 (1990) 573–592.
[11] S. Hyun, T. Nishizawa and N. Yoshino, Exploring the use of revenue bond for infras-

tructure financing in Asia, JBIC Institute Discussion Paper, No. 15 (2008).
[12] F. A. Longstaff and E. S. Schwartz, Valuing American options by simulation: A simple

least-squares approach, Rev. Financ. Stud. 14(2.1) (2001) 113–147.
[13] A. Mody, Infrastructure Delivery: Private Initiative and Public Good (Economic

Development Institute of The World Bank, Washington, D.C., 1996).
[14] W. B. Powell, Approximate Dynamic Programming: Solving the Curses of Dimen-

sionality (Wiley, New York, 2007).
[15] T. F. Sing, S. E. Ong and C. F. Sirmans, Asset-backed securitization in Singapore:

Value of embedded buy-back options, J. Real Estate Finance and Economics 27(2.2)
(2003) 173–89.

[16] O. Vasicek, An equilibrium characterization of the term structure, Journal of Finan-
cial Economics 5 (1977) 177–188.

[17] S. Weisberg, Applied Linear Regression (Wiley, New York, 2005).


	1 Background
	2 Underlying Stochastic Processes 
	2.1 Stochastic process for revenue
	2.2 Stochastic process for interest rate

	3 Mechanism of Callable or Putable Performance-Linked PBS
	4 Pricing via Dynamic Programming
	5 Numerical Example
	6 Numerical Example Extension 
	7 Conclusions

