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Abstract

We study drawdowns and rallies of Brownian motion. A rally is defined as the difference of
the present value of the Brownian motion and its historical minimum, while the drawdown is
defined as the difference of the historical maximum and its present value. This paper determines
the probability that a drawdown of a units precedes a rally of b units. We apply this result to
examine stock market crashes and rallies in the geometric Brownian motion model.

1 Introduction

In this paper we determine the probability that a drawdown precedes a rally in the Brownian
motion model. The probabilities are computed by means of the distribution function of the random
variables y+

T1(a) and y−T2(b), where y+
T1(a) represents the value of the upward rally when the drawdown

process reaches the level a for the first time, and y−T2(b) represents the value of the drawdown when
the upward rally process reaches the level b for the first time. Using the results of Taylor [12] and
Lehoczky [5] concerning the distribution of a stopped drifted Brownian motion at the first time
of the downfall of level a, we are able to show that the probability density functions of y+

T1(a) and
y−T2(b) are exponential, but with a discrete mass at 0. The paper concludes with a solution to the
problem of computing the probability that a drop of (100 · α)% from the running maximum of a
stock price occurs before a rally of (100 ·β)% from its running minimum, given that the stock price
follows a geometric Brownian motion.

Risk management of drawdowns and portfolio optimization with drawdown constraints is be-
coming increasingly important among the practitioners. Chekhlov et. al. [3] studied drawdown
measures in porfolio optimization. Magdon-Ismail et. al. [6] determined the distribution of the
maximum drawdown of Brownian motion.

Our results are connected to a recent paper by Meilijson [7], where the results of Taylor [12]
and Lehoczky [5] are used to derive the expected time to a given drawdown of Brownian motion, as
well as the stationary distribution of the drawdown process. An alternative derivation of the above
expected value based on the expected delay of the CUSUM stopping time, appears in Hadjiliadis
& Moustakides [4]. The CUSUM stopping time was first proposed by Page [9] and was used
subsequently as a means of detecting a regime change in the Brownian motion model (see Shiryaev
[10], Beibel [2], and Moustakides [8]).

In the next section we first outline the main results of the paper. We then proceed to give an
example of an application of these results in the examination of stock market crashes and rallies.
We finally give some concluding remarks.
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2 Results

Consider the process Xt with the following dynamics:

Xt = σWt + γt,

where γ, σ ∈ R and Wt is a standard Brownian motion process.

The quantity
Xt − inf

s∈[0,t]
Xs

measures the size of the rally comparing the present value of the process to its historical minimum,
while the quantity

sup
s∈[0,t]

Xs −Xt

measures the size of the drawdown comparing the present value of the process to its historical
maximum.

The aim of this section is to determine the probability that a drawdown of size a precedes a
rally of size b. We introduce the stopping times:

T1(a) = inf{t ≥ 0 : sup
s∈[0,t]

Xs −Xt = a, a ∈ R+},

and

T2(b) = inf{t ≥ 0 : Xt − inf
s∈[0,t]

Xs = b, b ∈ R+}.

Consider the stopping time T (a, b) = T1(a)∧T2(b). The stopping times T1(a) and T2(b) indicate
respectively, the first time that the drawdown process reaches the critical level a, T1(a), and the
first time the upward rally process reaches the critical level b, T2(b). In this section, we compute
the probabilities of the events {T (a, b) = T1(a)}, which represents the event that the drawdown of
size a occurs before the rally of size b, and {T (a, b) = T2(b)}, which represents the event that the
rally of size b occurs before the drawdown of size a.

In order to simplify notation we introduce the following processes:

m+
t := inf

s∈[0,t]
Xs,

m−
t := inf

s∈[0,t]
(−Xs) = − sup

s∈[0,t]
Xs,

y+
t := Xt −m+

t ,

y−t := −Xt −m−
t .

Using the above notation, the stopping times T1(a) and T2(b) become

T1(a) = inf{t ≥ 0 : y−t = a, a ∈ R+}
T2(b) = inf{t ≥ 0 : y+

t = b, b ∈ R+}

Theorem 2.1 Let Xt = σWt +γt be a standard Brownian motion with drift parameter γ ∈ R, and
variance parameter σ ∈ R; T , T1 and T2 be the stopping times defined above. We distinguish the
following two cases:
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1. b ≥ a > 0

The probability of the drawdown preceding the rally, or the rally preceding the drawdown, are
given respectively by

P
(
T (a, b) = T1(a)

)
= mA + (1−mA) ·

[
1− exp

(
−

2γ

σ2

e
2γ

σ2 a−1

· (b− a)
)]

,(2.1)

P
(
T (a, b) = T2(b)

)
= (1−mA) · exp

(
−

2γ

σ2

e
2γ

σ2 a−1

· (b− a)
)

,(2.2)

where

mA =
e−

2γ

σ2 a + 2γ
σ2 a− 1

e
2γ

σ2 a + e−
2γ

σ2 a − 2
.(2.3)

2. a ≥ b > 0

The probability of the drawdown preceding the rally, or the rally preceding the drawdown, are
given respectively by

P
(
T (a, b) = T1(a)

)
= (1−mB) · exp

(
−

2γ

σ2

1−e
− 2γ

σ2 b
· (a− b)

)
,(2.4)

P
(
T (a, b) = T2(b)

)
= mB + (1−mB) ·

[
1− exp

(
−

2γ

σ2

1−e
− 2γ

σ2 b
· (a− b)

)]
,(2.5)

where

mB =
e

2γ

σ2 b − 2γ
σ2 b− 1

e
2γ

σ2 b + e−
2γ

σ2 b − 2
.(2.6)

The proof of the theorem uses the following proposition:

Proposition 2.2 The probability distribution functions of the random variables y+
T1(a) and y−T2(b)

are given by:

1.

P (y+
T1(a) = 0) = mA,(2.7)

P (y+
T1(a) ∈ dr) = (1−mA) ·

[
2γ

σ2

e
2γ

σ2 a−1

· exp
(
−

2γ

σ2

e
2γ

σ2 a−1

· r
)]

dr , r > 0,(2.8)

where mA is given by equation (2.3).

2.

P (y−T2(b) = 0) = mB,(2.9)

P (y−T2(b) ∈ dr) = (1−mB) ·
[

2γ

σ2

1−e
− 2γ

σ2 b
· exp

(
−

2γ

σ2

1−e
− 2γ

σ2 b
· r

)]
dr , r > 0,(2.10)

where mB is given by equation (2.6).
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Before we proceed to the proof of the two above results, let us notice that all of equations
(2.1), (2.2), (2.4), (2.5), (2.3), (2.6), as well as the distributions of the random variables y+

T1(a),

and y−T2(b), as they appears in Proposition 2.2 depend on the ratio 2γ
σ2 . This ratio is called the

adjustment coefficient and appears in the insurance risk literature, see Asmussen [1]. To illustrate
the probabilities that appear in Theorem 2.1, we include a graph of the densities of the random
variables y+

T1(a), and y−T2(b) (see Figure 1).

(a) (b)

Figure 1: Part (a) depicts the distribution of the random variable y+
T1(a)

, and the gray area marks the P (T (a, b) = T1(a)),

in the case that b ≥ a. Part (b) depicts the distribution of the random variable y−
T2(b)

, and the gray area marks the

P (T (a, b) = T2(b)), in the case that a ≥ b.

In order to prove Proposition 2.2 and Theorem 2.1, we will need the following two lemmas.

Lemma 2.3 For a, b ∈ R+, we have:

E [T1(a)] =
e

2γ

σ2 a − 2γ
σ2 a− 1

2γ
σ2

2 ,(2.11)

E [T2(b)] =
e−

2γ

σ2 b + 2γ
σ2 b− 1

2γ
σ2

2 .(2.12)

Proof. Let g(x) = e−
2γ

σ2 x + 2γ
σ2 x− 1. By applying Itô’s rule to the process g(y+

t ) we get

dg(y+
t ) = σg′(y+

t )dWt + γg′(y+
t )dt− g′(y+

t )dm+
t +

1
2
σ2g′′(y+

t )dt.(2.13)

We notice that the third term in the right hand side of the above equality disappears because
dm+

t 6= 0 only when y+
t = 0 and g′(0) = 0. We also notice that the function g satisfies the second

order differential equation

γg′(x) +
1
2
σ2g′′(x) =

2γ2

σ2
.(2.14)

Solving equation (2.13), we get:

g(y+
t )− g(0) =

∫ t

0
σg′(y+

s )dWs +
∫ t

0

(
γg′(y+

t ) +
1
2
g′′(y+

t )
)

ds(2.15)
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Let

Sn = inf{t ≥ 0;
2γ2

σ2
t ≥ n}.

Let Tn
2 (b) = T2(b)∧Sn. Obviously, Tn

2 (b) is a.s. finite. On the event {Tn
2 (b) ≥ t}, we have {y+

t ≤ b}.
Consequently,

E

[∫ T n
2 (b)

0

2γ2

σ2
g′(y+

s )ds

]
≤ (

g′(b)
)2

n < ∞.(2.16)

Evaluating (2.15) at Tn
2 (b), and taking expectations, while using equations (2.14) and (2.16) we get

E
[
g(y+

T n
2 (b))

]
=

2γ2

σ2
E [Tn

2 (b)] .

But

g(b) ≥ E
[
g(y+

T n
2 (b))

]
.(2.17)

Hence we have that

g(b) ≥ 2γ2

σ2
E [Tn

2 (b)] ≥ 2γ2

σ2
E

[
1{T n

2 =∞}
]
.

Letting n →∞ and using the bounded convergence theorem, we deduce that T2(b) is finite a.s. as
well.

Evaluating both sides of equation (2.15) at T2(b), and taking expectations of both sides,
while using equation (2.14), and the fact that the quadratic variation of the stochastic integral∫ T2(b)
0 g′(y+

t )dWt is finite (this follows from equation (2.16) and the a.s. finiteness of T2(b)), we get

g(b) =
2γ2

σ2
E [T2(b)] .(2.18)

Consequently,

E [T2(b)] =
g(b)
2γ2

σ2

.(2.19)

Similarly, we can show that

E [T1(a)] =
g(−a)

2γ
σ2

2 .(2.20)

This concludes the proof of the lemma. ¦

Lemma 2.4 We have
y+

t + y−t = max{sup
s≤t

y+
s , sup

s≤t
y−s }.

Proof. Observe that

(2.21) y+
t + y−t = −m+

t −m−
t .

We notice that the process y+
t +y−t can only increase when either Xt = m+

t or −Xt = m−
t , both

of which cannot happen at the same time, since that would imply that y+
t + y−t is 0. Therefore,

y+
t + y−t is a constant as a function of time unless either y+

t = 0 or y−t = 0, at which instant t, we
simultaneously have:
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1. max{y+
t , y−t } = max

{
{sups≤t y+

s , sups≤t y−s }
}

,

2. sups≤t(y+
s + y−s ) = y+

t + y−t .

This completes the proof of the lemma. ¦
As a consequence of this lemma we have

y+
T1(a) = ( max

t≤T1(a)
y+

t − a) ∨ 0,(2.22)

y−T2(b) = ( max
t≤T2(b)

y−t − b) ∨ 0.(2.23)

Finally, in order to proceed to the proof of Proposition 2.2 and Theorem 2.1, we will use the
results of Taylor in [12] and Lehoczky in [5]. Taylor computes the bivariate Laplace transform of
XT1(a) and T1(a), where T1 is defined as above. Lehoczky pointed out that the random variable
XT1(a) + a = supt≤T1(a) Xt has the exponential distribution:

XT1(a) + a ∼ Exp
(

2γ

σ2

e
2γ

σ2 a−1

)
.(2.24)

Note that the exponential parameter becomes equal to 1
a in the case when γ = 0. Now we can

proceed to the proof of Proposition 2.2 and then to the proof of Theorem 2.1.

Proof of Proposition 2.2. We will only compute the probability density function of the random
variable y+

T1(a) since the computation of the probability density function of the random variable y−T2(b)

is done in a similar way. From equation (2.22), it follows that

P
(
y+

T1(a) = 0
)

= P
(

max
t≤T1(a)

y+
t < a

)
,(2.25)

while

(2.26) P
(
y+

T1(a) ∈ dr
)

= P
(

max
t≤T1(a)

y+
t ≥ a

)
· P

(
y+

T1(a) ∈ dr | max
t≤T1(a)

y+
t ≥ a

)

= P
(
y+

T1(a) > 0
)
· P

(
y+

T1(a) ∈ dr | y+
T1(a) > 0

)
, r > 0.

In the next discussion we first demonstrate

L
(
y+

T1(a) | y+
T1(a) > 0

)
= L

(
XT1(a) + a

)
.(2.27)

To see this, let

R1 = sup{t ≤ T1(a); y+
t = 0}.(2.28)
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Fix r > 0. Then

P
(
y+

T1(a) ∈ dr | y+
T1(a) > 0

)
=

P

(
XT1(a)−infs≤T1(a) Xs∈dr

)

P

(
maxt≤T1(a) y+

t ≥a

)

=
P

(
XT1(a)−XR1

+XR1
−infs≤T1(a) Xs∈dr | R1<T1(a)

)
·P

(
R1<T1(a)

)

P

(
maxt≤T1(a)(Xt−XR1

+XR1
−infs≤t Xs)≥a | R1<T1(a)

)
·P

(
R1<T1(a)

)

=
P

(
XT1(a)−XR1

+XR1
−infs≤R1

Xs∈dr | R1<T1(a)

)

P

(
maxt≤T1(a)(Xt−XR1

+XR1
−infs≤R1

Xs)≥a | R1<T1(a)

) =
P

(
XT1(a)−XR1

∈dr | R1<T1(a)

)

P

(
maxt≤T1(a) Xt−XR1

≥a | R1<T1(a)

)

=
P

(
XT1(a)−XR1

∈dr | R1<T1(a)

)

P

(
maxR1≤t≤T1(a) Xt−XR1

≥a | R1<T1(a)

) =
P (XT1(a)∈dr)

P (maxt≤T1(a) Xt≥a)

= λe−λre−λadr
e−λa = λe−λrdr = P (XT1(a) + a ∈ dr),

where λ =
2γ

σ2

1−e
− 2γ

σ2 a
. Therefore, we get

P
(
y+

T1(a) ∈ dr | y+
T1(a) > 0

)
∼ Exp

(
2γ
σ2

e
2γ

σ2 a − 1

)
, r > 0.(2.29)

From equation (2.22), it follows that

P (y+
T1(a) = 0) = P

(
T1(a) < T2(a)

)
.(2.30)

To compute P
(
T1(a) < T2(a)

)
, we first notice that

T1(a) = T (a, b) +
(
T1(a)− T (a, b)

)
1{T (a,b)=T2(b)},(2.31)

T2(b) = T (a, b) +
(
T2(b)− T (a, b)

)
1{T (a,b)=T1(a)}.(2.32)

Taking expectations we get

E [T1(a)] = E [T (a, b)] + E
[(

T1(a)− T (a, b)
)
1{T (a,b)=T2(b)}

]
,(2.33)

E [T2(b)] = E [T (a, b)] + E
[(

T2(b)− T (a, b)
)
1{T (a,b)=T1(a)}

]
.(2.34)

With a = b and equation (2.22), it follows that

E [T1(a)] = E [T (a, a)] + E [T1(a)] · P
(
T2(a) < T1(a)

)
,(2.35)

E [T2(a)] = E [T (a, a)] + E [T2(a)] · P
(
T1(a) < T2(a)

)
.(2.36)

Using
P

(
T1(a) < T2(a)

)
+ P

(
T2(a) < T1(a)

)
= 1
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and equations (2.35) and (2.36), we conclude that

P
(
T1(a) < T2(a)

)
=

E [T2(a)]
E [T2(a)] + E [T1(a)]

.(2.37)

The result now follows by substituting (2.29), (2.30), (2.37) into equations (2.26), and (2.25), while
using Lemma 2.3. This completes the proof of Proposition 2.2. ¦
Proof of Theorem 2.1. We will prove the theorem in the case that b ≥ a since the proof is
similar in the case a ≥ b. Suppose that b ≥ a.

From Lemma 2.4 and equation (2.22), it follows that on the event {T1(a) < T2(b)} we have

y+
T1(a) =

{
0 if maxs≤T1(a) y+

s < a,

maxs≤T1(a) y+
s − a if a ≤ maxs≤T1(a) y+

s < b.
(2.38)

Therefore,

P
(
T1(a) < T2(b)

)
= P (y+

T1(a) = 0) +
∫ b−a

0+

P (y+
T1(a) ∈ dr),(2.39)

and the result is obtained from Proposition 2.2. This completes the proof of Theorem 2.1. ¦

Corollary 2.5 Let Xt = Wt be a standard Brownian motion and let T , T1 and T2 be stopping
times defined as above. We distinguish the following two cases:

1. b ≥ a > 0

The probability of the drawdown preceding the rally, or the rally preceding the drawdown, are
given respectively by

P
(
T (a, b) = T1(a)

)
=

1
2

+
1
2
·
[
1− e−

1
a
(b−a)

]
,(2.40)

P
(
T (a, b) = T2(b)

)
=

1
2
· e− 1

a
(b−a).(2.41)

2. a ≥ b > 0

The probability of the drawdown preceding the rally, or the rally preceding the drawdown, are
given respectively by

P
(
T (a, b) = T1(a)

)
=

1
2
· e− 1

b
(a−b),(2.42)

P
(
T (a, b) = T2(b)

)
=

1
2

+
1
2
·
[
1− e−

1
b
(a−b)

]
.(2.43)

Proof. It is a simple consequence of Theorem 2.1 by taking the limit as γ → 0. ¦

Corollary 2.6 Let Xt = Wt be a standard Brownian motion. The probability distribution function
of the random variables y+

T1(a) and y−T2(b) are given by
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1.

P (y+
T1(a) = 0) =

1
2
,(2.44)

P (y+
T1(a) ∈ dr) =

1
2
·
[
1
a
e−

1
a
r

]
dr , r > 0.(2.45)

2.

P (y−T2(b) = 0) =
1
2
,(2.46)

P (y−T2(b) ∈ dr) =
1
2
·
[
1
b
e−

1
b
r

]
dr , r > 0.(2.47)

Proof. The above corollary is a consequence of Proposition 2.2 by letting γ
σ2 → 0. ¦

A graph of the distribution of each of the random variables y+
T1(a), and y−T2(b) appears in Figure

2 below.

(a) (b)

Figure 2: Part (a) depicts the distribution of the random variable y+
T1(a)

for γ = 0, and the gray area marks the

P (T (a, b) = T1(a)), in the case that b ≥ a. Part (b) depicts the distribution of the random variable y−
T2(b)

for γ = 0, and

the gray area marks the P (T (a, b) = T2(b)), in the case that a ≥ b.

Example: Stock Market Crashes and Rallies. Suppose that we have a stock St whose
dynamics follow a geometric Brownian motion:

(2.48) dSt = µStdt + σStdWt.

What is the probability that this stock would drop by (100·α)% before it incurs a rally of (100·β)%?
We can solve this problem by using Theorem 2.1. First observe that

(2.49) St = S0 exp
(
(µ− 1

2σ2)t + σWt

)
= S0 exp(σXt),

where Xt = Wt+(µ
σ− σ

2 )t. Let U1(α) be the first time the stock drops by (100·α)% from its running
maximum and U2(β) be the first time the stock rallies by (100 · β)% from its running minimum.
Let

Mt = sup
0≤s≤t

Ss,

9



and
Nt = inf

0≤s≤t
Ss.

Notice that

(2.50) U1(α) = inf{t ≥ 0 : St ≤ (1− α)Mt}
= inf{t ≥ 0 : sup

0≤s≤t
Xs −Xt ≥ − 1

σ log(1− α)} = T1(− 1
σ log(1− α)),

and

(2.51) U2(β) = inf{t ≥ 0 : St ≥ (1 + β)Nt}
= inf{t ≥ 0 : Xt − inf

0≤s≤t
Xs ≥ 1

σ log(1 + β)} = T2( 1
σ log(1 + β)).

Thus

(2.52) P (U1(α) < U2(β)) = P
(
T1(− 1

σ log(1− α)) < T2( 1
σ log(1 + β))

)
,

and we can apply Theorem 2.1 with the following parameters: a = − 1
σ log(1−α), b = 1

σ log(1+β),
γ = µ

σ − σ
2 . The resulting probability is given by:

(2.53) P (U1(α) < U2(β)) =
(1+β)

−[2 µ

σ2−1]
+

(
2 µ

σ2−1
)
·log(1+β)−1

(1+β)
−[2 µ

σ2−1]
+(1+β)

[2 µ

σ2−1]−2

· [(1− α)(1 + β)]


 2

µ

σ2−1

1−(1+β)
[2 µ

σ2−1]




,

when α ≥ β
1+β , and

(2.54) P (U1(α) < U2(β)) = 1− (1−α)
−[2 µ

σ2−1]
+

(
2 µ

σ2−1
)
·log(1−α)−1

(1−α)
−[2 µ

σ2−1]
+(1−α)

[2 µ

σ2−1]−2

·[(1− α)(1 + β)]


 2

µ

σ2−1

1−(1−α)
[2 µ

σ2−1]




,

when α ≤ β
1+β . In the case when µ = 1

2σ2, the above formulae simplify to

(2.55) P (U1(α) < U2(β)) = 1
2 [(1− α)(1 + β)]

1
log(1+β) ,

when α ≥ β
1+β , and

(2.56) P (U1(α) < U2(β)) = 1− 1
2 [(1− α)(1 + β)]

1
log(1−α) ,

when α ≤ β
1+β .

3 Concluding remarks

In this paper, we are able to compute the probability that a drawdown of size a occurs before an
upward rally of size b in the drifted Brownian motion model and use this result to compute the
probability that a drop of a given percentage α from the running maximum of a stock occurs before
a rise of a given percentage β from the running minimum of a stock.
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In the case of a more general model, such as for example a general Markovian or non-Markovian
model, there are some useful formulas that do result from renewal considerations, but we might
not be able to obtain closed form expressions as they appear in Theorem 2.1. To be more specific,
let us assume that we are in the case that b > a. Then the following equation holds regardless of
the underlying model dynamics:

P (T2(b) < T1(a)) = P (T2(a) < T1(a)) · P (T2(b) < T1(a)|T2(a) < T1(a)) ,(3.1)

where P (T2(a) < T1(a)) can be readily computed using equation (2.37). This equation in turn,
is computed using equations (2.35), (2.36), both of which follow by a renewal type of argument,
and hold regardless of the underlying model. However, the term P (T2(b) < T1(a)|T2(a) < T1(a)),
will very clearly depend on the underlying model. This represents is the probability that the rally
process y+

t will reach level b before the drawdown process y−t reaches level a, given that y+
t reached

level a before y−t did. That is the same as the probability that the underlying process travels an
extra upward distance of b − a before it drops below its running maximum by a units. We can
hope for a closed form formula of this probability only in the case that the underlying process has
independent increments. Notice that in case of independent increments, both the drawdown process
and the rally process are Markovian. However, if the assumption of independent increments does
not hold, the above conditional probability will be path dependent in even in a Markovian model,
resulting in potentially complicated computations.

Similarly, it is important to notice that (2.27) is true regardless of the underlying model (the
proof of this result is also based on renewal type of arguments and appears in the long equation
before (2.29)). However, the exact distribution of the XT1(a)+a = supt≤T1(a) Xt, will heavily depend
on the assumption of the underlying model. Our results can be applied in a straightforward way
for diffusion models for which the distribution of supt≤T1(a) Xt is explicitly known, which is a fairly
large class of diffusions (see for instance Lehoczky [5]).

As a consequence of the fact that our results address diffusion models that satisfy the con-
ditions that appear in Lehoczky [5], important financial models of a mean-reverting character or
drift-varying character with a constant adjustment coefficient are included. For instance the Cox-
Ingersoll-Ross model for interest rates falls into this setting. From that perspective our results
might be used quite universally. Moreover, even in more general type of jump-models, that result
in fat-tailed distributions, equations (3.1), (2.37), as well as (2.27) all hold true, and could be used
as starting points in the estimation of the probabilities of the events in Theorem 2.1.

Finally, it is worth pointing out that using these results, one can compute the expected time
of the minimum of the stopping times T1(a) and T2(b). This is of great interest for detecting a
regime change in the case of two-sided alternatives. Stopping times such as the minimum of T1(a)
and T2(b) resemble the 2-CUSUM stopping rule that has traditionally been used in the detection of
regime changes in the presence of two-sided alternatives (see for example Hadjiliadis & Moustakides
[4], Tartakovsky [11]).
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