1 Introduction to Epidemic Modelling

1.1 Some Background

Infectious agents have had decisive influences on the history of mankind.
Fourteenth century Black Death has taken lives of about a third of Europe’s
population at the time. The first major epidemic in the USA was Yellow
Fever epidemic in Philadelphia in 1793, in which 5,000 people died out of a
population of 50,000. This epidemic has had a major impact on the life and
politics of the country. Thucydides describes the Plague of Athens (430-428
BC): 1,050 of 4,000 soldiers on an expedition died of a disease. Thucydides
gives a detailed account of symptoms: some so horrendous that the last one
- amnesia - seems a blessing (Bailey, 1975). An interesting feature of this
account is that there is no mention of person-to-person contagion, which we
now suspect with most new diseases. It was not until the 19th century that
the person-to-person contageon was beginning to be discussed. In this course,
we will mostly be interested in modelling infectious diseases, where the major
means of disease spread comes from the person-to-person interaction.

The practical use of epidemic models must rely heavily on the realism put
into the models. This doesn’t mean that a reasonable model can include
all possible effects but rather incorporate the mechanisms in the simplest
possible fashion so as to maintain major components that influence disease
propagation. Great care should be taken before epidemic models are used for
prediction of real phenomena. However, even simple models should, and often
do, pose important questions about the underlying mechanisms of infection
spread and possible means of control of the disease or epidemic.

We begin with classical papers by Kermack and McKendrick (1927, 1932,
and 1933). These papers have had a major influence on the development
of mathematical models for disease spread and are still relevant in many
epidemic situations. The first of these papers laid out a foundation for mod-
elling infections which, after recovery, confer complete immunity (or in case
of lethal diseases - death). The population is taken to be constant - no births
or deaths other than from the disease are possible - consistent with the course
of an epidemic being short compared with the life time of an individual. If



a group of infected individuals is introduced into a large population, a basic
problem is to describe the spread of the infection within the population as
a function of time. In the course of time the epidemic may come to an end.
One of the most important questions in epidemiology is to ascertain whether
this occurs only when all of the initially susceptible individuals have con-
tracted the disease or if some interplay of infectivity, recovery, and mortality
factors may result in epidemic “die out” with many susceptibles still present
in the unaffected population.

In their first paper Kermack and McKendrick (1927) start with the assump-
tion that all members of the community are initially equally susceptible to
the disease, and that a complete immunity is conferred after the infection.
The population is divided into three distinct classes: the susceptibles, S, -
healthy individuals who can catch the disease; the infecteds, I, - those who
have the disease and can transmit it; and the removed, R, - individuals who
have had the disease and are now immune to the infection (or removed from
further propagation of the disease by some other means). Schematically, the

individual goes through consecutive states S — I — R. Such models are
often called the SIR models.

1.2 General Epidemic Process

A particular instance of the SIR model is the general epidemic process (Ker-
mack and McKendrick, 1927). Let S, I;, and R; be the number of susceptible,
infected and removed individuals, respectively, at time ¢. Assume that

e S+ 1, + R, = N (i.e. the population is closed);

e an individual comes into contact with any another individual at the
rate o per unit time;

e upon contact with an infected a susceptible individual contracts the
disease with probability «s, at which time he immediately becomes
infected and infectious (no incubation period);

e infecteds recover at an individual rate p per unit time.



This defines a continuous time Markov Chain with the state (S, I;). Condi-
tional on S; = S and I; =1

Pt(St+h = S — 17]t+h = .[ + ].) = OZS]h + O(h)
Pt(St+h = S, [t+h =1 1) = p[h + O(h),

where @ = a1 X s, and

Et(StJrh — St) = —aSIh + O(h)
Et(]t-‘rh — [t) = O{S[h — plh ‘l— O(h)
If we now formally take h — 0 we arrive at the dynamical system

s,

— = —OéSt[t
o M
E = CYStIt — p[t

System (1) is the classic Kermack-McKendrick deterministic model. To in-
vestigate the infection spread under this model, we only need to consider
nonnegative solutions for S, I, and R. The epidemic stops when I, = 0
for the first time. Before we justify the approximation of the general epi-
demic process by the Kermack-McKendrick deterministic model, let us look
at system (1) more closely.

Suppose Iy > 0, Sy > 0, and Ry = 0 (this guarantees that R, > 0 for all
t > 0). The key questions is, given parameters «, p and the initial number of
infecteds and susceptibles, whether the infection spreads and how it develops
with time. Notice that S; decreases with ¢, and

dI, < L(So—p) <Oforallt>0, ifS)<p/a
(@S = p)

g
dt ! > 0 for some t > 0, if So > p/a.

In the case when Sy < p/a, the number of infecteds monotonically decreases
with time, that is no epidemic can occurs. By an epidemic we mean the
situation when I; > Iy for some ¢ > 0. On the other hand, when Sy > p/a,
dl;/dt > 0 at least initially, and the number of infecteds increases in the
beginning. We observe the threshold phenomena at Sy = p/a, or qualitatively
different infection spread above and below this level.
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The critical parameter Ry = «aSy/p is called the basic reproduction number,
and is defined as the number of secondary infections introduced by one pri-
mary infection into a wholly susceptible population. We will see that much
like in the case of system (1) in many epidemic models R = 1 is the critical
value; R < 1 implies no epidemic and R > 1 that an epidemic is possible.

1.2.1 Law of Large Numbers for General Epidemic Processes

We will now define and show rigorously why the trajectories of system (1)
approximate general epidemic processes. This amounts to proving the Law of
Large Numbers for the family of stochastic processes defined by the general
epidemic processes indexed by the population size N. Let s¥ = S;/N, il¥ =
I;/N, and r) = R;/N = 1 — s — il be the proportion of susceptibles,
infecteds, and recovered respectively. Let the infection rate a depend on N
in such a way that a = /N for some constant § > 0. In terms of population
proportions system (1) becomes (dividing both equations by N)

@ = —Qstit

at 2)
D sy — pi

i tlt — Pl

Trajectories of the dynamical system (2) lie in the triangle
K={(s,i):s+i<1,s>0,i>0}.

The general epidemic population proportion processes v~ = (sV,iY )50 take
values in

KN ={(s,i):s+i<1,(Ns,Ni) € Z2} C K.
Before we state the main theorem of this section, we describe a construction
of the general epidemic processes as time-changed Poisson processes that will
be used in the proof.

Let Y(t) be a rate one Poisson process. Then Y(ct) is a rate ¢ Poisson
process. Moreover, to construct a process with rate ¢; until time ¢, and rate
co thereafter, we could let

o Y(Clt), t S tl o t
Z(1) = { Y(eti + oot —t1), t>t B ¥ (/0 Mu)du) ’



where

Co, U >

<t
)\(u):{cla U =1

is the rate function.

We can construct the general epidemic processes in a similar manner. Be-
tween transitions of type S — I and I — R the rates are constant and are
equal to Nfs,i, and Npi, respectively. Let Y; and Y5 be two independent
rate one Poisson processes. Then for N € N

t t
Yi (/ Nquiudu) and Y5 (/ Npiudu)
0 0

count transitions of type S — [ and I — R respectively. Let y;(t) =
+Yi(Nt), i =1,2. Then

t
sV =)~y (/ qujfiivdu)
0
t t
it =i+ (/ stjifdu)—yg (/ piﬁ’du)
0 0

is a version of a general epidemic process constructed on the same proba-
bility space for every population size N € N (for rigorous details on this
construction see Ethier and Kurtz (1986)).

(3)

We are now ready to state the main result of this section. Let v¥ = (s, i)
be the general epidemic processes constructed by (3), and let 4 = (5, %) be
the trajectories of (2).
Proposition 1. If limy . 7} = 7o then for any 7' > 0

lim sup o — %) =0 as.

N—oo t<T

where || - || denotes the Euclidean distance in R?.

Proof. Let 3;(s) = y;(s) — s be the centered (and scaled) Poisson processes.
Omitting index N to simplify the notation

t
0

‘St — gt’ S |SO — <§O| +

t
/ O(Syiy — Suty)dul,
0




and

i — %] < |io — %] +

t t
0 0
t t
/ O(Suly — Suly)du / Pty — 7)du
0 0

Recall that the strong LLN for Poisson processes says that for any v > 0

+ +

lim sup |7;(u)| =0, as.

—00 <y

c(0) = max {in ([ t psaiata) e ([ t pidu) }.

Since fot 0syi,du < 0T and fot piydu < pT for all t < T the SLLN for Poisson
processes implies that limy ... sup,<pe(t) =0 as. 7 =1,2.

There exists an M > 0 such that
wsuiu - GEuZu] < MH’Vu - ”_YuH and |piu - mu| < MH’Yu — ’_VuH
Combining the estimates we get
t
|s¢ — S¢| < |so — So| +e(t) + M/ | — Julldu, and
0
t
i =5l < lio = ol +£(8) + M [ I =l
0

so that

t
e =l <2 (I = 5ol + 20+ 3 [ = 7).
0
Gronwall’s inequality (see below) implies that

17 = %ell < 2(lvo = Foll +(t)) ™™ — 0

as N — oo. O



Gronwall’s Inequality

Let f be an integrable function on [0,7]. If M > 0 and
t
OSf(t)Se—i-M/ f(s)ds, t<T
0

then f(t) <eeM' t <T.

The result says that under some conditions for large population sizes N the
population proportions of the general epidemic processes are well approxi-
mated by the trajectories of the deterministic system (2).
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