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Abstract

This contribution is devoted to the comparison of vari-
ous resampling approaches that have been proposed in the
literature on particle filtering. It is first shown using simple
arguments that the so-called residual and stratified meth-
ods do yield an improvement over the basic multinomial
resampling approach. A simple counter-example showing
that this property does not hold true for systematic resam-
pling is given. Finally, some results on the large-sample
behavior of the simple bootstrap filter algorithm are given.
In particular, a central limit theorem is established for the
case where resampling is performed using the residual ap-
proach.

1 Introduction

The terms particle filtering or Sequential Monte Carlo
(henceforth abbreviated to SMC), refer to a class of tech-
niques which have demonstrated a strong potential for sig-
nal and image processing applications [7], [17]. Schemat-
ically, the principle behind sequential Monte Carlo may be
viewed as the combination of two main elements: sequen-
tial importance sampling, which dates back to [16, 12], and
resampling, whose importance in the context of SMC was
first demonstrated by [11], based on ideas of [18]. In this
contribution, we focus on the second aspect and consider
the comparison of several techniques that have been pro-
posed to implement the resampling step.

To fix the notations, we briefly describe the basic SMC
approach known as sequential importance sampling with re-
sampling (or SISR). The algorithm proceeds as follows:

• At time 0, draw m particles {ξi0}1≤i≤m from a com-
mon probability density r0 and compute the associated
importance weights ωi0 = ν0(ξi0)g0(ξi0)/r0(ξi0).

• For successive time indices and for i = 1, . . . ,m, sim-
ulate ξik+1 independently from the past according to

a transition density function1 r(ξik, ·) and update the
weights as

ωik+1 = ωikq(ξ
i
k, ξ

i
k+1)gk+1(ξik+1)/r(ξik, ξ

i
k+1).

In the context of filtering, ν0 us the initial distribution of
the state variable, q is the transition density function cor-
responding to the, possibly non-linear, state equation (sup-
posed here to be time-homogeneous), and gk is the con-
ditional likelihood of the observation at index k given the
corresponding state, viewed as a function of the state vari-
able. Then, the self-normalized importance sampling esti-
mator

∑m
i=1 ω

i
kf(ξik)

/∑m
j=1 ω

j
k is an estimator of the fil-

tered state moment, that is the expectation of f applied to
the non-observable state variable at time k given all obser-
vations up to time k. Not that the choice r = q is par-
ticular in that the weight update formula then reduces to
ωik+1 = ωik gk+1(ξik+1) and thus depends only on the pre-
vious weight and new particle position; when used in con-
junction with resampling ideas to be discussed below this
choice (r = q) is known as the bootstrap filter [11].

The method sketched so far corresponds to the sequential
importance sampling algorithm, whose drawback is that it
becomes unstable as k increase due to the discrepancy be-
tween the weights – a phenomenon sometimes referred to
as weight degeneracy [1, Chapter 7]. To stabilize the al-
gorithm it is necessary to perform resampling sufficiently
often. In the following, we denote by {ξi, ωi}1≤i≤m the set
of particle positions and associated weights at some generic
time index k (which is omitted from our notations) and by
Gn the σ-field generated by the generations of particles and
weights up to time k, included. We also assume that the

1In this contribution it is assumed that all transition kernels K(x, dy)
may be written as k(x, y)λ(dy), where λ is a fixed reference measure
(which we usually do not specify); k is referred to as a transition den-
sity function. When ν is a probability density function and f a function,
we will use the usual notations ν(f) =

R
ν(x)f(x)λ(dx), kf(x) =R

k(x, x′)f(x′)λ(dx′), νk(x) =
R
ν(x′)λ(dx′)k(x′, x), and,

νkf =
R
ν(x)kf(x)λ(dx) =

R
νk(x)f(x)λ(dx)

=
RR

ν(x)k(x, x′)f(x′)λ(dx)λ(dx′).
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weights have already been normalized, i.e., that
∑m
i=1 ω

i =
1. Resampling consists in selecting new particle positions
and weights {ξ̃i, ω̃i}i=1,...,M̃ such that the discrepancy be-
tween the resampled weights {ω̃i}i=1,...,M̃ is reduced. Of
course, it is also necessary that the resampled particle sys-
tem be as good an approximation to {ξi, ωi}1≤i≤m as pos-
sible, in some suitable sense. There are a number of options
for performing resampling and we focus here on the most
widely used class of resampling techniques in which the re-
sampling is random and subject to the constraints

M̃ = n, (1)

ω̃ik = 1/n, (2)

E
[
N i
∣∣Gn] = nωik, for i = 1, . . . ,m, (3)

where n is a non-random integer and N i def= #{j, 1 ≤
j ≤ n : ξ̃j = ξi} are the particle duplication counts. The
third constraint is sometimes known as the “unbiasedness”
or “proper weighting” condition [15]. Of course, it is in
general most natural to keep the population size fixed and
n is often taken to be equal to m. In some situations how-
ever it does make sense to consider resampling scenarios in
which n and m are different, at least for some time indices,
and we thus keep separate notations for these two quantities.

Note that we do not consider here some important re-
sampling algorithms that are either such that the popula-
tion size varies (randomly) after resampling [4] or such that
the weights are not constrained to be equal after resam-
pling [10]. Our aim with the present contribution is to com-
plement the results previously published on resampling in
[15, 9, 14, 3] as well as to discuss some conjectures.

The rest of the paper is organized as follows: Section 2
briefly describes the four main resampling methods that
have been proposed in the literature which satisfy the con-
straints mentioned above. Section 3 shows that residual and
stratified resampling, as well as the combination of both,
improve over multinomial resampling in the sense of hav-
ing lower conditional variance. We also provide a counter-
example which shows that the same property does not hold
for systematic resampling, although its empirical perfor-
mance is generally found to be close to that of residual and
stratified resampling. Finally, we consider in Section 4 the
large sample (i.e., when n increases) behavior of particle
filtering methods which use these various forms of resam-
pling. We are currently able to show that, in general, central
limit theorems hold with the residual resampling approach,
although the target and proposal distributions must satisfy a
non trivial condition.

2 Description of Resampling Algorithms

2.1 Multinomial Resampling

The simplest approach to resampling is based on an idea
at the core of the bootstrap method [8] that consists in draw-
ing, conditionally upon Gn, the new positions {ξ̃i}1≤i≤n

independently from the common point mass distribution∑m
j=1 ωjδξj . In practice, this is achieved by repeated uses

of the inversion method:

1. Draw n independent uniforms {U i}1≤i≤n on the in-
terval (0, 1];

2. Set Ii = Dinv
ω (U i) and ξ̃i = ξI

i

, for i = 1, . . . , n,
where Dinv

ω is the inverse of the cumulative dis-
tribution function associated with the (normalized)
weights {ωi}1≤i≤m, that is, Dinv

ω (u) = i for u ∈
(
∑i−1
j=1 ω

j ,
∑i
j=1 ω

j ]. When needed, we will denote
by ξ : {1, . . . ,m} → X the function such that ξ(i) =
ξi, so that ξ̃i may also be written as ξ ◦Dinv

ω (U i).

This form of resampling is generally known as multinomial
resampling since the duplication countsN1, . . . , Nm are by
definition distributed according to the multinomial distribu-
tion Mult(n;ω1, . . . , ωm).

2.2 Residual Resampling

Residual resampling, or remainder resampling, is men-
tioned by [19], [15] as an efficient means to decrease the
variance due to resampling. In this approach, for i =
1, . . . ,m, we have

N i =
⌊
nωi

⌋
+ N̄ i, (4)

where b c denotes the integer part and N̄1, . . . , N̄n are dis-
tributed according to the multinomial distribution Mult(n−
R; ω̄1, . . . , ω̄n) with R =

∑m
i=1bnωic and

ω̄i =
nωi − bnωic

n−R
, i = 1, . . . ,m. (5)

This scheme obviously satisfy (3). In practice, the multi-
nomial counts N̄1, . . . , N̄n from the residual multinomial
distribution are generated as in the multinomial resampling
approach described above.

2.3 Stratified Resampling

Stratified resampling – see [13] and [9, Section 5.3] –
is based on ideas used in survey sampling and consists
in pre-partitioning the (0, 1] interval into n disjoint sets,
(0, 1] = (0, 1/n] ∪ · · · ∪ ({n − 1}/n, 1]. The U is are
then drawn independently in each of these sub-intervals:
U i ∼ U (({i− 1} /n, i/n]), where U([a, b]) denotes the
uniform distribution on the interval [a, b]. Then the inver-
sion method is used as in multinomial resampling. It is eas-
ily checked that, as was the case for residual sampling, the
difference between the duplication count N i and its target
value nωi is less than one in absolute value (for all is). In
addition,

E

[
n∑
i=1

f(ξ̃i)

∣∣∣∣∣Gn
]

= E

[
n∑
i=1

f ◦ ξ ◦Dinv
ω (U i)

∣∣∣∣∣Gn
]

= n
n∑
i=1

∫ i/n

(i−1)/n

f ◦ ξ ◦Dinv
ω (u) du = n

m∑
i=1

ωif(ξi),
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for all integrable functions f , showing that this algorithm
also satisfies (3).

2.4 Systematic Resampling

Systematic resampling takes the previous method one
step further by deterministically linking all the variables
drawn in the sub-intervals. This is achieved by setting

U i = (i− 1)/n+ U,

where U is a single random draw from the U ((0, 1/n]) dis-
tribution. Since the U is generated this way obviously have
the same marginal distribution as those used in the stratified
resampling approach, the method still satisfies (3). It was
introduced in the particle filter literature by [2] as “strati-
fied” sampling but it is also mentioned by [19] under the
name of universal sampling. It is often preferred due to its
computational simplicity and good empirical performance.
As pointed out by [14] however, it is the only resampling
method for which the resulting particle positions ξ̃i are no
more independent given Gn. Thus, studying its performance
is much harder than for other methods.

A final remark of some importance is that both strati-
fied and systematic resampling are sensitive to the order in
which the particles are ordered: a simple permutation of the
indices of the particles before resampling changes the dis-
tribution of the new resampled set of particles. In contrast,
residual resampling behaves more like the basic multino-
mial resampling approach in that it disregards the order in
which the particles are numbered.

3 Basic Properties of Sampling Schemes

3.1 Multinomial Resampling

For multinomial resampling, the selection indices
I1, . . . , In are conditionally i.i.d. given Gn and thus the
conditional variance is given by

Var

[
1
n

n∑
i=1

f(ξ̃i)

∣∣∣∣∣Gn
]

=
1
n


m∑
i=1

ωif2(ξi)−

[
m∑
i=1

ωif(ξi)

]2
 . (6)

3.2 Residual Resampling

The residual sampling estimator may be decomposed
into

1
n

n∑
i=1

f(ξ̃i) =
m∑
i=1

bnωic
n

f(ξi) +
1
n

n−R∑
i=1

f(ξĪ
i

), (7)

where Ī1, . . . , Īn−R are conditionally independent given
Gn with distribution P(Īi = j | Gn) = ω̄j for i =

1, . . . , n − R and j = 1, . . . ,m. Because the residual re-
sampling estimator is the sum of one term that, given Gn, is
deterministic and one term that involves conditionally i.i.d.
draws, the conditional variance of residual resampling is
given by

1
n2

Var

[
n−R∑
i=1

f(ξĪ
i

)

∣∣∣∣∣Gn
]

=
n−R
n2

Var
[
f(ξĪ

1
)
∣∣∣Gn]

(8)

=
1
n

m∑
i=1

ωif2(ξi)

−
m∑
i=1

bnωic
n2

f2(ξi)− n−R
n2

{
m∑
i=1

ω̄if(ξi)

}2

.

To compare (8) with (6), first write

m∑
i=1

ωif(ξi) =
m∑
i=1

bnωic
n

f(ξi) +
n−R
n

m∑
i=1

ω̄if(ξi).

Then note that the sum of them numbers bnωic/n plus (n−
R)/n equals one, whence this sequence of m + 1 numbers
can be viewed as a probability distribution. Thus Jensen’s
inequality applied to the square of the right-hand side of the
previous display yields{

m∑
i=1

ωif(ξi)

}2

≤
m∑
i=1

bnωic
n

f2(ξi) +
n−R
n

{
m∑
i=1

ω̄if(ξi)

}2

.

Combining with (8), this shows that the conditional vari-
ance of residual sampling is always smaller than that of
multinomial sampling given by (6).

3.3 Stratified Resampling

Because U1, . . . , Un are still conditionally independent
given Gn for this method,

Var

[
1
n

n∑
i=1

f(ξI
i

)

∣∣∣∣∣Gn
]

=

1
n2

n∑
i=1

Var
[
f ◦ ξ ◦Dinv

ω (U i)
∣∣Gn] =

1
n

m∑
i=1

ωif2(ξi)− 1
n

n∑
i=1

[
n

∫ i/n

(i−1)/n

f ◦ ξ ◦Dinv
ω (u)du

]2

.

By Jensen’s inequality,

1
n

n∑
i=1

[
n

∫ i/n

(i−1)/n

f ◦ ξ ◦Dinv
ω (u)du

]2

≥

[
n∑
i=1

∫ i/n

(i−1)/n

f ◦ ξ ◦Dinv
ω (u)du

]2

=

[
m∑
i=1

ωif(ξi)

]2

,
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showing that the conditional variance of stratified sampling
is always smaller than that of multinomial sampling. Note
that stratified sampling may be coupled with the residual
sampling method discussed previously: the proof above
shows that using stratified sampling on the R residual in-
dices that are indeed drawn randomly can then only de-
crease the conditional variance. It is also clear that the fact
that the conditional variance is reduced does not depend on
the particular choice of the sub-intervals (as being the in-
tervals ({i − 1}/n, i/n]), more general partitions could be
considered as well.

3.4 Systematic Resampling

For this last sampling scheme, it is much more compli-
cated to provide a usable expression of the conditional vari-
ance due to all the resampled particles being (conditionally)
dependent [14]. We can however provide a simple counter-
example to the frequently encountered conjecture that sys-
tematic resampling dominates multinomial resampling in
terms of conditional variance.

Consider the case where the initial population of parti-
cles {ξi}1≤i≤n is composed of the interleaved repetition of
only two distinct values x0 and x1, with identical multiplic-
ities (assuming n to be even). In other words,

{ξi}1≤i≤n = {x0, x1, x0, x1, . . . , x0, x1}.

We denote by 2ω/n the common value of the normalized
weight ωi associated to the n/2 particles ξi that satisfy ξi =
x1, so that the remaining ones (which are such that ξi = x0)
share a common weight of 2(1 − ω)/n. Without loss of
generality, we assume that 1/2 ≤ ω < 1 and denote by
|f | = |f(x1)− f(x0)|.

Under multinomial resampling, (6) shows that the con-
ditional variance of the estimate n−1

∑n
i=1 f(ξi) is given

by

Var

[
1
n

n∑
i=1

f(ξ̃imult)

∣∣∣∣∣Gn
]

=
1
n

(1− ω)ω|f |2. (9)

In this particular example, it is straightforward to verify that
residual and stratified resampling are equivalent – which is
not the case in general – and amount to deterministically
setting n/2 particles to the value x1 (because the value
2ω/n is assumed to be larger than 1/n), whereas the n/2
remaining ones are drawn by n/2 conditionally indepen-
dent Bernoulli trials with probability of picking x1 equal to
2ω−1. Hence the conditional variance, for both the residual
and stratified schemes, is equal to n−1(2ω− 1)(1−ω)|f |2.
It is hence always smaller than (9), as expected from the
general study of these two methods. Note that for specific
configurations of the weights, such as when ω gets close to
0.5, the resampling becomes quasi-deterministic when us-
ing residual or stratified resampling and the improvement
over the basic multinomial scheme becomes all the more
significant.

In contrast, systematic resampling also deterministically
sets n/2 of the ξ̃i to be equal to x1 but depending on the

draw of the initial shift, all the n/2 remaining particles are
either set to x1, with probability 2ω − 1, or to x0, with
probability 2(1− ω). Hence the variance is that of a single
Bernoulli draw scaled by n/2, that is,

Var

[
1
n

n∑
i=1

f(ξ̃isyst)

∣∣∣∣∣Gn
]

= (ω − 1/2)(1− ω)|f |2.

note that in this case, the conditional variance of system-
atic resampling is not only larger than (9) for most values
of ω (except when ω is very close to 1/2), but it does not
even decrease to zero as n grows! Clearly, this observation
is dependent on the order in which the initial population of
particles is presented. It is easy to verify (using simulations)
that, in this example, systematic resampling becomes very
similar to residual/stratified resampling if the particles are
randomly permuted before resampling. Hence, the above
counter-example probably correspond to a “rare” situation.
It does however show that systematic resampling is a vari-
ance reduction method which is not as robust as system-
atic and residual resampling and also suggest that theoreti-
cal study of the behavior of systematic resampling probably
is a very hard task.

4 Large-Sample Behavior of Resampling

We now come to the question of assessing the large sam-
ple behavior of particle filtering methods based on various
forms of resampling. The behavior of basic particle filtering
methods when using the multinomial resampling has been
extensively studied in [5]. For reasons of space and sim-
plicity we only consider here the case of the bootstrap filter
(i.e., when the transition kernel q of the hidden chain is used
as proposal) where resampling is performed at each time in-
dex. In this basic case, each iteration of the particle filtering
algorithm may be decomposed into two successive steps:

Prediction Given the population of unweighted particles at
time index k, {ξ̃ik}1≤i≤m, extend each trajectory con-
ditionally independently according to ξik+1 ∼ q(ω̃ik, .);

Filtering After computing the weights as

ωik+1 = gk+1(ξik+1)/
m∑
j=1

gk+1(ξjk+1),

perform resampling to obtain the new unweighted pop-
ulation of particles {ξ̃ik+1}1≤i≤n.

The choice of a particular resampling approach does obvi-
ously impact only on the second of these two steps.

To establish central limit theorems for the algorithm
above, one can use repeatedly the two theorems below
which are adapted from [1, Chapter 9] where the corre-
sponding results are stated under slightly more general as-
sumptions. The current population of particle is assumed to
satisfy the following assumptions.
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Assumption 1.

(i) {ξi}1≤i≤m are consistent (in probability) and satisfy
a central limit theorem (as m → ∞) for a density ν
and all bounded functions f , where σ2(f) denotes the
asymptotic variance, that is,

1
m

m∑
i=1

f(ξi) P−→ ν(f)

and

√
m

[
1
m

m∑
i=1

f(ξi)− ν(f)

]
D−→ N(0, σ2(f))

for all bounded functions f .

(ii) The weights are given by ωi = g(ξi)/
∑m
j=1 g(ξj),

where g(x) = µ(x)/ν(x) for a probability density
function µ; g is bounded from above and may be
known up to a constant only.

Theorem 2. Under Assumption 1–(i), new particles
{ξi+}1≤i≤m distributed conditionally independently under
ξi+ ∼ q(ξi, ·) are consistent for νq and all bounded func-
tions f with asymptotic variance

σ2
+(f) = ν

[
qf2 − (qf)2

]
+ σ2(qf) (10)

Theorem 3. Under Assumption 1, if (a) the resampled par-
ticles are conditionally independent given Gn, (b) n → ∞
with n/m→ α, and, (c)

nVar

[
1
n

n∑
i=1

f(ξ̃i)

∣∣∣∣∣Gn
]

P−→ κ(f) (11)

that is deterministic, then {ξ̃i}1≤i≤n are consistent and sat-
isfy a central limit theorem for µ and all bounded functions
f with asymptotic variance

σ̃2(f) = κ(f) + ασ2
(µ
ν

[f − µ(f)]
)

(12)

Following the argument of [14, 3], by repeatedly apply-
ing Theorems 2 and 3 one may prove that the particle filter,
when considered at any finite time index k, does satisfy a
central limit theorem. The variance formula in (10) is a
simple instance of the Rao-Blackwell theorem whereas (12)
shows that the limit of the conditional variance of resam-
pling gets added to the variance of (self-normalized or
Bayesian) importance sampling scaled by the factor α. This
latter factor is interesting as it shows that using n� mmay
render the variance of the particle estimator almost indepen-
dent of what happened in previous steps. This phenomenon
should not be over-interpreted however as it only occurs be-
cause the sum is normalized by n, and not m (or m + n)
which is more connected with the actual number of opera-
tions required to implement the method. Note that the re-
quirement that g be bounded, which is not very restrictive
in the filtering context, may be relaxed – see [1, Chapter 9]
for details.

With multinomial resampling, (6) and the consistency
directly implies that κ(f) = µ(f2) − [µ(f)]2 that is the
variance under the target density µ. For other resampling
schemes however, showing that (11) holds is all but trivial.
We consider in the sequel the case of residual resampling.
By (8),

nVar

[
1
n

n∑
i=1

f(ξ̃i)

∣∣∣∣∣Gn
]

(13)

=
m∑
i=1

(
ωi − bnω

ic
n

)
f2(ξi)− n−R

n

{
m∑
i=1

ω̄if(ξi)

}2

=
m∑
i=1

(
ωi − bnω

ic
n

)
f2(ξi)

−

{
m∑
i=1

(
ωi − bnω

ic
n

)
f(ξi)

}2/(
1−

m∑
i=1

bnωic
n

)
.

Under Assumption 1, for all bounded function f ,

m∑
i=1

ωif2(ξi) =
m−1

∑m
i=1

µ
ν (ξi)f2(ξi)

m−1
∑m
i=1

µ
ν (ξi)

P−→ µ(f2)

and
∑m
i=1 ω

if(ξi) P−→ µ(f). However the case of sums
that involve integer parts cannot be handled similarly and
require the following technical lemma.

Lemma 4. Under Assumption 1, if n→∞ with n/m→ α

and µ
(
1{x:αµν (x)∈N}

)
= 0, then for all bounded function

f ,
m∑
i=1

bnωic
n

f(ξi) P−→ ν

{
1
α

⌊αµ
ν

⌋
f

}
.

Proof. Recall that ωi = g(ξi)/
∑m
j=1 g(ξj) with g(x) =

µ(x)/ν(x). For any K ≥ 1, define the set BK =
⋃∞
j=0[j −

1/K, j + 1/K].

m∑
i=1

⌊
nωi

⌋
n

f(ξi)1{αg(ξi)∈(K,∞)∪((0,K)∩BK)}

≤
m∑
i=1

ωif(ξi)1{αg(ξi)∈(K,∞)∪((0,K)∩BK)}

P−→
∫
f(x)1{αg(x)∈(K,∞)∪((0,K)∩BK)}µ(x)λ(dx),

where the notation 1 stands for the indicator function. The
limit on the right-hand side of the last display can be made
arbitrarily small by taking K sufficiently large because∫
f(x)1{αg(x)∈N}µ(dx)λ(dx) = 0 and g is bounded by

Assumption 1. For any K ≥ 1, there exists η > 0 such
that

1˛̨̨̨
nPm

j=1 g(ξi)
−α

˛̨̨̨
≤η

ff
× 1{αg(ξi)∈(0,K)\BK}

(⌊
nωi

⌋
−
⌊
αg(ξi)

⌋)
= 0.
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Combining the above with n/
∑m
j=1 g(ξi) P−→ α and

m∑
i=1

⌊
αg(ξi)

⌋
n

f(ξi)1{αg(ξi)∈(0,K)\BK}

P−→
∫
bαg(x)c

α
f(x)1{αg(x)∈(0,K)\BK}ν(x)λ(dx),

yields

m∑
i=1

⌊
nωi

⌋
n

f(ξi)1{αg(ξi)∈(0,K)\BK}

P−→
∫
bαg(x)c

α
f(x)1{αg(x)∈(0,K)\BK}ν(x)λ(dx).

The proof follows by letting K →∞.

Corollary 5. Under Assumption 1 and assuming that

µ
(
1{x:αµν (x)∈N}

)
= 0,

nVar

[
1
n

n∑
i=1

f(ξ̃i)

∣∣∣∣∣Gn
]

P−→ κ(f) =

ν

{(
µ

ν
− 1
α

⌊αµ
ν

⌋)
f2

}
−
[
ν

{(
µ

ν
− 1
α

⌊αµ
ν

⌋)
f

}]2
/(

1− ν
{

1
α

⌊αµ
ν

⌋})
for the residual sampling method. Hence, the resampled
particles satisfy a central limit theorem with limiting vari-
ance given by (12).

The variance formula given in Corollary 5 was first de-
rived in [3] which however lacked a rigorous proof of
Lemma 4 and the necessity of the support condition – see
[6] for a counter-example showing that this condition is in-
deed necessary and non-trivially satisfied. Note also that
the asymptotic variance found in Corollary 5 is obtained as
the (rescaled) limit of the conditional variance and is thus
smaller than in the case where multinomial resampling is
used (see Section 3.2).

5 Conclusions

In practical applications of sequential Monte Carlo meth-
ods, residual, stratified, and systematic resampling are gen-
erally found to provide comparable results. Despite the
lack of complete theoretical analysis of its behavior, sys-
tematic resampling is often preferred because it is the sim-
plest method to implement. From a theoretical point of view
however only the residual and stratified resampling meth-
ods (as well as the combination of both) may be shown to
dominate the basic multinomial resampling approach, in the
sense of having lower conditional variance for all configura-
tions of the weights. A central limit theorem as been estab-
lished for the residual sampling approach. It is likely that a
similar result can be obtained for stratified sampling, based

on Theorem 3. The situation is however somewhat more
involved in this latter case due to the fact that the new re-
sampled particles, although still conditionally independent,
have a distribution which depend on the order in which the
particles are initially labelled.
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