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Abstract

We present an algorithm for fast posterior infer-
ence in penalized high-dimensional state-space
models, suitable in the case where a few mea-
surements are taken in each time step. We as-
sume that the state prior and observation likeli-
hoods are log-concave and have a special struc-
ture that allows fast matrix-vector operations. We
derive a second-order algorithm for computing
the maximum a posteriori state path estimate,
where the cost per iteration scales linearly both in
time and memory. This is done by computing an
approximate Newton direction using an efficient
forward-backward scheme based on a sequence
of low rank updates. We formalize the condi-
tions under which our algorithm is applicable and
prove its stability and convergence. We show that
the state vector can be drawn from a large class
of prior distributions without affecting the linear
complexity of our algorithm. This class includes
both Gaussian and nonsmooth sparse and group
sparse priors for which we employ an interior
point modification of our algorithm. We discuss
applications in text modeling and neuroscience.

1 Introduction

State-space models have been established as a fundamental
tool for the statistical analysis of time series data, providing
an online and computationally tractable tool for many real-
world applications. However, their applicability is often
limited in practice to low-dimensional state spaces, since
the computational complexity of inference in these models
scales cubically in time and quadratically in space with the
dimensionality d of the state vector.
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This computational burden can be reduced if certain struc-
ture is present that allows for fast matrix-vector operations.
Examples include the approximation of covariance matri-
ces as sparse, banded, or low-rank matrices (e.g. (Bickel
and Levina, 2008; Cressie and Johannesson, 2008)).

In many problems, only a few measurements are available
at each time step. For such a setup, and for the special
case of a linear-Gaussian state-space model with a sparse,
tree-structured state dynamics matrix, Paninski (2010) pre-
sented an approximate Kalman filter algorithm with linear
time and space complexity. The main idea was that the for-
ward covariance can be approximated by a low-rank pertur-
bation of the steady state covariance (i.e., the state covari-
ance when zero measurements are available). Therefore the
standard Kalman algorithm was modified such that only the
low rank perturbations were updated at every time step, an
operation that required just O(d) time and space.

In this paper, we formalize and extend this algorithm to
more general penalized state space models, where the mea-
surement noise and the state temporal dynamics obey log-
concave distributions and the state vector is further penal-
ized by appropriate norms. If at each time step the Hessian
of the log-prior is of special structure that allows for fast
multiplications and matrix solvers, then we show that max-
imum a-posteriori (MAP) estimation using an approximate
Newton method can be computed efficiently: a forward-
backward algorithm incorporating a sequence of low rank
updates requires just O(dT ) time and memory, where T
is the number of timesteps and therefore dT is the to-
tal dimensionality of the full state path. We characterize
the computational gain of this approach, and also derive
a bound on the error of our approximative Newton direc-
tion that guarantees the stability and convergence of our
algorithm. Finally, we present a large family of norms that
satisfy these requirements, including Gaussian and other
smooth priors, l1 and total variation (TV) norms, as well as
group-sparsity norms. For these nonsmooth norms we use
an interior point method (Boyd and Vandenberghe, 2004),
based on successive smooth approximations of the nons-
mooth terms, to perform our posterior inference again in
O(dT ) time and space.
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This decrease in computational requirements from O(d3T )
to O(dT ) per iteration, combined with the low number of
iterations required from second order methods (as opposed
to first order methods, which rely only on gradient informa-
tion) enables the consideration of systems with much larger
dimensionality than is otherwise possible.

2 Problem Setup

Let X = [x1, . . . , xT ] denote the signal that we wish to
estimate, where each xt is a d-dimensional vector and rep-
resents the value of X at time t (or its expansion coef-
ficients on a given fixed basis). We assume a (contin-
uous state) Markovian evolution of the state vector i.e.
pX(X) = p0(x1)

�T
t=2 px(xt|xt−1) where we assume that

pX is log-concave in X. At every point in time we ob-
serve a small measurement vector yt that depends only on
the current state vector xt through its linear projection on
a measurement matrix Bt of size [bt, d]. The likelihood of
the observations, which we also assume to be log-concave
in X, is given by pY (Y|X) =

�T
t=1 py(yt|Btxt). Our goal

is to develop fast second order methods for MAP inference,
i.e., the computation of

XMAP = argmin
X

{− log pX(X)− log pY (Y|X)} . (1)

To do so we need to compute the gradient ∇ and the Hes-
sian H of the posterior likelihood with respect to X and use
them to compute the Newton direction s = −H−1∇.1 The
Hessian of the posterior is given by

H =





G1 −E1 0 . . . 0
−ET

1 G2 −E2 . . . 0
...

. . . . . . . . .
...

0 0 . . . −ET
T−1 GT




, (2)

with

Et =
∂2

∂xt∂xt+1
log px(xt+1|xt)

Gt = Dt +BT
t W

−1
t Bt

Dt = − ∂2

∂x2
t

(log px(xt+1|xt) + log px(xt|xt−1))

W−1
t = diag

�
− ∂2

∂x2
log py(yt|x)

����
x=Btxt

�
.

(3)

The block-tridiagonal Hessian can be inverted using the
Block-Thomas (BT) algorithm (Isaacson and Keller, 1994),
which we repeat here for completeness (Alg.1). We also
annotate the cost of each operation.

1For now we assume that all the likelihoods are smooth and
strictly log-concave and therefore the gradient, the Hessian and
its inverse are well defined everywhere. This assumption will be
relaxed below.

Algorithm 1 Classic BT (computes s = −H−1∇)
M1 = D1 +BT

1 W
−1
1 B1, Γ1 = M−1

1 ET
1 (O(d3))

q1 = −M−1
1 ∇1 (O(d2))

for i = 2 to T do
Mt = Dt +BT

t W
−1
t Bt − Et−1M

−1
t−1E

T
t−1 (O(d3))

Γt = M−1
t CT

t (O(d3))
qt = −M−1

t (∇t + Et−1qt−1) (O(d2))
end for
sT = qT
for t = T − 1 to 1 do

st = qt − Γtst+1 (O(d2))
end for

The cost of the algorithm is O(Td3) in time, and O(Td2)
in space (needed for the storage of the matrices Γt). Our
goal is to derive conditions and algorithms under which the
cost of the Newton direction operation can be reduced to
O(Td). As we will see we can derive such algorithms un-
der two general assumptions: i) The number of measure-
ments at each time step is low and ii) for each t, the matri-
ces Et, Dt have a special “diagonal plus low rank” struc-
ture (in some convenient basis) that allows us to store, mul-
tiply and invert them with cost O(ktd), where kt � d is
a small constant. We can then efficiently update and invert
the matrices Mt, by approximating their inverses as

M−1
t ≈ M̃−1

t := D̃−1
t − LtΣtL

T
t , (4)

where D̃−1
t is a matrix that allows fast O(d) matrix-vector

operations, and LtVtLT
t is an appropriate kt-rank matrix.

3 Fast Inference

3.1 Conditions for Fast Inference

We first motivate our algorithm and discuss under what
conditions we can expect a significant computational gain.
For now, we assume for simplicity that Dt, Et are diagonal
matrices without additional low rank terms. To examine
when the approximation of (4) makes sense, we first derive
an algebraic equivalent to the matrices Mt of Alg. 1 that
are more convenient to work with mathematically (though
not computationally; this form is only used in the analysis).
Proposition 3.1. The matrices M−1

t can be written as

M−1
t = D̃−1

t − D̃−1
t UT

t (F−1
t + UtD̃

−1
t UT

t )−1UtD̃
−1
t ,

(5)
where D̃t, Ut and Ft are defined recursively as:

D̃t = Dt − Et−1D̃
−1
t−1E

T
t−1, D̃1 = D1

Ut =

�
Bt

Ut−1D̃
−1
t−1Et−1

�
, U1 = B1

Ft =

�
Et 0
0 (F−1

t−1 + Ut−1D̃
−1
t−1U

T
t−1)

−1

�
, F1 = E1.

(6)
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Proof. Using induction we can show that the matrices Mt

can be written as

Mt = D̃t + UT
t FtUt, (7)

where D̃t, Ut and Ft are given by (6). Applying the Wood-
bury lemma on (7), (5) follows.

From a statistical viewpoint, we can view Mt and D̃t as
modified versions of Cov(xt|Y1:t)−1 and Cov(xt)−1, i.e.,
the inverse of the posterior forward and prior covariance at
time t; in fact, this relation is exact for t = T . To examine
whether the posterior term M−1

t can be approximated by
the prior term D̃−1

t plus a low rank term (4), we look at the
matrix D̃−1

t UT
t (F−1

t +UtD̃
−1
t UT

t )−1/2, where the square
root denotes the Cholesky factor.

The matrices Ut, Ft have dimensions (
�t

l=1 bl) × d and
(
�t

l=1 bl)×(
�t

l=1 bl) respectively. However, note that the
l-th block of Ut is the measurement matrix Bl multiplied
with the product

�t−1
k=t−l+1 D̃

−1
k Ek (for l > 1). Therefore,

if the product
�t

l=1 D̃
−1
l El goes to zero exponentially fast

(e.g. the spectral norm satisfies �D̃−1
l El� ≤ r < 1, for all

l), then the effect of the measurements at time k, although
present at time k + 1, will decrease exponentially and (as-
suming the information matrices BT

t W
−1
t Bt are suitably

bounded) practically vanish after a few steps. As a result,
at time t the posterior covariance will only be affected by
the measurements taken at times t− nt, . . . , t, where nt is
a small integer. Consequently, M−1

t (or Mt) can be written
as the sum of a diagonal matrix D̃−1

t (D̃t) plus a low rank
matrix that captures a high fraction θ of the energy. To an-
alyze this low rank approximation we utilize the notion of
the effective rank of a matrix.

Definition 3.2. The effective rank of a matrix U at thresh-

old θ (0 < θ < 1), is defined as the minimum integer k,

such that there exists a matrix X with rank(X) = k and

�X − U�2F ≤ (1− θ)�U�2F ,

where � · �F denotes the Frobenius norm.

The effective rank is equal to the number of the singu-
lar values needed to express a θ fraction of the energy.
To get a sense of how it scales, consider the matrix Ut

and suppose that at each time step we get one measure-
ment with a N (0, I) Gaussian random vector, and that
�D̃−1

l El� ≤ r < 1, for all l. Then we can obtain a crude
l-rank approximation of Ut by taking the matrix Ut,l that
consists of the first l rows of Ut, (i.e., the ones that have the
higher expected energy). We can find the number of rows
needed to capture a θ fraction of the energy in the average
case by solving

nt =argmin{l ∈ N : E�Ut,l�2F ≥ θE�Ut�2F } ⇒

nt =

�
log(1− θ(1− r2t))

2 log(r)

�
,

(8)

where �·� is the ceil function (the derivation can be found
in the appendix). However the best nt rank approxima-
tion to U (in terms of the residual energy) can be made by
taking the singular value decomposition of U and keeping
the first nt singular vectors/values. Therefore, this number
provides a good rule of thumb to explain how the effective
rank scales with the parameters r and θ; when nt � d, we
should expect the low rank approximation to lead to sub-
stantial dimensionality reduction.

3.2 The Low-Rank Block-Thomas Algorithm

We now explain how to perform the low rank approxima-
tions in an efficient way. Obviously, performing an SVD on
the matrix D̃−1

t UT
t (F−1

t +UtD̃
−1
t UT

t )−1/2 is not efficient
since the number of columns of this matrix grows as O(t).
Instead we perform a series of successive approximations.

Consider Mt from (7) for t = 2. We can write this as

M2 = D̃2 +O2Q2O
T
2 , (9)

where O2 = [BT
2 E1D

−1
1 BT

1 ] and Q2 is a block-diagonal
matrix with Q2 = blkdiag{W−1

2 , (W1 + B1D
−1
1 BT

1 )
−1}.

Now the matrix O2 is of dimension d × (b1 + b2) and M2

can again be inverted using the Woodbury lemma as

M−1
2 = D̃−1

2 − D̃−1
2 O2(Q

−1
2 +OT

2 D̃
−1
2 O2)

−1OT
2 D̃

−1
2 .

We can now perform a partial (thin) SVD on the term
D̃−1

2 O2(Q
−1
2 + OT

2 D̃
−1
2 O2)−1/2 and keep only the first

k2 singular values/vectors, where k2 is the effective rank at
threshold θ. Therefore we can write

M−1
2 ≈ M̃−1

2 := D̃−1
2 − LT

2 Σ2L2 (10)

and repeat this procedure for all t. At every step t, the ef-
fective rank, and thus the number of columns of Lt and
Σt, will satisfy kt ≤ kt−1 + bt. If the stability condition
�D̃−1

l El� ≤ r < 1 is satisfied, kt will remain bounded
around bnt (where b is the average number of measure-
ments per time step), much smaller than the dimension d
for large d and small b. The resulting Low-Rank Block-
Thomas (LRBT) algorithm is summarized in Alg. 2, where
we annotate the cost of each operation.

Note that, besides the O(dT ) time complexity, the algo-
rithm also requires O(dT ) space. All we need to store are
the matrices Lt,Σt and the vectors qt, each of which takes
O(ktd), O(kt), O(d) space respectively.

Remark 3.3. In the derivation of the algorithm we as-

sumed that the matrices Et, Dt are diagonal (or more gen-

erally can be diagonalized by a convenient fast transform).

In the case where these matrices are diagonal plus a low

rank symmetric matrix then Alg. 2 stays essentially the

same. The only difference is that the matrix Ot now also

includes the additional low rank term. Such a setup arises

in group sparsity priors, as we’ll see in section 4.
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Algorithm 2 Low-Rank Block-Thomas Algorithm
D̃1 = D1, L1 = D−1

1 BT
1 (O(b1d), k1 = b1)

Σ1 = (W1 +B1D
−1
1 BT

1 )
−1 (O(b31))

q̃1 = (−D−1
1 + L1Σ1LT

1 )∇1 (O(b1d))
for t = 2 to T do
D̃t = Dt − Et−1D̃

−1
t−1E

T
t−1 (O(d))

Ot = [BT
t Et−1Lt−1]

Qt = blkdiag{W−1
t ,Σt−1}

[L̂t, Σ̂
1/2
t ] = svd(D̃−1

t Ot(Q
−1
t +OT

t D̃
−1
t Ot)−1/2)

(thin SVD, cost O((bt + kt−1)2d))
Truncate L̂t and Σ̂t to derive Lt and Σt.

(effective rank kt ≤ bt + kt−1 � d)
q̃t = −(D̃−1

t − LtΣtLT
t )(∇t + Et−1q̃t−1) (O(ktd))

end for
s̃T = q̃T
for i = T − 1 to 1 do
s̃t = q̃t − (D̃−1

t ET
t − LtΣtLT

t E
T
t )s̃t+1 (O(ktd))

end for

Now that the algorithm has been established, we turn to a
brief stability analysis. The output of the algorithm, s̃, is
linear in the input gradient vector ∇, and may therefore be
written as s̃ = −H̃−1∇ for some H̃ which approximates
the true Hessian H . The proof of the following proposi-
tion establishes that H̃ is positive definite (under appropri-
ate conditions); therefore s̃ represents a steepest descent
direction under the quadratic norm induced from H̃ , (with
corresponding bounds on the error �s̃ − s�). Furthermore
our algorithm may be used as an effective preconditioner in
a conjugate gradient solver.

Theorem 3.4. Under the condition �D−1
t Et� ≤ r < 1,

the following are true for sufficiently large threshold θ:

1. �H̃ −H� ≤ O(1− θ),

2. s̃ is a descent direction and computes the search di-

rection for a convergent inexact Newton’s method.

Proof. We provide a sketch of the proof here; see the ap-
pendix for details. Using the forward-backward structure
of Alg. 2, we can compute the approximation of the true
Hessian as

H̃ =





G̃1 −E1 0 . . . 0
−ET

1 G̃2 −E2 . . . 0
...

. . . . . . . . .
...

0 0 . . . −ET
T−1 G̃T





G̃t = M̃t + Et−1M̃
−1
t−1E

T
t−1.

(11)

From (2) and (11) we see that the approximate Hessian dif-
fers only in the main diagonal from the true one. To analyze
the difference, we define the matrices M̂t as M̂1 = M1 and

M̂t = Dt +BT
t EtBt − Et−1M̃

−1
t−1E

T
t−1. (12)

Using the fact from the BT recursion

Gt = Mt − Et−1M
−1
t−1E

T
t−1, (13)

and as a result the approximation error is

H − H̃ = blkdiag{M̂1 − M̃1, . . . , M̂t − M̃t}. (14)

Now M̃−1
t is obtained by performing a low rank approxi-

mation on M̂−1
t and as a result we have �M̃−1

t − M̂−1
t � =

O(1− θ), which also implies that �H − H̃� = O(1− θ).

To prove the second part, it is not hard to show that H̃ is
positive definite (proof in the supplement), which guaran-
tees that s̃ is a descent direction. Moreover, s̃, solves

H̃ s̃ = −∇ ⇒
H s̃ = −∇+ (H̃ −H)H̃−1∇,

(15)

which shows that s̃ is an inexact Newton’s method direction
(Dembo et al., 1982; Sun and Yuan, 2006), with remainder
(H̃ −H)H̃−1∇. Convergence is guaranteed if

�(H̃ −H)H̃−1∇� ≤ r�∇�, (16)

for some r < 1 and for all x (Eisenstat and Walker, 1994).
Since �H − H̃� = O(1 − θ), this is always possible by
picking a sufficiently large θ.

4 Choice of State Prior and Nonsmoothness

In this section we deal with the important question of what
log-concave, Markovian priors pX(X) satisfy the require-
ments of our algorithm.

4.1 Gaussian Priors

Consider first the simplest case of a Gaussian state transi-
tion prior xt+1|xt ∼ N (Axt, V ), where A is a stable ma-
trix, i.e., �A� < 1. In this case we have (assuming that the
initial state x1 has covariance V0 = V , A is normal, and
that A and V commute)

D̃−1
t Et = −AT

�
I − (ATA)t

� �
I − (ATA)t+1

�−1
.

The requirements of the algorithm can be met in cases
where the noise covariance V is diagonal, and A has a spe-
cial sparse structure (e.g. diagonal, banded or adjacency
matrix in a tree (Paninski, 2010)). Moreover, �D̃−1

t Et� ↑
�A�, so the stability of A also implies the stability of the
LRBT algorithm, and the effective rank does not depend in
the observations.

Remark 4.1. Using a similar analysis, the bound of (8)
times the number of measurements per timestep holds for

the effective rank in the Gaussian case (where r ≤ �A�).
Moreover, we can also show that the effect of the noise in-

tensity on the effective rank is limited. The reason for this
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is that the matrix F−1
t +UtD̃

−1
t UT

t of (5) is a block diago-

nal where all the blocks have similar structure and energy.

Thus the effective rank is primarily determined by the be-

havior of U and scales at most as log(1 − θ)/ log(�A�).

4.2 Sparse Priors

Of particular interest are priors that promote sparsity, ei-
ther in the entries of the state vector xt (e.g., via l1-type
norms on xt), or in its variations xt+1 − xt (TV norm).
The l1 norm is important since it promotes sparsity but is
also convex. However it is not smooth and therefore our
method is not directly applicable. To apply our method we
can use an interior point method (Boyd and Vandenberghe,
2004), where in each outer iteration we smooth the non-
smooth terms at successive levels and apply our method
on the smoothed objective functions. For example, the l1-
norm can be smoothed (at the level µ) by using Nesterov’s
(Nesterov, 2005) method as

|x| ≈ fµ(x) := sup
|z|≤1

�
zx− µz2

2

�
=

�
x2

2µ , |x| ≤ µ
|x|− µ

2 , |x| > µ
(17)

By denoting with Lµ the negative posterior log-likelihood
when we use the Nesterov approximation at level µ, our so-
lution is given by XMAP = limµ→0+ argminX {Lµ(X)) .
Note that this solution is equal to the true minimizer (see
e.g. (Becker et al., 2010) for the LASSO case). More-
over in some cases (e.g. the Dantzig selector (Becker et al.,
2010)), the minimizer of Lµ(X) is equal to the true one
even for small enough but positive µ, reducing the number
of outer loops required.

With that in mind, many sparsifying terms can be incorpo-
rated in our setup; e.g., in a fused Lasso setup (Tibshirani
et al., 2005) we have

− log pX(X) ∝ λ1

T�

t=1

�xt�+ λ2

T�

t=2

�xt − xt−1�. (18)

Using the smooth approximation of (17) we have (by abuse
of notation let E0, ET = 0)

Et = λ2diag
�
f ��
µ (xt+1 − xt)

�

Dt = Et + Et−1 + λ1diag
�
f ��
µ (xt)

�
,

(19)

which allow for fast matrix-vector operations.

More generally, any convex combination of well defined
norms of the form

�T
t=1 f(1

T g(xt)) or
�T

t=2 f(1
T g(xt−

xt−1)) where f, g : R �→ R (g is applied separately to each
element of xt) can be incorporated into our model without
affecting the linear complexity. For example, the terms Dt

in the first case are “diagonal plus rank one” given by

∂2

∂x2
t
f(1T g(xt)) =f �(1T g(xt))diag{g��(xt)}

+ f ��(1T g(xt))g
�(xt)g

�(xt)
T .

(20)

Similarly, for the second class of norms, the contribution
to the terms Dt of the Hessian is a “diagonal plus rank
two” matrix, whereas the contribution to the terms Ct is
a “diagonal plus rank one” matrix. Again our algorithm
can be run with linear complexity (see Rem. 3.3). Apart
from the l1 and TV norms considered above, this class of
norms includes many other norms of interest. For exam-
ple, the group l1-l2 norm (Yuan and Lin, 2006) (or a group
TV-l2 variant) can be obtained by setting f(x) =

√
x and

g(x) = x2. As before, the Nesterov method can be used
to provide a smooth approximation. Our fast interior point
method is summarized in Alg. 3.

Algorithm 3 Fast Interior Point Algorithm
Pick µ0 > 0, � > 1, x0, set µ ← µ0, x ← x0.
repeat

Smooth objective function at level µ: Lµ

repeat
Find search direction s̃ using Alg. 2.
Find stepsize t using back-tracking line search.
x ← x+ ts̃

until convergence
µ ← µ/�.

until convergence
XMAP = x.

Note in the absence of smooth prior terms, the Nesterov
smoothing method can lead to numerical instabilities since
the smoothed versions of Et, Dt are not guaranteed to be
positive definite. For example in (17), f ��(x) = 0 for |x| >
µ. In this case we can use other smooth approximations,
e.g. �x� ≈ (x2 + µ)1/2 or �x� ≈ µ log(cosh(x/µ)).

5 Applications

5.1 Estimation of Non-stationary Receptive Fields

We begin with an example from sensory neuroscience. We
present a synthetic but realistic example of estimation of
a one-dimensional, time-varying receptive field (RF) from
Poisson process observations. The function to be estimated
was of the form

u(x, t) = h(x− r(t)), (21)

i.e, a constant spatial RF function h(x) that is centered
around a time varying point that is given by r(t). This
function g can represent a drift of the receptive field, e.g.
due to eye movement. Such drifts affect the standard anal-
ysis of spiking data for receptive field estimation (Read and
Cumming, 2003; Tang et al., 2007), and therefore must be
estimated prior to estimating the RF. In our case, r(t) was a
smooth sine-wave that was randomly jittered at every time
step with probability 2%, giving a piecewise smooth u. The
time vector was normalized to the interval [0, 1] and was
discretized into 1000 bins. At each time step t, nt spikes
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Figure 1: Estimation of a time-varying receptive field from Poisson observations. Left: True RF. Middle estimated. Right:
Effective rank for each Newton direction computation.

were observed, where nt was drawn from a Poisson distri-
bution with rate λ(t) = exp(�u(·, t), zt�), and the stimulus
zt was a normalize white noise random vector. The mean
of nt was 1.5, with roughly one third of the measurements
having zero spikes (median 1). The signal was estimated
by inferring the Laplacian pyramid expansion coefficients
of the signal at every time step (Burt and Adelson, 1983).
We used the following prior:

log pX(X) ∝−
T�

t=2

1

2
(xt − xt−1)

TW−1(xt − xt−1)

− λ1

T�

t=1

�xt�1 − λ2

T�

t=2

�xt − xt−1�1.

The Gaussian term was chosen to capture the smooth parts
of the drift, whereas the TV norm is used to capture the
discontinuities. Finally, the l1 norm is used since the signal
is expected to be sparse in the Laplacian pyramid basis.
Imposing sparse priors on (static) receptive fields has been
shown to lead to more accurate estimation from a limited
number of measurements (Mineault et al., 2009; Hu and
Chklovskii, 2009). The Gaussian prior covariance W for
the Laplacian pyramid was chosen to be diagonal.

Fig. 1 shows the correct signal u(x, t) and the estimated
signal with λ1 = 0.01,λ2 = 0.25. Although the data is
very noisy (Poisson observations) and the number of spikes
per bin is not unrealistically high, it can be seen that our al-
gorithm captures the main structure of the time-varying RF
and some of its discontinuities. The lower right corner of
Fig. 1 shows the effective rank kt of our algorithm for ev-
ery time step and all the Newton steps required for conver-
gence. The threshold in this setup was set to θ = 1−10−4.
Setting a lower threshold gives even smaller effective rank,
but a less accurate search direction, resulting in a larger
number of iterations before convergence. As can be seen,
the effective rank kt grows linearly at the first timesteps
but then quickly stabilizes at a low value which was always
less than 25, whereas the dimension was d = 256 in this
case. Moreover, these relative high values for the effective
rank were observed only at the first Newton steps. As the
algorithm converges the effective rank drops significantly.

To quantify the computational complexity of our algorithm

0 0.2 0.4 0.6 0.8 1
−2

0

2

4
Spatial RF

 

 

True Simple GLM Estimated 0 0.2 0.4 0.6 0.8 1

0.4

0.6

0.8
Center of RF (drift)

P
o

si
tio

n

 

 

True CoM Corrected

Estimated Signal (Corrected)

Time

S
p

a
ce

0.2 0.4 0.6 0.8 1

0.2
0.4
0.6
0.8

1
0 0.2 0.4 0.6 0.8 1

0

5

10

15

S
E

R
 [

d
B

]

Signal−to−Error Ratio at each Time Step

 

 

GLM SS Estimate Vit. Corrected

Figure 2: Estimation of spatial RF and drift. Upper Left:
True spatial RF (blue), estimation with Poisson regression
(green) and with the proposed method (red). Upper Right:
True drift (blue), CoM estimate (green) and final estimate
(red). Lower Left: Corrected Estimation of the full time
varying RF. Lower Right: SER of plain Poisson estimate
(blue), initial estimate with our state space model (blue)
and corrected estimate using the Viterbi algorithm (green).

we also solved this problem using the TFOCS package
(Becker et al., 2010), which can efficiently handle multiple
nonsmooth regularizers. For the example used here our al-
gorithm ran in 12.4 sec whereas TFOCS required 42.7. For
the same example but with d = 512, our algorithm con-
verged in 28 sec (exhibiting approximately linear scaling
in d), as opposed to 346 sec required by TFOCS.

Although the estimate of the time-varying RF is not very
accurate, since we have not exploited the fact that the RF
shape h(.) is constant here, we can use this estimate as an
initial guess for the separate estimation of the drift and spa-
tial components. A simple way to do this is as follows: We
form an initial estimate of the drift by calculating the cen-
ter of mass (CoM) of the estimated RF at each time. We
use this to fit a purely spatial RF with the above drift, using
standard penalized Poisson regression methods. Then we
calculate again the drift by finding the most likely path of
the fitted spatial RF using the Viterbi algorithm (Forney Jr,
1973). This procedure can be iterated if necessary. The
results are shown in Fig. 2.

In the upper left panel of Fig. 2, we see that the corrected
estimate of the spatial RF is very close to the true RF.
On the other hand, a simple Poisson regression that does
not compensate for the drift cannot predict the RF (green
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curve). From the upper right corner we see that estimation
of the drift using the Viterbi algorithm (red curve) is very
accurate and captures both the smooth and the discontinu-
ous transitions. Note also that the initial estimate based on
the CoM is also fairly accurate. With these corrected esti-
mates we can form a new estimate for the full time-varying
RF (lower left corner of Fig. 2). The corrected estimate is
more accurate than the initial one, as shown in the lower
right corner of Fig. 2, where the signal-to-error ratio (SER)
is plotted for each estimate, at all times. The SER is defined
as 20 log10(�xt�/�xt − x̂t�). We are currently pursuing
applications of our algorithm to real data.

5.2 Smoothing Multinomial Time Series Data

Next we briefly discuss applications to a simplified version
of the influential dynamic topic model introduced in (Blei
and Lafferty, 2006). Suppose that the word probabilities at
time t within a text are described by the vector xt:

P (wt = i) = bt,i := exp(xt(i))/
d�

j=1

exp(xt(j)), (22)

where the state vector X = [x1, . . . , xT ] follows a suitable
log-concave prior distribution, like those presented above.
The observation yt at time t is the count data of each word
at this time, drawn from a multinomial distribution with
parameters (Nt, bt), where Nt is the number of words ob-
served at time t, and bt is the vector of event probabilities
at time t, as defined by (22). Then we have

log p(yt|xt) ∝ yTt xt −Nt log(1
T exp(xt)), (23)

which is concave in xt. Moreover the first term is linear
in xt, whereas the second is of the form f(1T g(xt)), and
therefore its contribution to the Hessian is a diagonal plus
rank one matrix (20). Thus, although the number of differ-
ent words d can be very large, the observation at each time
has the special structure that allows fast posterior inference
of the dynamic mixture proportions.

We present an example where word count data are observed
over T = 100 steps. The prior was chosen as xt|xt−1 ∼
N (0, 0.25I) and x1 ∼ N (0, I). We run the smoother for 6
different values of Nt and five different values of d.

In Fig. 3 we see that the mean effective rank stays very
low even for large values of d (e.g. d=1000). More
interestingly, it drops as the number of observations Nt

per time step increases and remains approximately con-
stant for a fixed ratio Nt/d. This can be explained by
observing that the diagonal term of −∂2 log p(yt|xt)/∂x2

t

is equal to Ntdiag{bt}. In our algorithm, this acts addi-
tively to the matrix D̃t and shifts its spectrum. Similarly
to (8), the effective rank is expected to scale roughly as
kt ∝ 1/ log(�Ntdiag{bt}�). Now if each entry of bt has
the same marginal distribution, its value will be roughly of
the order O(1/d) and thus �Ntdiag{bt}� = O(Nt/d).
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Figure 3: Variation of the mean effective rank with the
number of words d and observations Nt. The effective rank
scales roughly as O((log(Nt/d))−1) and agrees with our
theoretical predictions.

Table 1: Comparison of our LRBT method with the low
memory BFGS method. Our method scales linearly and is
significantly faster for medium and large problem sizes.

LRBT BFGS
d time iter hL time iter hB

200 4.5 8 .0029 40 137 .0015
400 9 14 .0016 126 170 .0019
800 11 13 .0011 591 320 .0035

1600 16 13 .00078 2116 367 .0036
5000 73 23 .00063 - - -

We also compared the speed and accuracy of our fast sec-
ond order method with the limited memory BFGS method
(Liu and Nocedal, 1989), using its optimized implemen-
tation in the matlab function minFunc (Schmidt, 2011).
(Other gradient methods such as conjugate gradients per-
formed similarly.) We tested different values of d and N =
10d, T = 500. The state dynamics were the same as be-
fore. As an accuracy criterion we used the KL-divergence
between the true and inferred word probabilities.

From Table 1 we see that for the same or even better accu-
racy (not shown), our method is faster than the first order
approaches, and the difference in times scales with the di-
mension d. The main reason is that the number of iterations
required by our LRBT algorithm remains fairly constant in
d, while the cost per iteration scales linearly with d. The in-
dexes hL and hB are the time cost per iteration, normalized
by the dimensions d, for our LRBT method and the BFGS
implementation respectively. As we see hL and the number
of LRBT repetitions remain approximately constant, indi-
cating the linear complexity of our algorithm. On the con-
trary for the BFGS method, the number of iterations grows
with d, resulting in superlinear time complexity. Moreover,
by trying multiple realizations of the same inference prob-
lems we observed that our algorithm is robust and always
requires a similar number of iterations for convergence.
The required iteration count is highly variable in the case of
first order methods, which in our experience often become
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very slow near the convergence criterion. Thus the LRBT
approach is preferred here.

5.3 Smoothing of Spatiotemporal Data with Nuclear
Norm Penalties

We briefly sketch the case where each vector xt represents
the coefficients of a time varying matrix (e.g., in the neu-
ral setting, a time varying spatial receptive field) and we
want to control the rank of this matrix parameter at each
time. The rank function is not convex, but we can penal-
ize the nuclear norm (NN) to control the rank. The NN of
a matrix equals the sum of its singular values and is the
convex envelope for the rank function (Fazel et al., 2001).
Due to the recent advances in the matrix completion prob-
lem (Candes and Recht, 2009), many algorithms have been
developed for NN minimization. In our case a fast alternat-
ing minimization method (FALM) (Goldfarb et al., 2009)
is applicable. We can write our cost functional as

L(X) ∝ −
T�

t=1

log py(yt|Btxt)− log px(X)+ρ
T�

t=1

�xt�∗

where py, px are log-concave densities that meet the re-
quirements of our fast algorithm and �xt�∗ represents the
NN of xt (when the latter is written in matrix form). In a
simplified form, the backbone of the ALM methods con-
sists of the iterative alternating minimizations

min
X

�
−

T�

t=1

log py(yt|Btxt)− log px(X) +
�X− Z�2

2µ

�

min
Z

�
ρ

T�

t=1

�zt�∗ +
1

2µ
�X− Z�2

�

where µ is an appropriate constant. For the details of a
FALM method see (Goldfarb et al., 2009). For this setup,
we can minimize the first function efficiently using our
method with cost O(dT ). The minimizer of the second
function can be found in closed form using the singular
value thresholding (SVT) operator (Cai et al., 2010). In
general the minimization cost of that function would be
O(d3/2T ) because of the cubic cost of each SVD (the di-
mension of the matrix is

√
d ×

√
d). However, this can be

improved, since in smooth time varying problems we don’t
expect the SVD of xt to change rapidly with t. As a result,
iterative methods for SVT with warm starts can be used
that do not require a full SVD (e.g. (Cai and Osher, 2010)).
These methods converge relatively quickly and are of cubic
complexity only at points with discontinuities.

6 Discussion

We presented a fast interior point algorithm for perform-
ing inference in high dimensional penalized state space

models. Our algorithm is applicable in state space mod-
els where only a few measurements are observed per time
step and the prior is of a special structure that allows fast
computations. We showed that in this case a good approx-
imation to the Newton direction can be efficiently com-
puted by using a forward backward algorithm in the block-
tridiagonal Hessian, based on provably low rank updates.
We characterized the computational gain of the algorithm
and showed that the error of the approximate Newton di-
rection remains appropriately bounded.

Although they require a low number of iterations (typi-
cally between 10 and 50) to achieve good accuracy, in-
terior point methods are rarely used in general medium
to large scale problems because of the large complexity
per iteration. As an alternative, first order methods typi-
cally exhibit a relatively low cost per iteration. In a typ-
ical smooth setup the number of repetitions to achieve �-
accuracy is O(log(1/�)) (Boyd and Vandenberghe, 2004).
Similar convergence rates can be established in some cer-
tain nonsmooth cases: examples include the message pass-
ing algorithm of (Donoho et al., 2009) or the projected gra-
dient descent algorithm for restricted strongly convex func-
tions (Agarwal et al., 2011). The problem of sparse signal
estimation in the context of state-space models has also re-
ceived some attention (Vaswani, 2008; Carmi et al., 2010;
Asif and Romberg, 2010; Ziniel et al., 2010), although
these studies do not focus on fast computation methods.

Our algorithm exploits the special structure of the state-
space MAP estimation problem to combine the fast conver-
gence methods of interior point methods with the low cost
per iteration (O(dT ) scaling) of first order methods. More-
over, it can incorporate multiple priors, including non-
smooth and sparsity priors, without affecting its linear con-
vergence characteristics. As a result, the proposed methods
provide a flexible, efficient framework for tractable exact
inference in this high dimensional state space setting.

We believe that our methods will be useful in a number
of applied settings. In the future we also plan to pursue
some open theoretical questions; for example, we would
like to further examine the rate of convergence compared
to the exact Newton method; to develop good guidelines
for choosing the optimal threshold value θ; and to develop
rigorous a priori estimates of the effective rank in non-
Gaussian and nonnsmooth settings.
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Supplementary material: Fast interior-point inference in
high-dimensional sparse, penalized state-space models

Eftychios A. Pnevmatikakis and Liam Paninski

1 Analysis of the Low Rank Approximation

We examine the number of singular values that are needed to capture a fraction θ of energy
of Ut. If r is that number then the Singular Value Decomposition LΣLT solves the following
problem

min �U − LΣLT �F such that rank(LΣLT ) = r, (1)

where � ·�F is the Frobenius norm and we have dropped the subscripts for simplicity. Suppose
that each Bt is a d-dimensional gaussian vector with iid N (0, 1) entries and that each D̃−1

t Et =
αId with 0 < a < 1. Then U is a random matrix with [U ]ij ∼ N (0,α2(i−1)). Let Ul be the
matrix that consists of the first l rows of U and define k as the minimum number of rows
required to capture a θ fraction of the energy,

k = argmin{l : E�Ul�2F ≥ θE�U�2F }. (2)

We claim that with high probability k ≥ r. To compute k we have

E�Ul�2F = d
1− α2l

1− α2
⇒

E�Ul�2F ≥ θE�U�2F ⇔ (1− α2l) ≥ θ(1− α2t) ⇒

k =

�
log(1− θ(1− α2t))

2 log(α)

�
,

(3)

where �·� is the ceil function. Note that k is independent of d. Therefore, we expect our low
rank approximation to give substantial computational gains if

d �
�
log(1− θ(1− α2t))

2 log(α)

�
. (4)

We can also compute a bound on the deviation of the effective rank of U from k + c for
some positive integer c, using large deviations theory. A weaker version of this is computing
the deviation of �Uk�2F from E(�Uk�2F ) by estimating the probability

P(�Uk+c�2F ≤ E(�Uk�2F )). (5)

This is the probability that more than k+ c rows are required to capture the θ fraction of the
expected energy. Therefore this constitutes a bound on the probability that the effective rank

1



of U will be greater than k + c. �Uk+c�2F can be considered as the sum of k + c i.i.d. random
variables Qi, with

�Uk+c�2F =
k+c�

i=1

α2(i−1)Qi, (6)

where each Qi is a chi-squared distribution with d degrees of freedom. Then from Cramer’s
theorem (Dembo and Zeitouni, 1993) we have that

P(�Uk+c�2F ≤ E(�Uk�2F )) ≤ exp(−dκ(E(�Uk�2F ))), (7)

with
κ(E(�Uk�2F )) := sup

t

�
E(t�Uk�2F )− log(E(et�Uk+c�2F ))

�
. (8)

By using the moment generating function for a chi-squared random variable (which is defined
on the interval (−∞, 0.5) we have

κ(E(�Uk�2F )) := sup
t<0.5

�
tE(�Uk�2F ) +

1

2

k+c�

i=1

log(1− 2tα2(i−1))

�

� �� �
f(t)

. (9)

The maximizing t cannot be found in closed form. However, it can be shown that f(t) is
concave and that f �(0) < 0. As a result κ(�Ul�2F ) > f(0) > 0. Therefore, the probability of
a fixed deviation from the expected number of required rows k decays exponentially with the
dimension d. Moreover, for a fixed d, numerical simulations show that the probability falls
sharply with the order of the deviation. The exact rate will be pursued elsewhere.

In a similar way, we can also compute a bound on the slightly more relevant probability.
Assuming T → ∞

P(�Uk+c�2F ≤ θ�U�2F ) = P
�
�Uk+c�2F ≤ θ

1− θ
�U\(k+c)�2F

�
= P

�
�Uk+c�2F ≤ θ

1− θ
α2(k+c)�V �2F

�
,

(10)
where U\l is the matrix U without its first l rows and V is an independent copy of U . Following

the same reasoning as before, and using that α2k ≈ 1− θ

P(�Uk+c�2F ≤ θ�U�2F ) ≤ exp



−d

2
sup

−α−2c

2θ <t<
1
2

�
k+c�

i=1

log(1− 2tα2(i−1)) +
∞�

i=1

log(1 + 2tθα2cα2(i−1))

�



(11)
It can again be shown that the supremum is greater than zero for all c > 0, and that it also
increases with c, which establishes that the probability of the effective rank being greater than
the bound of (4) falls exponentially with the dimension d and sharply with the order of the
deviation c.

Remark 1.1. The bound of (4) is in practice rather loose. A more detailed analysis shows
that with the inclusion of the “noise term” (F−1

t + UtD̃
−1
t UT

t )
−1/2, the effective rank drops,

and (4) appears in the limiting situation where the measurement noise is infinite. Moreover,
our analysis does not account for the recursive nature of the low rank approximations. Using
these facts tighter bounds can be derived. A detailed analysis is presented in (Pnevmatikakis
et al., 2012).
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2 Proof of H̃ being positive definite

We can write the forward-backward recursion of the Block-Thomas algorithm in matrix-vector
form. The backward recursion

sT = qT ,

st = qt − Γtst+1, t = T − 1, . . . , 1
(12)

can be written as





s1
s2
...

sT−1

sT




= −





0 Γ1 0 . . . 0
0 0 Γ2 . . . 0
...

...
. . .

. . .
...

0 0 . . . 0 ΓT−1

0 0 . . . 0 0





� �� �
Γ





s1
s2
...

sT−1

sT




+





q1
q2
...

qT−1

qT




. (13)

Similarly, the forward recursion

q1 = −M−1
1 ∇1,

qt = −M−1
t (∇t + Et−1qt−1), t = 2, . . . , T

(14)

can be written in matrix-vector form as





q1

q2

...
qT−1

qT




= −





0 0 . . . 0 0
M

−1
2 E1 0 . . . 0 0
...

. . .
. . .

...
...

0 . . . M
−1
T−1ET−2 0 0

0 . . . 0 M
−1
T ET−1 0





� �� �
E





q1

q2

...
qT−1

qT




−





M
−1
1 0 . . . 0 0
0 M

−1
2 . . . 0 0

...
...

. . .
...

...
0 0 . . . M

−1
T−1 0

0 0 . . . 0 M
−1
T





� �� �
M−1





∇1

∇2

...
∇T−1

∇T





(15)

Combining (13) and (15) we have

s = −(I + Γ)−1(I + E)−1M−1∇, (16)

where Γ, E,M are matrices defined in (13) and (15). Since s = −H−1∇ it follows that the
Hessian is equal to

H = M(I + E)(I + Γ). (17)

In the case of the LRBT algorithm, if we define M̃−1
t = D̃−1

t − LtΣtLT
t and Γ̃t = M̃−1

t ET
t ,

we have that

q̃t = −M̃−1
t (∇t + Et−1q̃t−1)

s̃t = q̃t − Γ̃ts̃t+1.
(18)

Therefore, an equivalent representation holds in the sense that

s̃ = −H̃−1∇, with H̃ = M̃(I + Ẽ)(I + Γ̃), (19)
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where the block matrices M̃, Ẽ, Γ̃ are defined in the same way as their exact counterparts
M,E,Γ. We can rewrite H̃ as

H̃ = M̃(I + Ẽ)M̃−1M̃(I + Γ̃) (20)

A straight calculation shows that

M̃(I + Γ̃) = (M̃(I + E))T =





M̃1 ET
1 0 . . . 0

0 M̃2 ET
2 . . . 0

...
...

. . .
. . .

...
0 0 . . . M̃T−1 ET

T−1

0 0 . . . 0 M̃t




, (21)

and the approximate Hessian can be written as

H̃ =





M̃1 E
T
1 0 . . . 0

0 M̃2 E
T
2 . . . 0

...
...

. . .
. . .

...
0 0 . . . M̃T−1 E

T
T−1

0 0 . . . 0 M̃t





T 



M̃
−1
1 0 0 . . . 0
0 M̃

−1
2 0 . . . 0

...
...

. . .
. . .

...
0 0 . . . M̃

−1
T−1

0 0 . . . 0 M̃
−1
t









M̃1 E
T
1 0 . . . 0

0 M̃2 E
T
2 . . . 0

...
...

. . .
. . .

...
0 0 . . . M̃T−1 E

T
T−1

0 0 . . . 0 M̃t




,

(22)

or

H̃ =





M̃1 ET
1 0 . . . 0

E1 M̃2 + E1M̃
−1
1 ET

1 ET
2 . . . 0

...
. . .

. . .
...

...
0 0 . . . M̃T−1 + ET−2M̃

−1
T−2E

T
T−1 ET

T−1

0 0 . . . ET−1 M̃T + ET−1M̃
−1
T−1ET−1




.

(23)
From (22) it follows that H̃ is positive definite (PD), if the matrices M̃t are also PD.

Lemma 2.1. The matrices D̃t, t = 1, . . . , T are PD.

Proof. In the case where A and V commute and A is stable, the matrix D̃t is equal to

D̃t = V −1(I − (ATA)t)−1(I − (ATA)t+1),

which is PD, by stability of A. The result holds also in the case where A and V do not
commute, although the formulas are more complicated.

Lemma 2.2. The matrices M̃t, t = 1, . . . , T are PD for any choice of the threshold θ.

Proof. We introduce the matrices M̂t, defined as follows:

M̂1 = M1

M̂t = Dt +BT
t W

−1
t Bt − Et−1M̃

−1
t−1E

T
t−1.

(24)

These matrices are the matrices obtained from the exact BT recursion Mt = Dt+BT
t W

−1
t Bt−

Et−1M
−1
t−1E

T
t−1, applied to the approximate matrices M̃−1

t−1. By using the relations

M̃−1
t = D̃−1

t − LtΣtL
T
t

D̃t = Dt − Et−1D̃
−1
t−1E

T
t−1,

(25)
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we can rewrite M̂t as

M̂t = D̃t +BT
t W

−1
t Bt + Et−1Lt−1Σt−1L

T
t−1E

T
t−1 = D̃t +OtQtO

T
t . (26)

Using (26) we see that M̂t is the sum of a PD matrix (D̃t), and two semipositive definite
(SPD) matrices (Σt is always PD by definition). Therefore, M̂−1

t is also PD and equals

M̂−1
t = D̃−1

t − D̃−1
t Ot(Q

−1
t +OT

t D̃
−1
t Ot)

−1OT
t D̃

−1
t� �� �

Gt

. (27)

Now M̃−1
t is obtained by the low rank approximation of Gt. We can write the singular value

decomposition of Gt as

Gt =
�
Lt Rt

� � Σt 0
0 St

� �
LT
t

RT
t

�
, (28)

and have that
M̃−1

t − M̂−1
t = RtStR

T
t (29)

Therefore M̃−1
t − M̂−1

t is SPD. Consequently M̃t is the sum a PD and a SPD matrix and thus
is PD.

A detailed proof of Theorem 3.4 will be presented in (Pnevmatikakis et al., 2012).
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