
 

 

1 

1 

Title 
A generalized linear model for estimating spectrotemporal receptive fields from responses to 
natural sounds. 
 
Authors 
Ana Calabrese1,2, Joseph W. Schumacher1, David M. Schneider1, Liam Paninski1,2,3 and  
Sarah M.N. Woolley1,4,* 
 
Affiliations 
1 Doctoral Program in Neurobiology and Behavior, Columbia University, New York, New York  
2 Center for Theoretical Neuroscience, Columbia University, New York, New York 
3 Department of Statistics, Columbia University, New York, New York  
4 Department of Psychology, Columbia University, New York, New York  
 
Running title 
GLM with natural sounds 
 
*Correspondence: 
Sarah M. N. Woolley 
Columbia University 
1406 Schermerhorn Hall 
1190 Amsterdam Ave. 
New York, NY 10027 
phone: 212-854-5448 
fax: 212-854-3609 
email: sw2277@columbia.edu 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

2 

2 

ABSTRACT 

In the auditory system, the stimulus-response properties of single neurons are often described in 

terms of the spectrotemporal receptive field (STRF), a linear kernel relating the spectrogram of 

the sound stimulus to the instantaneous firing rate of the neuron. Several algorithms have been 

used to estimate STRFs from responses to natural stimuli; these algorithms differ in their 

functional models, cost functions, and regularization methods. Here, we characterize the 

stimulus-response function of auditory neurons using a generalized linear model (GLM). In this 

model, each cell’s input is described by: 1) a stimulus filter (STRF); and 2) a post-spike filter, 

which captures dependencies on the neuron’s spiking history. The output of the model is given by 

a series of spike trains rather than instantaneous firing rate, allowing the prediction of spike train 

responses to novel stimuli. We fit the model by maximum penalized likelihood to the spiking 

activity of zebra finch auditory midbrain neurons in response to conspecific vocalizations (songs) 

and modulation limited (ml) noise. We compare this model to normalized reverse correlation 

(NRC), the traditional method for STRF estimation, in terms of predictive power and the basic 

tuning properties of the estimated STRFs. We find that a GLM with a sparse prior predicts novel 

responses to both stimulus classes significantly better than NRC. Importantly, we find that STRFs 

from the two models derived from the same responses can differ substantially and that GLM 

STRFs are more consistent between stimulus classes than NRC STRFs. These results suggest 

that a GLM with a sparse prior provides a more accurate characterization of spectrotemporal 

tuning than does the NRC method when responses to complex sounds are studied in these 

neurons. 
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INTRODUCTION 

 

Characterizing neural responses to natural stimuli remains one of the ultimate goals of sensory 

neuroscience. However, considerable technical difficulties exist for correctly estimating neural 

receptive fields (RFs) from natural stimuli. Two major difficulties are the interactions between 

higher-order statistics of the stimuli and inherent nonlinearities of neural responses (Sharpee et 

al. 2008, Christianson et al. 2008) and the challenge of estimating receptive fields in high 

dimensional spaces with limited data (Theunissen et al. 2001, David et al. 2007).  

Neural responses are commonly characterized by a linear-nonlinear (LN) model (Chichilnisky 

2001, Paninski 2003, Simoncelli et al. 2004), in which the output of a linear filter or receptive field 

(RF) applied to the stimulus is then transformed by a static nonlinearity to determine the 

instantaneous firing rate of the neuron. Reverse correlation (RC), the most widely used estimation 

method, computes the RF of a neuron by multiplying the spike-triggered average (STA) of the 

stimulus by the inverse of the stimulus covariance matrix. It is well understood that, for an LN 

neuron, RC is guaranteed to produce an unbiased estimate of a neuron’s true underlying filter 

only if the distribution of the stimuli used for estimation is elliptically symmetric (Paninski 2003). 

Deviations from either the LN framework (e.g., the existence of more than one linear filter 

(multiple-filter LN), or extra terms that take into account spiking history) or the elliptical symmetry 

condition (e.g., naturalistic stimuli which contain higher order correlations) can introduce biases in 

the estimate of the RF. 

The highly correlated structure of natural stimuli presents additional numerical problems for RF 

estimation. Because natural stimuli contain strong autocorrelations, the majority of the power in 

the stimulus tends to be concentrated in a small number of dimensions.  Multiplication by the 

inverse of the stimulus covariance matrix causes noise in the resulting RF to be strongly amplified 

along the stimulus dimensions with low variance. Thus, some form of regularization is applied to 

RC to prevent overfitting to noise (Theunissen et al. 2001, Sahani and Linden 2003, Smyth et al. 

2003, Machens et al. 2003).  

In the auditory system, the stimulus-response properties of single neurons are often described in 

terms of the spectrotemporal receptive field (STRF), a linear kernel relating the spectrogram of 

the sound stimulus to the instantaneous firing rate of the neuron. Traditionally, STRFs have been 

estimated using normalized-reverse correlation (NRC), a method that uses an approximation to 

the stimulus covariance matrix to obtain regularized estimates. Regularization introduces a prior 

that imposes constraints in the STRF estimate and, under noisy conditions, the specific 

regularization used by the model can introduce biases in the estimates (David et al. 2007). 

Methods other than the NRC have recently been proposed to characterize the tuning properties 

of auditory neurons from responses to natural stimuli, each of which reduces the impact of 
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stimulus-correlation biases on the estimated STRFs (David et al. 2007, Sahani and Linden 2003, 

Sharpee et al. 2004). These algorithms differ in their functional models, cost functions, and 

regularization methods. Here, we propose an approach for characterizing the stimulus-response 

function of auditory neurons based on a generalized linear model (GLM). This method is 

advantageous because it requires relatively light computational resources and provides easily 

interpretable results (Paninski 2004, Truccolo et al. 2005, Brillinger 1988). For example, it has 

been successfully used to accurately predict spiking responses (Pillow et al. 2005) of single 

retinal ganglion cells as well as detailed spatiotemporal correlations in the responses of a 

complete population of macaque retinal ganglion cells (Pillow et al. 2008). As opposed to most 

STRF estimation methods, our method takes into account spiking history. Further, the output of 

the model is a series of spike trains rather than average time-varying firing rate, allowing 

comparison of the actual and predicted spike train responses.  

In this study, we compare a GLM with a sparse prior and NRC in terms of their ability to predict 

responses to novel stimuli and the tuning properties of the STRFs they produce. We fit both 

models to responses of single auditory neurons in the midbrain of zebra finches probed with two 

types of stimuli: zebra finch songs and modulation-limited noise.  We find that the GLM predicts 

responses to both stimulus classes significantly better than NRC, and that GLM and NRC STRFs 

derived from the same data can differ profoundly. Finally, the GLM method reduces differences in 

tuning between stimulus classes. 

 

MATERIALS AND METHODS 

 

2.1  Electrophysiology  

All procedures were in accordance with the NIH and Columbia University Animal Care and Use 

Policy. Electrophysiological recordings were made from single neurons in the auditory midbrain, 

mesencephalicus lateralis dorsalis (MLd), of adult male zebra finches as described in (Schneider 

and Woolley 2010). Briefly, an initial preparatory surgery was performed 48 hrs before the first 

neural recording session. Birds were deeply anesthetized with 0.03 ml Equithesin and placed in a 

custom stereotaxic holder. For recordings made from anesthetized birds, only the first layer of 

skull was removed during the initial surgery. For recordings made from awake birds, full 

craniotomies were made. A grounding wire was cemented in place with its end just beneath the 

skull, approximately 5 to 10 mm lateral to the junction of the midsagittal sinus. A head post was 

cemented to the skull of the animal and points were marked for electrode penetrations. 

Anesthetized recording sessions were preceded by administering three doses of 0.03 ml of 20% 

urethane over a period of one hour. Recordings were made using glass pipettes containing 1M 

NaCl, with impedances ranging from 5 to 20 MOhms. The duration of the recording sessions 
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ranged from 4 to 15 hours. Awake recording sessions were no longer than 6 hours. For a single 

animal, awake recordings were performed over a period of approximately two weeks and 

anesthetized recordings were performed in a single session. After final recording sessions, the 

birds were euthanized and brains were preserved for histological reconstruction of electrode 

locations.  

 

2.2  Stimuli  

Two sound ensembles were used: a conspecific song ensemble and a modulation-limited (ml) 

noise ensemble. The conspecific song ensemble consisted of 20 songs (∼ 2 sec in duration each) 

from different adult male zebra finches. Each song was band-pass frequency filtered between 

250 Hz and 8 kHz. The ml noise ensemble consisted of 10 samples of 2 sec of ml noise. Ml noise 

is a behaviorally meaningless sound similar to white noise that was designed to match song in 

frequency range, maximum spectral and temporal modulations and power (Woolley et al. 2005). 

Stimuli were presented at a mean intensity of 72 dB SPL. Ten spike train response trials were 

obtained for each of the 20 songs and 10 noise samples. Trials for different stimuli were 

interleaved in random order. The inter-trial interval was determined at random from a uniform 

distribution between 1.2 and 1.6 seconds.  

 

2.3   Data preprocessing 

The same preprocessing was applied to the data before fitting both NRC and GLM. Spectrograms 

were generated from the stimulus sound pressure waveforms using a bank of band-pass filters 

with center frequencies ranging from 250 to 8000 Hz, which covers the audible frequency range 

for zebra finches (Zevin et al. 2004). The center frequencies were spaced linearly and had a 

bandwidth of 125 Hz. It has been shown that the predictive abilities of STRFs can be improved by 

applying a compressive nonlinearity to the stimulus spectrogram (Gill et al. 2006). We therefore 

applied a logarithm to the stimulus spectrogram prior to fitting the models, which mimics 

peripheral auditory processing. 

 

For the NRC method, both stimulus spectrograms and spike trains were binned at 1 ms resolution 

(the temporal resolution required by STRFPak, the publicly available Matlab toolbox for STRF 

estimation we used in this study; see Section 2.5). For the GLM method, both signals were further 

down sampled by a factor of 3. Using time bins larger than 1 ms is common in the GLM setting 

(Eldawlatly et al. 2009). Expanding the bin size can avoid nonconvergence problems related to 

the refractory periods of neurons (Zhao and Iyendar 2010), and effectively reduces the 

computational load. In order to test that the different bin sizes in the estimation of NRC and GLM 

STRFs was not introducing a bias in predictive power or STRF shape, we re-computed the 

STRFs of a subset of our population of cells (10 cells) using the GLM with 1 ms time bins. We 
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found no significant differences in STRF shape or predictive power of GLM STRFs computed at 1 

ms or 3 ms resolution (the average same-class prediction correlation for a novel song was 0.507 

and 0.51, respectively).  

 

2.4  Generalized linear model for spike trains  

We describe the encoding of a stimulus spectrogram (a transformation of the sound pressure 

waveform into a time-varying function of energy at each frequency band),     

€ 

 
x , in the spike trains of 

an auditory neuron with a generalized linear model (GLM, Fig. 2A), a generalization of the well 

known linear-nonlinear-Poisson (LNP) cascade model (Paninski 2004). In this model, a cell’s 

response is described by: 1) a stimulus filter, or STRF (    

€ 

 
k ); 2) a post-spike filter (    

€ 

 
h ), which 

captures dependencies on the cell’s spiking history (e.g. refractoriness); and 3) a constant offset 

b which sets the threshold and baseline firing rate of the model. For each neuron, a static 

nonlinear function is then applied to the summed filter responses to obtain an instantaneous spike 

rate (Truccolo et al. 2005, Brillinger 1988, Paninski et al. 2007). Although these types of models 

are strictly phenomenological, their components can be broadly compared to biophysical 

mechanisms. The stimulus filter approximates the spectrotemporal integration of the sound 

stimulus in an auditory neuron. The post-spike filter mimics voltage-activated currents following a 

spike. And the output nonlinearity implements a soft threshold converting membrane potential to 

instantaneous spike probability. 

  

2.4.1  Model fitting/parameter estimation  

We fit the model to extracellular single unit recordings from 169 auditory midbrain neurons. To 

calculate the model parameters, stimuli (log spectrograms) were computed and responses (spike 

trains) were binned at a 3 ms resolution. The time bin was small enough that more than one spike 

was almost never observed in any bin. The spectral domain of the stimulus was divided into 20 

equally spaced frequency bins, which spanned frequencies between 250 and 8000 Hz. The 

model parameters were fitted by maximum penalized likelihood. The parameters for each cell 

consisted of a stimulus filter or STRF     

€ 

 
k , a constant offset b, and a post-spike filter     

€ 

 
h . The STRF 

was a 400-dimensional vector (20 spectral × 20 time bins, including frequencies between 250 and 

8000 Hz and latencies between 0 and 60 ms, respectively), the post-spike filter was a 5-

dimensional vector (5 time bins spanning the 15 ms following each spike) and the offset consisted 

of a scalar value, for a total of 406 unknown parameters. Increasing the binning resolution would 

change the number of fit parameters and could, in theory, improve the performance of the model. 

However, the resolution used in this study is sufficient for demonstrating the performance of GLM 

compared to NRC under these experimental conditions. 

 

The conditional spike rate in the model is given by  
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€ 

λ(t) = f (b +
 
k ⋅
 
x (t) + h( j )r (t − j )

j =1

J

∑ )        Eq. (1) 

where 
      

€ 

 
k ⋅
 
x (t) = k(f ,τ)x(f ,t − τ )

τ

∑
f
∑  is the convolution between the stimulus at time t and the 

STRF, and r(t-j) is the cell’s spike train history (J = 5). The log-likelihood of the observed spike 

data given the model parameters (  

€ 

 
θ  = {b,     

€ 

 
k ,     

€ 

 
h }), and the observed stimulus     

€ 

 
x  is given by the 

point process log-likelihood (Snyder and Miller 1991) 

 

    

€ 

L = log(λtspk
)

tspk

∑ − λ(t)dt∫          Eq. (2) 

where tspk denotes the set of spike times and the integral is taken over the length of the 

experiment (all trials of the particular stimulus class used to fit the model).  

 

2.4.2 Static nonlinearity  

Numerical optimization of Eq. 2 is simplified by making two assumptions about the nonlinear 

rectification function f (.): 1) f (u) is a convex function of its scalar argument u; and 2) log f (u) is 

concave in u. With these assumptions, the log-likelihood in Eq. 2 is guaranteed to be a concave 

function of the parameters   

€ 

 
θ  (Paninski 2004). This ensures that the likelihood has no local 

maxima, and therefore the maximum likelihood parameters     

€ 

 
θ ML  may be found by numerical 

ascent techniques. Several functions f(.) satisfy these two constraints, including the standard 

linear rectifier and the exponential function.  

 

For each cell, our model converts linear input into an instantaneous spike rate by means of an 

exponential nonlinearity (see Fig. 1A). To assess the adequacy of this assumption, we compared 

an exponential function with a direct reconstruction estimate of the nonlinearity, computed using 

the raw distribution of filter outputs and the observed spike responses (Chichilnisky 2001) (see 

Fig. 2C for an example). These reconstructions look exponential for some cells in our sample and 

sub-exponential for others. To assess the performance of the exponential nonlinearity against 

another nonlinearity, we also performed a complete re-fitting of the model parameters using 

output nonlinearities given by a function of the form  

 

    

€ 

f =
eu u ≤ 0

1+ u +
u2

2
u > 0

 
 
 

  
, 

 

which grows quadratically for u>0 and decays like eu for negative values of u. This model 
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exhibited slightly better predictive power for ml noise (p<0.05, two-sample Kolmogorov-Smirnov 

test) but not for songs across the population of 169 cells, and did not result in a noticeable 

change in the fitted STRFs.  

 

The weak dependence of the parameter estimates on the specific form of the nonlinearities tested 

here (in addition, we also fitted a linear model with a sparse prior which resulted in nearly 

identical STRFs, see Section 3.6 for further details) led us to ask whether we could improve the 

performance of the model by fitting a flexible nonlinearity for each cell once the parameters (b,     

€ 

 
k , 

and     

€ 

 
h ) were already known (in general, the estimates will depend on the specific form of the 

objective function used for optimization and a re-estimation step is necessary after the nonlinear 

function f is fitted). We parameterized the output nonlinearity as a cubic spline, and used this 

model instead of the exponential nonlinearity to predict novel responses and compared those to 

predicted responses that were generated using the exponential nonlinearity. This addition 

conferred only a slight improvement in cross-validation performance (see Section 3.6 and Fig. 8). 

Therefore, for simplicity, we restricted all further analyses in this study to a GLM with an 

exponential nonlinearity.  

 

2.4.3 Regularized sparse solutions  

Maximum likelihood estimates can be extremely noisy when fitting high-dimensional models. This 

overfitting phenomenon has been shown in the linear regression case (Theunissen et al. 2001) 

(see section 2.5), where the noisiness of the estimate of the filter    

€ 

 
k is roughly proportional to the 

dimensionality of    

€ 

 
k divided by the total number of observed samples (Paninski 2003). The same 

type of effect occurs in the GLM context. Thus, in order to obtain accurate fits, we added to the 

log-likelihood in Eq. 2 an additional term, Q(    

€ 

 
k ), that acts as a “penalty function.”  

 

      

€ 

L−Q(
 
k ) = log(λtspk

)
tspk

∑ − λ(t)dt∫ −Q(
 
k )       Eq. (3) 

Here Q(    

€ 

 
k ) encodes our a priori beliefs about the true underlying     

€ 

 
k . Whenever the penalizer 

−Q(    

€ 

 
k ) is a concave function of    

€ 

 
k , the penalized likelihood in Eq. 3 is also a concave function of 

    

€ 

 
k , and ascent-based maximization may proceed as before, with no local maxima (Paninski et al. 

2004). Thus, the penalty term Q can be any function within the class of convex functions.  

 

Here we used a sparse prior on the STRF (i.e., many of the elements of     

€ 

 
k are zero and only a 

small subset of the elements of     

€ 

 
k  is active) to regularize the model.  This is equivalent to 

assuming that the neuron’s firing is sensitive only to a small number of stimulus features (David et 



 

 

9 

9 

al. 2007).  A common way to impose sparseness is based on the L1 norm of     

€ 

 
k  (Donoho et al. 

1995, Tibshirani 1996), 

  

      

€ 

Q(
 
k ) = η | ki |

i
∑ .           Eq. (4) 

 

This function is convex, but the term on the right in Eq. 4 is non-differentiable and the resulting 

optimization problem can be challenging. An alternative approach is to use a smooth 

differentiable approximation to the L1-regularizer that would allow the application of standard 

Newton methods to solve the resulting unconstrained optimization problem. Within this context, 

we use the interior point method proposed by (Schmidt et al. 2007) to solve the optimization 

problem. This method relaxes the non-differentiability of the L1-norm by a sequence of smooth 

approximation functions. Solving this optimization problem requires the selection of an additional 

hyperparameter, η, that controls the amount of penalization: for large η we penalize strongly and 

for η = 0 we recover the maximum likelihood unregularized solution (see Fig. 1B). Here, we select 

this hyperparameter by cross-validation, varying η until a maximum in prediction accuracy is 

reached.  

 

2.5  STRF estimation by normalized reverse correlation  

For comparative purposes, we estimated STRFs from the same data using normalized reverse 

correlation (NRC), a variant of the classical linear regression that has been used to estimate 

STRFs from natural stimuli in the auditory and visual systems (Theunissen et al. 2000, 

Theunissen et al. 2001, David et al. 2004). NRC fits a linear STRF that minimizes the mean-

squared error between predicted and observed neuronal response: 

      

€ 

 
k LS = argmax

 
k 

 
k T
 
x t − rt[ ]

2

t
∑
 
 
 

 
 
 

.        Eq. (5)   

 

A detailed description of the algorithm is described in (Theunissen et al. 2001). Here we provide a 

brief description of NRC for comparison to the GLM method. 

 

The best-fit least-squares filter     

€ 

 
k LS  is given by 

 

      

€ 

 
k LS = (X TX )−1X T  r           Eq. (6) 

 

where the stimulus matrix X is defined as Xt = xt
T and r = (r(1) r(2) … r(t))T.  

The term     

€ 

X T  r  corresponds to the spike-triggered average - the conditional mean     

€ 

 
x  given a 
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spike - and the matrix XTX/D = CXX corresponds to the covariance matrix of the stimulus. Here, 

the superscript T indicates a transpose operation and D is the duration of the experiment.  

 

This estimator gives an unbiased estimate of the filter     

€ 

 
k  for any stimulus statistics if the 

underlying system is linear (Klein et al. 2000) or if the stimulus is elliptically symmetric (i.e. 

contains only up to second order correlations) if the underlying system is nonlinear. However, in 

practice, for the case of high dimensional X with strong autocorrelations, estimating     

€ 

 
k  with Eq. 6 

can amplify noise excessively (Theunissen et al. 2001). To minimize these effects, NRC uses a 

pseudo inverse to approximate the inverse of the stimulus autocorrelation matrix. This 

approximation is based on setting dimensions in the stimulus that have little power (below some 

noise threshold) to zero. To compute the pseudo inverse, a singular value decomposition is 

applied to the autocorrelation matrix, 

 

  

€ 

Cxx = UTΛU            Eq. (7) 

 

The columns of U contain the unit-norm eigenvectors of CXX, which correspond to the discrete 

Fourier transform (DFT) vectors. The diagonal matrix Λ = diag(λ1, λ2, … , λN) contains the 

corresponding eigenvalues ordered from largest to smallest, which correspond to the power 

spectrum of the stimulus as a function of temporal frequency. A tolerance value, τ, specifies the 

fraction of stimulus variance and the number of stimulus dimensions, m, to preserve in the 

pseudoinverse C-1
app:  

 

      

€ 

Capp
−1 = UTΛapp

−1 U = UTdiag( 1
λ1

, 1
λ2

,…, 1
λm

,0,…,0) ,     Eq. (8) 

which results in penalization of high frequencies. 

 

The final NRC estimate of the STRF is then,  

 

      

€ 

 
k = 1

D
Capp

−1 X T  r            Eq. (9) 

 

Implementing NRC requires the selection of a single hyperparameter, the tolerance value, τ. To 

choose τ, the method uses a cross-validation procedure. In this study, we use the Matlab toolbox 

developed by the Theunissen and Gallant laboratories at University of California, Berkeley 

(http://strfpak.berkeley.edu) to estimate NRC STRFs. 
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2.6  Prediction accuracy  

For both the GLM and NRC models, response prediction was validated with song and noise data 

that were not used for fitting the model. From the entire set of 20 song and 10 ml noise stimuli, 19 

songs or 9 ml noise samples were used to estimate the models’ parameters (estimation data set). 

The models were then used to predict the average response to the remaining song or ml noise 

sample not included in the estimation set. This procedure was repeated 20 times in the case of 

songs and 10 times in the case of ml noise, excluding a different validation stimulus on each 

repeat. The accuracies of these predictions were then averaged to produce a single value for the 

neuron’s response. Prediction accuracy was determined by measuring Pearson’s correlation 

coefficient between the predicted and observed peristimulus time histogram (PSTH). For both 

NRC and GLM, PSTHs were computed with a 3 ms time bin and were smoothed with a 5 ms 

Hanning window. The width of the smoothing window was chosen to match the integration time of 

auditory midbrain neurons (Covey et al. 1996).  

 

2.7 Tuning properties derived from STRFs 

To compare STRFs estimated using NRC and GLM methods, we measured three tuning 

properties commonly used to characterize auditory neurons (Escabi and Read 2003, Woolley et 

al. 2006); best excitatory frequency (BF), the spectral frequency that evokes the strongest neural 

response; excitatory spectral bandwidth (BW), the range of frequencies that are associated with 

an increase from mean firing rate; and excitatory temporal bandwidth (tBW), the time over which 

relevant frequencies lead to an increase from mean firing rate. BF, BW and tBW were computed 

from the STRFs using standard methods (David et al. 2009). Briefly, the BF was measured by 

setting negative STRF values to zero and averaging along the time axis. The resulting spectral 

tuning curve was convolved with a 5-point symmetric Hanning window, and the BF was taken to 

be the position of the peak of the smoothed curve. The BW was measured from the smoothed 

curve as the width (Hz) at half-height around the BF. The tBW was measured by setting all 

negative STRF values to zero and averaging along the spectral axis. The resulting temporal 

tuning curve was convolved with a 5-point symmetric Hanning window, and the tBW was 

measured from the smoothed curve as the width (ms) at half-height around the peak. 

 

 

RESULTS 

We recorded from 169 well-isolated MLd neurons (97 in anesthetized birds and 72 in awake 

birds). Neurons recorded from awake and anesthetized birds produced robust responses to 

songs and ml noise. On average, midbrain neurons recorded from awake birds showed higher 

spontaneous and stimulus-driven firing rates, when compared to neurons recorded from 
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anesthetized birds (mean stimulus-driven firing rates were 22 Hz for the awake preparation and 

11 Hz for the anesthetized preparation). At the single neuron level, we did not find significant 

differences in firing rate in responses to song and ml noise in awake or anesthetized birds. The 

responses of nearly all neurons were stimulus-locked and reliable over multiple presentations of 

the same stimulus (trials).   

 

3.1 Responses of single auditory midbrain neurons are well modeled using a GL model 

We modeled the functional relationship between sound stimuli and neuronal responses with a 

generalized linear model (GLM) for each neuron (see Fig. 1A). Figure 2A shows an example GLM 

STRF estimated from responses to song and Figure 2B shows the corresponding exponentiated 

post-spike filter representing the influence of spiking history on spiking probability for the same 

neuron. For most of the cells in our sample, the shape of the post-spike filter corresponds to a 

brief period of refractoriness and gradual recovery.   

Figure 2C shows the static nonlinearity estimated for this neuron (Chichilnisky 2001) (black dots), 

together with the exponential nonlinearity (gray line) employed by the model. Although the 

exponential function used by the model does not provide an excellent fit to the underlying 

nonlinearity for this neuron (a subexponential nonlinearity performs slightly better; see Methods), 

the model does predict responses to a novel stimulus with good accuracy (see below).  

 In order to test how well the GLM method predicted song responses in individual trials, we used 

it to predict the responses to a validation song (Figure 2, D-F) that was included in the recording 

experiment but was not included in the estimation of the model parameters. Recorded and 

predicted spiking responses to the validation stimulus are shown in Figure 2F. For this neuron, 

the model predicts the spiking responses to the validation song reasonably well; the mean cross 

correlation between actual and predicted response PSTHs was 0.69.  

 

3.2 A GLM outperforms normalized reverse correlation (NRC) when predicting responses of 
single auditory neurons to songs and noise. 

We next compared the GLM to the more traditional STRF estimation method, NRC, in their ability 

to predict single neuron responses to zebra finch songs and ml noise.    

Figure 3 shows NRC and GLM response predictions for 3 neurons in response to the song in 

Figure 2D. Although the predicted traces for both models (blue for NRC and red for GLM) account 

for broad variations in the actual PSTHs, neither of them captures their precise shape. One 

common failure of the models to predict responses is best demonstrated in Figure 3B and C. 
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These two neurons show highly reliable responses to the song and, although the models predict 

the timing of the responses, in several cases they underestimate their amplitudes. This effect is 

more pronounced for NRC than for the GLM.  Changing the nonlinear link function of the model 

could, in principle, help to increase the amount of variance in the response described by the 

model. However, within the groups of nonlinearities we tried on our data (see Methods), we 

observed only slight or no improvements in prediction accuracy (see also Fig. 8). We later 

discuss (see Discussion) several extensions to the GLM that could improve the predictive power 

of the model. Finally, Figure 3 shows spike-train predictions for the GLM method in response to 

the same song. The predicted spike trains capture the overall structure of the recorded spiking 

activity. 

We then compared the prediction accuracy of the GLM and NRC methods across the entire set of 

169 auditory midbrain neurons. Since we did not find noticeable differences in predictive power 

between awake and anesthetized recordings, we report the prediction accuracy for the two data 

sets combined.  

We first compared the ability of both models to predict responses to a novel stimulus taken from 

the same stimulus class used in the estimation set (we refer to this case as "same-class 

predictions", Figure 4A). We found that the performance of both models varies widely across our 

population of cells; on this moderately small timescale (predicted and actual responses were 

computed using 3 ms time bins and were smoothed with a 5 ms Hanning window; see Methods), 

the prediction correlation was as high as 0.77 for some neurons and below 0.1 for others. For low 

firing rate neurons, we found a relatively moderate correlation (0.36) between the number of 

spikes in the estimation set and the prediction performance of the models. We found that the 

prediction performance becomes independent of the number of spikes in the estimation set for N 

~2000, which corresponds to firing rates of ~10 Hz.  Since the goal of this study is to test the 

GLM method under different conditions and compare its performance to NRC, we included all the 

data in our sample in the analysis regardless of prediction accuracy.  

The average same-class prediction correlation for the GLM for novel song and ml noise stimuli is 

rs = 0.47±0.01 and rn = 0.46±0.01, respectively (mean ± SE). These values are significantly 

greater than the average for NRC, rs =0.42±0.01 and rn = 0.40±0.008 (p<0.001, two-sample 

Kolmogorov-Smirnov (KS) test). 

To evaluate how well the GLM and NRC methods estimated from responses to one of the 

stimulus classes generalized to a second stimulus domain, we compared how well these models 

predicted responses to the other stimulus class ("across-class predictions"). In this way, we used 

the models that were estimated using song data to predict responses to ml noise and vice-versa 

(Figure 4B). As in the case of same-class predictions, the GLM predicts responses to the 
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opposite class (rs = 0.38±0.01 and rn = 0.4±0.01) significantly better than NRC (rs = 0.34±0.01 

and rn = 0.29±0.01, p<0.001, two-sample KS test).  

The absolute prediction accuracy for both models in the across-class case is significantly lower 

than in the same-class case. For the GLM, the mean prediction correlation is 15% lower in the 

across-class case than in the same-class case, both for noise and song predictions. For NRC, the 

mean prediction correlation is 15% lower in the across-class case than in the same-class case for 

song predictions, and 28% lower for noise predictions. This decrease in performance suggests 

that neither model generalizes completely to other stimulus classes. Because of nonlinear 

response properties, STRFs estimated using one stimulus class tend to predict responses to 

other stimulus classes with worse accuracy (Woolley et al. 2006, Sharpee et al. 2008). However, 

the better performance of the GLM suggests that it provides a more general characterization of 

spectrotemporal tuning across different stimulus conditions. 

 

3.3 GLM STRFs are more stable to changes in the stimulus statistics than are NRC STRFs. 

The fact that the GLM produces better response predictions across stimulus classes than does 

NRC (see Figure 4B), suggests that it generalizes better to changes in the statistics of the 

stimulus used to estimate the model. In agreement with this, we found that GLM STRFs were 

more similar to each other between stimulus classes than NRC STRFs for the entire population of 

169 cells. Figure 5, A-C shows GLM (top panel) and NRC (bottom panel) STRFs derived from 

responses to song (Ks) or ml noise (Kn) for three example neurons. In agreement with previous 

observations (Woolley et al. 2006, Sharpee et al. 2008, David et al. 2004), we found that, for 

some neurons, NRC STRFs estimated from different stimulus classes show significant 

differences (see, for example Figure 5B and 5C). Figure 5A shows an example neuron for which 

Kn and Ks do not differ, and Figure 5, B-C shows example cells for which NRC STRFs estimated 

from recorded responses to ml noise and song differ significantly. In contrast, GLM song and 

noise STRFs appear significantly more similar for all three cells.   

To quantify the differences between song and ml noise STRFs (Kn and Ks) derived using a GLM 

or NRC, we measured a similarity index (SI, pixel by pixel correlation). A similarity index of 1 

indicates a perfect match, and an index of 0 indicates no correlation between STRFs. Figure 5D 

shows the distributions of SIs between Kn and Ks for the GLM (white) and NRC (grey) for the set 

of 169 neurons. These distributions differ significantly (p<0.001 KS test). The shift to the right in 

the SI distribution for the GLM shows that GLM STRFs are more similar across stimulus classes 

than are NRC STRFs at the population level (median of the SI distribution 0.76 for the GLM and 

0.61 for NRC). 



 

 

15 

15 

In addition, we found that differences between NRC and GLM STRFs derived from responses to 

ml noise (compare GLM Kn vs. NRC Kn in Fig. 5, A-C) were smaller than differences between 

NRC and GLM STRFs derived from responses to songs (compare GLM Ks vs. NRC Ks in Fig. 5, 

A-C), as would be predicted theoretically. When stimuli that contain only second-order 

correlations are used to derive the STRF, NRC and GLM should give the same answer in the limit 

of infinite data (Chichilniski 2001, Paninski 2003, Sharpee et al. 2004). Non-Gaussian effects in 

the ml noise stimulus ensemble are smaller than in the song ensemble, which explains the 

smaller differences between GLM and NRC STRFs for this stimulus class.    

 

3.4 Tuning properties of GLM and NRC STRFs 

In Section 3.3 a nonparametric comparison between song and ml noise STRFs derived under a 

GLM or NRC showed that GLM STRFs are more similar across these two stimulus classes than 

are NRC STRFs. Measures of excitatory tuning taken from STRFs showed significant differences 

between NRC and GLM STRFs (Figure 6). Best frequency (BF) did not differ between NRC and 

GLM STRFs (Figure 6A). Excitatory spectral bandwidths (BW) were significantly different 

between NRC and GLM STRFs; NRC BWs were larger than GLM BWs (Figure 6B). The mean 

BW for song STRFs was 1312±100 Hz for NRC and 917±41 Hz GLM, and 703±31 and 798±35 

for noise STRFs. For both song and ml noise, the difference in BW between NRC and GLM 

STRFs was highly significant (p<10-3, two-sample KS test). Excitatory temporal bandwidths (tBW) 

also differed between NRC and GLM STRFs (Figure 6C). For song STRFs, the mean tBW was 

9.4±0.5 ms for NRC and 5.6±0.16 ms for GLM. For ml noise STRFs, mean tBWs were 7.9±0.17 

ms and 5.1±0.12 ms, respectively. For both song and ml noise, the difference in tBW between 

NRC and GLM STRFs was highly significant (p<10-3, two-sample KS test). 

When comparing song and noise STRFs within a neuron, we found no significant differences in 

BF for the NRC or GLM (Figure 6D, p>0.9, two-sample KS test). The differences in BW between 

song and noise STRFs were significantly larger for NRC than for GLM (Figure 6E, p<10-3, two-

sample KS test). Finally, we found no significant differences in tBW between noise and song GLM 

STRFs (Figure 6F, p>0.1), but differences were significant for NRC STRFs (Figure 6F, p<10-3).  

In summary, for the population of neurons studied here, GLM and NRC STRFs estimated from 

the same song and ml noise data show substantial differences. Further, ml noise and song 

STRFs differed significantly in their spectral and temporal properties, but differences were larger 

for NRC STRFs than for GLM STRFs.  

 

3.5 Effects of estimation algorithm-induced biases on STRFs 
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As mentioned earlier, for a linear neuron, reverse correlation (RC) methods are guaranteed to 

produce an unbiased estimate of a neuron’s true underlying STRF regardless of the stimulus 

statistics (Klein 2000). For a linear-nonlinear (LN) neuron, RC is guaranteed to produce an 

unbiased estimate of a neuron’s true underlying filter only if the distribution of the stimuli used for 

estimation is elliptically symmetric (Paninski2003). However, in the presence of stimuli with 

higher-order correlations, such as zebra finch songs, RC can introduce biases in the estimate of 

the STRF.  Something similar occurs with the GLM: if the underlying neuron behaves like a GLM, 

then a GLM will produce an asymptotically unbiased estimate of the STRF of the cell for any 

stimulus ensemble. However, any deviation from the GLM framework can introduce biases in the 

estimates (Paninski 2004). 

In addition, the highly correlated structure of zebra finch songs presents additional numerical 

problems for STRF estimation, causing noise in the resulting STRF to be strongly amplified (see 

Methods for further details). Thus, some form of regularization is applied to the estimation method 

to obtain accurate STRFs (Theunissen et al. 2001, Sahani and Linden 2003, Smyth et al. 2003, 

Machens et al. 2003). In the presence of limited or noisy data (a common scenario in 

neurophysiological experiments), regularization introduces a prior that constrains the STRF 

estimate in a way that is independent of the underlying tuning properties of the neuron, but can 

introduce additional biases in the STRF. Because of these types of effects, in some cases, 

STRFs can reflect statistical properties of the stimuli used for estimation or biases introduced by 

the estimation algorithm (e.g. the particular prior) rather than actual tuning properties of the 

underlying neuron (Christianson et al. 2008, David et. al 2007).  

We asked whether and how much of the tuning differences we observe between song and ml 

noise STRFs (see Figs. 5 and 6) can be explained in terms of biases introduced by the estimation 

algorithm. To address this, we used Kn and Ks (see Section 3.3) as LNP-type generative models 

to synthesize responses to both stimulus classes and re-estimate the STRFs.  

Briefly, for NRC, we generated synthetic responses to song or ml noise with the following model: 

rs = k*xs + b or rn = k*xn + b, respectively. Similarly, for the GLM, we generated responses two 

both stimulus classes using Eq. 1. Here K and b (and h, for the case of the GLM) were either 

derived from recorded responses to song (Ks, bs) or ml noise (Kn, bn). Thus, we are left with two 

types of synthetic responses to song (rss and rns), and two types of synthetic responses to noise 

(rsn and rnn), which correspond to using Ks or Kn in the generative model.   These four sets of 

responses were then used to compute two second-generation ml noise STRFs (Knn and Kns) 

and two second-generation song STRFs (Ksn and Kss) derived from synthetic responses to ml 

noise or songs, respectively. The differences between these new STRFs and the original STRFs 

were then quantified. Our rationale was that, if the estimation algorithms were free of biases, we 

should recover Kn and Ks with some added noise, regardless of the stimulus class used to re-
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estimate the STRFs. In particular, Knn and Kns should show small differences when compared to 

Kn, and Ksn and Kss should show small differences when compared to Ks. 

Figure 7, A-C shows the original NRC STRFs derived from recorded data and the re-estimated 

STRFs for the same three cells shown in Fig. 5. We found that, in some cases, the underlying 

noise and song STRFs are recovered by the simulations (Figure 7A, compare Kn with Kns and 

Knn, and Ks with Ksn and Kss). However, we also found cases for which the simulated noise and 

song STRFs differ significantly from the ones derived from recorded responses (Figure 7, B-C). In 

the example shown in Figure 7B, biases in the estimation algorithm are not sufficient to explain 

the original differences between Kn and Ks, indicating the presence of actual nonlinearities in the 

responses that result in stimulus-dependent tuning. In contrast, for the example shown in Figure 

7C, differences between Kn and Ks can be explained by biases introduced by the estimation 

algorithm (that is, Kns is significantly more similar to Ks than to Kn, even though the responses 

used to compute Kns were originally generated from Kn). 

We next repeated the same type of simulations for the GLM. Figure 7,D-F shows the results of 

these simulations for the same three cells in Figures 7, A-C and 5. Figure 7D shows an additional 

example cell with broader spectral tuning and stronger inhibition. For all four examples, the GLM 

recovers STRFs from the simulations that are highly similar to the true underlying STRFs. Thus in 

these examples, it is visually clear that the GLM reduces algorithm-induced biases in the STRFs. 

To quantify the amount of biases introduced in the STRFs by the GLM and NRC at the population 

level, we measured the similarity index (SI) between STRFs derived from recorded and simulated 

data. In particular, we measured the similarity between Kn and Kns (STRF estimated from 

synthetic responses to song when the true underlying filter in the LNP-model was Kn), and 

between Ks and Ksn (STRF estimated from synthetic responses to ml noise when the true 

underlying filter in the LNP-model was Ks). Figure 7H shows these distributions for the GLM 

(white) and NRC (grey) for our set of 169 cells. If the estimation algorithms introduced no (or little) 

bias in the STRF estimates, then the SI distribution should be, up to some variability, a narrow 

distribution located close to 1. For NRC, we observe a broad distribution with median = 0.64 

when we measure SIs between Kn and Kns, and with median  = 0.73 when we measure SIs 

between Ks and Ksn. In contrast, SI distributions for the GLM are narrower and centered closer to 

1 (median = 0.94 and 0.87, respectively), and differ significantly from NRC distributions (p<0.001, 

KS test, in both cases). 

These analyses show that, in some cases, differences in tuning between STRFs derived from 

responses to song and ml noise stimuli can be explained in terms of biases introduced by the 

estimation algorithm, rather than actual tuning nonlinearities (Christianson et al., 2008). However, 

these effects are exaggerated when NRC instead of the GLM is used.   



 

 

18 

18 

  

3.6 Effect of the regularization prior on STRFs and predictive power. 

In Section 3.2 we showed that the GLM has a higher predictive power than NRC, both within and 

across stimulus classes (see Figure 4). In addition, and in accordance with a higher across-class 

prediction power, we found that the GLM produces STRFs that are more similar across stimulus 

classes than does NRC (Figures 5 and 6). We also found that, in some cases, the differences 

between song and noise NRC STRFs as well as the differences between NRC and GLM STRFs 

can be explained in terms of biases introduced in the STRFs by NRC (See Figure 7). In this 

Section, we address a related question: what component of the GLM is responsible for reducing 

algorithm-induced biases in the STRFs and at the same time increasing the predictive power of 

the model?  

The GLM and NRC methods differ in three ways that result from the different assumptions about 

neural responses made by each of the two methods. First, the two methods optimize different 

objective functions; the GLM assumes point-process responses with an exponential nonlinearity 

while NRC assumes Gaussian noise and uses a simpler linear model. Second, the GLM and 

NRC use different regularization methods. Our method imposes a sparse prior on the STRF while 

NRC uses a lowpass Gaussian prior. Third, the GLM includes a spike history term that takes into 

account the recent firing probability of the neuron, while NRC does not. In principle, each of these 

factors may contribute to the better predictions and less-biased STRFs produced by the GLM. In 

order to study the effect of each component of the GL model, we remove each of these factors 

from the GLM framework. 

We first tested the hypothesis that the differences observed between NRC and GLM STRFs, and 

the higher predictive power of the GLM, are due to the fact that our method optimizes a different 

objective function than NRC. In particular, the nonlinearity employed by the GLM might be the 

important difference between the models. To test this, we re-fitted the GLM with a sub-

exponential nonlinearity that was closer to the actual response nonlinearity in the data (see 

Methods). We found that this led to a slight (but statistically not significant) improvement in the 

predictive power and, importantly, no change in the shape of the STRFs. This weak dependence 

of the STRFs on the specific nonlinearity led us to ask whether it was possible to increase the 

predictive power of the model by fitting a cubic spline nonlinearity for each cell once the model 

parameters were already known (we refer to this model as spline GLM, see Methods for further 

details). This flexible nonlinearity conferred only a slight (but not significant) increase in predictive 

power for songs but not for ml noise responses when compared to the exponential GLM (see 

Figure 8).  
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Another difference between the two models is the extra term in the GLM that accounts for the 

neuron’s spiking history. The post-spike filter could contribute to changes in the prediction 

accuracy of the model and in the shape of the STRF. To account for the effects of the post-spike 

filter on predicted responses, we re-fitted the GLM without this term, referred to here as 

exponential LN. We found no differences between GLM and LNP STRFs. We did, however, find 

that the prediction power of the GLM was slightly (but not significantly) better than the prediction 

power of the LN model when trying to predict responses to noise (Figure 8). It is likely that the 

small contribution of the spiking history to response prediction is due to the relatively low firing 

rate of the neurons in our sample. Spiking history may contribute to an accurate description of the 

detailed structure of response spike trains in higher firing rate neurons, as has been shown in the 

retina (Pillow et al. 2005). 

Finally, to test the effect of the regularization prior on predictive power and STRF shape, we fitted 

the same linear model used by NRC (Eq. 5), but with an L1 regularizer (Eq. 4) instead of the 

lowpass Gaussian prior imposed by NRC (we refer to this model as linear L1). We found that the 

linear L1 model has significantly higher predictive power than does NRC (see Figure 8). We 

found no significant difference in predictive power between the linear L1 model and the nonlinear 

models, with or without the history term (i.e., Exp GLM, spline GLM and Exp LN). Importantly, we 

found no significant differences in STRF shapes. These comparisons between STRFs and 

predictions generated by different models employing an L1 regularizer and NRC indicate that the 

differences between NRC and GLM are mostly due to the fact that the two estimation algorithms 

assume different priors about the STRF.  

 

DISCUSSION 

We used a generalized linear model (GLM) with a sparse prior to characterize the stimulus-

response relationships of single auditory midbrain neurons, and compared the performance of our 

model to that of normalized reverse correlation (NRC) for predicting the responses to novel 

sounds. We found that a GLM can be successfully used to predict single-trial responses to 

synthetic and natural stimuli, and that, for the population of 169 cells used in this study, the GLM 

had a better predictive power than NRC. The performance of the GLM was better than NRC both 

within and across stimulus classes. The good performance of the GLM across stimulus classes 

suggests that our method generalizes better to changes in stimulus statistics. Differences 

between STRFs computed from responses to different stimulus classes (e.g. song and noise 

STRFs) were significantly smaller than those observed when STRFs were computed with NRC. 

Differences in the STRFs computed with the GLM and NRC methods were largely due to 

differences in the estimates of excitatory spectral bandwidths and temporal bandwidths. Below, 
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we discuss the computational differences between the GLM and NRC that lead to differences in 

predictive power and STRF shapes, and compare the GLM method to other proposed methods 

for characterizing stimulus-response relationships in auditory neurons.   

 

Computational differences between the GLM with a sparse prior and NRC 

As discussed before (see Section 3.6), the sparse GLM and NRC contain three fundamental 

differences: the two methods optimize different objective functions, use different regularization 

methods, and the GLM takes into account the recent firing probability of the neuron, while NRC 

does not. For the neurons studied here, we found that the differences in STRFs produced by both 

methods and the higher predictive power of the GLM are largely due to the different priors used 

by the two methods. Even though the GLM takes into account the cell’s spiking history and uses 

a different nonlinearity than NRC, we found that the contribution of the spike history term as well 

as more complex nonlinearities led to little or no increase in the model’s predictive power (see 

Methods and Section 3.6), and no noticeable change in STRFs’ shape.  

NRC estimates the STRF only in the stimulus subspace that contains most of the variance of the 

stimulus to reduce noise in the estimates and avoid overfitting (Theunissen et al. 2001). With 

increasing levels of noise, and depending on the specific spectrotemporal characteristics of the 

stimulus, NRC produces STRFs that are biased towards being smooth (see Methods). This is 

particularly the case for songs and other natural stimuli for which the majority of the power tends 

to be concentrated at low spectrotemporal frequencies (Singh 2003). In this case, the spectral 

and temporal features at high frequencies tend to be excluded from the STRFs estimated using 

NRC, resulting in STRFs that substantially overestimate the contribution of low-frequency 

components to neural filtering (David et al. 2007, Sharpee et al. 2008).  In contrast, the sparse 

GLM imposes a sparse prior on the STRFs. In this case, the amount of regularization applied to 

the STRF depends on the overall level of noise in the data, and in the case of a low signal-to 

noise ratio, GLM STRFs will be overly sparse (see Methods).  Even though both NRC and GLM 

methods introduce biases in the STRFs, the GLM leads to better predictions and model stability 

across stimulus classes.   

 

 Comparison of the GLM to other methods  

An alternative approach for estimating a sparse STRF is boosting (Zhang and Yu 2005, Friedman 

et al. 2008). Boosting is an estimation technique that uses coordinate ascent to minimize the 

number of nonzero parameters, effectively imposing a sparse prior on the STRF. David et al. 

(2007) applied boosting on the same objective function as NRC (i.e. a linear model), to derive 
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STRFs for primary auditory cortex neurons. Their results showed, in agreement with our findings, 

that boosting STRFs lead to better prediction power and show narrower spectral and temporal 

bandwidths than do NRC STRFs. The differences in predictive power between NRC and GLM 

reported here are slightly larger than the differences reported in (David et al. 2007) for NRC and 

boosting STRFs. This is presumably due to the different nonlinearities employed by the two 

methods. Finally, boosting can also be applied to estimate GLMs with L1 penalties (Friedman et 

al. 2008). 

Several other algorithms have been developed for STRF estimation in the visual and auditory 

systems (Ringach et al. 2002, Sahani and Linden 2003, Sharpee et al. 2004). Maximally 

informative dimensions (MID) (Sharpee et al. 2004) is an information-theoretic method that finds 

relevant directions (a set of     
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x , carries the most mutual information about the measured neural response r(t). Once the 

filter is known, the nonlinearity of the LNP model is computed from the recorded data. With the 

GLM method, we first find the filter       
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k 1 for a fixed nonlinearity (e.g. an exponential function) by 

maximizing the corresponding likelihood, and then use the filter to fit the output nonlinearity to the 

recorded data (see Methods). It has been shown that in a number of problems, including 

estimation of GLMs, maximizing information is equivalent to performing likelihood maximization 

(Kouh and Sharpee 2009).  Thus, if in the GLM method, we iterate between estimating the STRF 

      

€ 

 
k 1 for a fixed nonlinearity and fitting the nonlinearity of the model to the recorded data, the 1d-

MID and GLM methods are almost equivalent (almost because in the way the MID method is 

usually employed, it does not contain any spike history terms).  Here, however, we have shown 

that for our data set, the estimated filter is only weakly dependent on the specific form of the 

nonlinearity (see Methods and Section 3.6), which makes the iteration procedure in the GLM 

unnecessary. 

  

Another useful method for STRF estimation is evidence optimization, introduced by (Sahani and 

Linden2003).  This method uses a Bayesian approach to include both sparse and smooth 

“optimized priors” on the STRFs. These prior distributions are optimized with reference to the 

data, and thus they are no longer priors in the strict sense and instead become part of a 

hierarchical probabilistic model. The authors show that, by learning hyperparameters that control 

the smoothness and sparsity of the STRF in a linear model, it is possible to improve the 

predicting power of a model that considers only sparseness or smoothness of the estimates.  

Finally, an appealing future research direction is known in the statistics literature as Bayesian 

LASSO (Park and Casella 2008). This method is potentially advantageous because it provides 
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Bayesian error bars for the estimates, and is based on integrating over the posterior distribution 

instead of maximizing it and has some advantages in terms of how much sparsity can be 

enforced. This method has been previously applied (Park and Casella 2008, Carvalho et al. 2009) 

to L1-linear regression problems but this can be easily generalized for GLMs. 

 

Extensions of the GLM 

The same approach used by (Sahani and Linden 2003) to combine smoothness and sparsity 

priors in a linear model can be applied to a GLM. Because both smooth and sparse regularization 

frameworks have been shown to improve the prediction power of unregularized models 

(Theunissen et al. 2001, Sharpee et al. 2008, Sahani and Linden 2003), it is likely that combining 

features of both methods can further improve the quality of the estimates. For instance, using a 

prior that combines smoothness and sparsity would allow recovering smooth STRFs, while 

suppressing the apparent background estimation noise at high spectrotemporal frequencies.  

It has been shown that the prediction performance of an LN model can be increased by using a 

nonlinear transformation of the stimulus (e.g., a transformation may capture nonlinearities at 

earlier stages of processing) that precedes the linear filtering stage (Gill et al. 2006, Ahrens et al. 

2008a, Ahrens et al. 2008b). (Gill et al. 2006) showed that a transformation of the sound stimulus 

using a biologically inspired model of the first stages of auditory processing (Lyon1982) prior to 

STRF estimation with NRC led to better predictions. This model incorporates the approximate 

logarithmic spacing of filter center frequencies (log at high frequencies and more linear at low 

frequencies) in the auditory nerve and an adaptive gain control mechanism, which was important 

for improving the predictive power of the model. In a different approach, (Ahrens et al. 2008a) 

utilizes a learned nonlinear transform on the stimulus that converts the initial numerical 

representation of a stimulus value to a new representation that provides optimal input to the 

subsequent model. The authors apply this technique to fit an LN model to data from rodent barrel 

cortex, and showed that the model predicts responses to novel data accurately. Both of these two 

approaches can be easily applied when fitting a GLM to auditory data.     

Two applications of the GLM setting are fast optimal stimulus decoding (Ahmadian et al. 2009), 

and optimal stimulus design (Lewi et al. 2009). Stimulus reconstruction methods provide an 

important tool for understanding how sensory information is represented in neural activity. For 

high-dimensional stimuli such as sound spectrograms, an encoding model that suitably describes 

how stimuli are transformed into the spike trains of a neuron constitutes a key component for 

developing efficient decoding methods (Mesgarani et al. 2009, Ramirez et al. 2010).  Adaptive 

experimental designs, on the other hand, are particularly valuable in domains where the data are 

expensive or limited. This is particularly the case in STRF estimation, which requires the 
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exploration of high-dimensional stimulus spaces, and where the inability to collect enough data 

has important consequences on the estimates. The GLM method described here permits the 

development of efficient algorithms for optimally adapting the experimental design, allowing more 

efficient data collection (Lewi et al. 2009). 
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Figure legends 

Figure 1: Methods. (A) Generalized linear model (GLM) schematic. Each neuron has a stimulus 

filter or STRF (k), and a post-spike filter (h) that captures dependencies on the cell’s own spiking 

history. Summed filter output passes through a static nonlinearity f to produce the instantaneous 

spike rate. (B) Illustration of the effect of a sparse prior on the STRF estimate. Panels from left to 

right show STRFs estimated by maximum penalized likelihood for increasing values of the 

penalization parameter η. Low values of η lead to noisy estimates. For very high values of η, very 

few parameters are nonzero. The optimal value of η is determined by cross-validation (STRFs 

have been plotted in their raw, low resolution state). 

Figure 2: A GLM as a neural encoding model. (A)-(B) Estimated parameters for an example 

auditory midbrain neuron. (A) STRF. (B) Exponentiated post-spike filter, which may be 

interpreted as a spike-induced gain adjustment of the neuron’s firing rate. It produces a brief 

refractory period and gradual recovery (with a slight overshoot). (C) Estimate of the nonlinearity 

transforming linear input to instantaneous spike rate (black points), for the same example neuron 

(Chichilnisky2001). The nonlinearity represents the probability of observing a spike for each value 

of net linear input (b+k*x+h*r). An exponential function (grey line), the assumed nonlinearity for 

the model, provides a reasonable approximation to this function. (D) Spectrogram (x) of one 

example song used in the experiments. (E) Stimulus filtered by STRF, k*x. (F) Recorded (gray) 

and predicted (red) raster plots in response to the validation stimulus shown in (D). 

Figure 3: The GLM outperforms NRC when predicting responses to songs. (A)-(C) 

Examples of NRC and GLM response prediction (PSTHs and spike trains) and corresponding 

GLM STRFs for three auditory midbrain neurons.  Recorded and predicted responses correspond 

to the song shown in Figure 2D. Spike trains and PSTHs were computed with a 3 ms time bin and 

PSTHs were smoothed with a 5 ms Hanning window prior to computing correlation coefficients. 

(STRFs have been up sampled by a factor of 3 for visualization). The GL model performs 

consistently better than NRC when used to predict average responses to a validation stimulus. In 

addition, the GLM spike-train predictions capture the overall structure of the actual spike trains. 

Figure 4: The GLM has higher predictive power than does NRC within- and across stimulus 

classes. Both methods were evaluated by their ability to predict responses to a validation song 

and ml noise data set that was not used for parameters’ estimation. (A) Same-class predictions: 

NRC and GLM were used to predict responses to a novel song or ml-noise stimulus when only 

songs or ml noise were used to train the model. (B) Across-class predictions: NRC and GLM 

were used to predict responses to a novel song or ml noise stimulus when the other stimulus 

ensemble was used to train the model. Each point plots the correlation coefficient between the 

observed and predicted average response (PSTH), for NRC (horizontal axis) and GLM (vertical 
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axis) for a single neuron. White dots indicate responses to ml-noise and gray dots indicate 

responses to song. We found that on average, the GLM predicts responses significantly better 

than NRC (*p<0.001, two-sample KS test) both in the same-class and across-class cases. Error 

bars represent SEs. 

Figure 5: GLM STRFs are more similar across stimulus classes than are NRC STRFs. (A)-

(C) Top row: GLM STRFs estimated from recorded responses to ml-noise (Kn) and song (Ks) for 

three example midbrain auditory neurons. Bottom row: ml-noise (Kn) and song (Ks) NRC STRFs 

for the same three cells. (A) An example cell for which Kn and Ks do not differ, both for the GLM 

and NRC. (B)-(C) Two example cells for which Kn and Ks differ significantly for NRC, but differ 

much less for the GLM. (D) Distributions of similarity indices (SIs) computed between Kn and Ks 

for NRC (grey) and GLM (white) for the population of 169 cells. One indicates an exact match 

between STRFs and 0 indicates no correlation. The GLM produces STRFs that are more similar 

across stimulus classes as seen by the shift to the right of the SI distribution (median of the SI 

distribution for the GLM was 0.76 as opposed to 0.61 for NRC).  GLM and NRC distributions differ 

significantly (p<0.001, two-sample KS test). 

Figure 6: Tuning differences between GLM and NRC STRFs. (A)-(C) Comparison of tuning 

properties of GLM and NRC STRFs. (A) Best frequency of the excitatory region (BF), (B) 

excitatory spectral bandwidth (BW), and  (C) excitatory temporal bandwidth (tBW). We found no 

significant differences in BF between NRC and GLM STRFs derived from neural responses to ml 

noise, or those derived from responses to song (p>0.9, two-sample KS test). However, we found 

that differences in BW and tBW determined by the estimation algorithms were highly significant 

(**p<10-3, two-sample KS test). (D)-(E) Comparison of tuning properties of song and noise 

STRFs. (D) BF, (E) BW and (F) tBW. We found no significant difference in BF between song and 

noise STRFs in ether of the models (p>0.9). Differences in BW between song and noise STRFs 

were considerably larger for NRC than for GLM (**p<10-3 and *p<0.05). Finally, we found 

significant differences between song and noise STRFs in terms of tBW for NRC but not for the 

GLM (*p<0.05 and p>0.1, respectively). Error bars represent SEs.  

Figure 7: Effects of algorithm-induced biases on STRFs. (A)-(C) Top row: NRC STRFs  (Kn 

and Ks) for the same three units shown in Figures 5A-C (c.f. Fig.5A-C, bottom row). Middle row: 

NRC STRFs estimated from simulated responses to ml-noise (Knn) and song (Kns) when Kn is 

used as an LNP-type generative model for the neuron. Bottom row: NRC STRFs estimated from 

simulated responses to ml-noise (Ksn) and song (Kss) when Ks is used as an LNP-type 

generative model for the neuron. (A) An example cell for which NRC STRFs estimated from 

recorded responses to ml-noise (Kn) and song (Ks) and STRFs estimated from simulated 

responses to ml-noise and song stimuli (Knn, Kns, Ksn, and Kss) do not differ. (B) An example 

cell for which Kn and Ks differ significantly. These differences cannot be explained by biases 
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introduced by the estimation algorithm. (C) As in (B), but in this case the differences between Ks 

and Kn can be explained by biases introduced by the estimation algorithm, since Kns closely 

resembles Ks and not Kn. In addition, Ksn is more similar to Ks than Kn. (D)-(F) GLM STRFs for 

the same three units shown in panels A-C. (G) Additional example unit with broader spectral 

tuning and stronger inhibition. In all four examples the GLM reduces algorithm-induced biases (in 

all cases Kns closely resembles Kn rather than Ks and Ksn is closer to Ks than to Kn). (H) 

Distributions of similarity indices (SIs) between STRFs estimated from recorded and simulated 

data, for NRC (grey) and GLM (white). One indicates an exact match between STRFs and 0 

indicates no correlation. Top: distribution of SIs computed between STRFs estimated from 

recorded responses to ml-noise (Kn) and Kns (STRFs estimated from simulated responses to 

song using Kn as a generative model for the neuron). Bottom: distributions of SIs computed 

between STRFs estimated from recorded responses to song (Ks) and Ksn (STRFs estimated 

from simulated responses to ml noise stimuli using Ks as a generative model for the neuron). In 

both cases, the SI distributions for the GLM appear shifted to the right (and are centered closer to 

1) when compared to the same distributions for NRC. In both cases, GLM and NRC distributions 

differ significantly (p<0.001, two-sample KS test). 

Figure 8: Predictive power of the different models tested. For both predictions of song and 

ml-noise responses, all the models that use a sparse prior or L1 regularizer (i.e., Exp GLM, Exp 

LN, spline GLM, and Linear L1) have an average prediction correlation that is significantly higher 

than the average prediction correlation for NRC, which uses a smoothing prior to regularize the 

STRFs. We found no significant difference in predictive power across the models that employ a 

sparse prior. Error bars show SEs. 
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