Efficient methods for sampling spike trains in networks of coupled neurons
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INTRODUCTION: We present a rigorous formalism for incorporating

Hidden neural components in functional connectivity estimation

hidden neural circuit components into functional connectivity estimation. A
central goal of neuroscience is to understand the connectivity of neural
circuits. Functional approach to this problem consists in statistical
analysis of neural activity observed, e.g., via multi-electrode recordings or
calcium imaging. The biggest challenge for functional approach remains
that of hidden neural components — that is the neurons whose activity
could not be observed but that contributed inputs to observed neurons.

In order to properly account for the impact of such hidden components in
the connectivity estimate, we model the observations using a neural
network with observed and hidden neurons. P(connectivitylobservations)
IS then obtained by integrating out the activity of hidden neurons using
Monte Carlo techniques. We develop a block-wise Gibbs approach and a
set of specialized Metropolis-Hastings samplers to produce samples from
the joint conditional distributions of the activity of observed and hidden
neurons in the network, taking advantage of weak-coupling expansion of
the conditional likelihoods and fast forward-backward algorithms from the
theory of Hidden Markov Models. These allow us to perform Monte Carlo
integration in P(connectivity| observations) efficiently for very large neural
populations in neurobiologically relevant settings.
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Efficient Metropolis-Hastings (MH) sampling schemes -

Inspect P(n|{n},;w) in the limit of small w (weak coupling):

We find that in the weak coupling limit the conditioned spike train
n~P(n|{n};w) is a non-uniform Poisson spike train that can be
described by an “effective” current,

J ) =J, )+ Q. w(z=0n, ()= f(b;(2))A]

J£1.T>t

Note close connection with the work of (Pillow & Latham (2007) NIPS).

For stronger couplings, we incorporate strong short-delay interactions
exactly via a Hidden Markov Model dynamics and weak long-delay
interactions approximately via small-w expansion (a hybrid approach):

P(n; [{n},;) = HPHMM(S ()] 5,1~ A))GXP(W (1) 2wz =0)[n;(2)~ f(b;(2))A]

J#I, r>t+KA
s (1) ={n, (T),t KA<t<t}
e.g. s.(1)="100100001..."

S/(f) encodes neuron’s spiking during past K time steps, thus, all t<t-KA
terms in J; are explicitly incorporated in P, ,,(s(t)|s(t-A)) (if J;has exactly
K time lags, then s,(t) in fact suffices to fully describe the state of neuron)

large

The spike train n; then can be sampled using standard fast forward-
backward procedure from the theory of Hidden Markov Models.

Comparison of P(n(f)[{n}) and approximations J;and J*  P(n(t)|{n}) est. with MH using different approximations J
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FIG: Comparison of delayed J(t) and full J(f) firing rates with the true posterior firing
rate P(n(t)|{n}) in simulated settings (left) and results of MH estimation of P(n(f)|{n})
in the same settings using Poisson proposals using a uniform, J(f), and Jé(f) currents
(right). Actual spikes are indicated with stars. Inset shows the autocorrelation
functions for such different MH samplers. Longer sample auto-correlation leads to
longer mixing time and is bad. Advanced-time correction in J4(t) (i.e. ©>t terms in J9)
allows us to both better approximate the true posterior spiking rate in the proposal
samples and improve dramatically performance of the Metropolis-Hastings samplers.

| | | | | | | | |
50 100 150 200 250 300 350 400 450

Time, ticks

network

FIG: Acceptance rate R of the hybrid |
sampling strategy (the higher is the
better) in strong coupling (left) and o8 X
simulated s |\
settings vs. MH-only algorithm and g
short-delay HMM-only algorithm. £ 0.4}
Use of hybrid strategy allows us to $
significantly and
perform such MH-
samplers.
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{C*,n"

1, ~ P[C,

Constructing efficient solutions for this problem is the main goal of this work.

Cnupllng strength

ni(t) N P[f(‘]i(t))]

Hidden neurons:

n.(t)~ Pl f(J,.(2))]

Maximum a Posteriori connectivity matrix can be estimated using the Expectation
Maximization (EM) algorithm (*). A key problem is how to produce samples from
high dimensional (dim~NT) distribution over the joint activity of observed and hidden
idden component neurons for E-step (optimization in M-step reduces to a simple GLM fitting and is
relatively straightforward),

noanh ‘FDW]

Block-wise Gibbs approach: sample spike trains one neuron at a time,

{ni} ~ Pln

Thus, we want to develop a method to efficiently sample one spike train given all the
other neurons in the network, P(n|{n};w) (sufficient for the above objective).

j‘Fa{noanh}\i;W] for all i in a cycle

Note: We assume that the size of the hidden component N is known; in practice, a model
selection method such as BIC, AIC, or cross-validation should be used to select N.

Number of neurons

Observed neurons:

J(t)=b()+k,-SE)+D, >
(calcium imaging observations model, if needed:)

C,(1)=(1-AJt,)C,(t—A)+ A.n (1)
F.(1) = Hill( C,(1), @)

J,@)=b,O)+k.,-S()+D > w,
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Extracting spike trains from calcium imaging data:
FIG: Deduced posterior calcium
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concentration (top) and posterior spike
probability (bottom) for a real calcium
imaging data sample, courtesy of T.
Sippy, R. Yuste, J. Vogelstein.
Positions of the true spikes, identified
via simultaneous patch-clamp
recording, are indicated with red stars.
Spike positions and respective jumps
in calcium concentration are all
accurately inferred from the calcium
imaging data.

Note that our approach allows drawing
full samples from the posterior P(n|F)
as opposed, e.g., to only computing
marginals p(n(f)|F;) such as in
(Vogelstein et al. (2009) Biophys J).
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(http.//www.stat.columbia.edu/~liam/research/pubs/yuri-network-samp.pdf)

Neurons are modeled as a

network of coupled GLMs:
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Notation legend:

n(t) —spike variable of neuron
[ at time t (n(t) =0 or 1)

w;(z) — effective conn. matrix

Il HHmM

nonirsnprdy

w,(t—1)n (1)

T<t

k; — stimulus filter of neuron i

S(t) — external stimulus

f(J) — spiking nonlinearity
(here, f(J)=exp(J) 4; Ais
time discretization step)

C,(t) — calcium concentration
variable of neuron i at time t

F(t) —fluorescence variable
of neuron i at time t

;(t=7)n,(7)

., A, a,— fluor. calcium

nH . .
Imaging model parameters

(PI//OW et al (2008) Nature 454 995)

J T<t

(*) EM algorithm is an iterative method for locally Maximum a Posteriori estimation in complex
setting with hidden variables. Each iteration consists of two steps:

 E-step: Calculate average log-probability over hidden variables given current w):

Q(w w(”) E InP[F,C,n ,n, \w(”]

P[C,nO,nh|F,w(l)]
« M-step: Obtain new approximation wi*1) by maximizing expected log-probability:
w!*Y = arg max Q(w w(l))+ln P(w)

Sampling one neuron P(n,|/{n}; F.,w) for observed component

Efficient Metropolis-Hastings (MH) sampling schemes -

To generate proposals for the spike train n; we adapt filter-backward sample-forward algorithm
from the theory of Hidden Markov Models. We first pre-compute approximately, backward in f,
P(F(t. T)|s,(f),C(t)) as a mixture of Gaussians, and then sample n,forward in t using:

$,(t) ~ P(F(t:T) | 5,(1), C(0)) X By (5,(2) | 5,(t = A); i)
s (t)={n(7r),t —KA<7 <t}
e.g. s.(¢)="100100001..."
S,(f) encodes neuron’s spiking during past K time steps, so that all refractory self-interactions
are incorporated in Pyy,/(S{f)|S(t-A))
1

FIG:. Performance of above MH spike train sampler on
simulated calcium imaging data. Acceptance rate R (the
higher is the better) is high in the intermediate-high
(eSNR=4-10) and very-low (eSNR=1) SNR regimes, while in
the intermediate-low (eSNR=1-2) SNR regime the sampler
| suffers significant performance drop due to non-Gausianity
|1 of P(C|F) (i.e., Poisson fluorescence noise, solid black).
Performance does not degrade if P(C|F) is Gaussian
(dashed gray). Inset shows two examples of simulated
- fluorescence (top) and deduced posterior spike probabilities
in low (eSNR=2) and intermediate (¢SNR=5) SNR settings.
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SUMMARY

* We develop efficient methods for sampling from the spike train of a single neuron given the
spikes of all of the other neurons putatively connected to it.

» By the theory of Gibbs sampling, this enables us to sample also from the full distribution of a
hidden population spike trains given the observations of the spike trains from a set of
neurons, collected with multi-electrodes or calcium imaging recordings.

 These methods are based on two ideas: a weak-coupling approximation of the spike train log-
likelihood and the forward-backward algorithms from the theory of Hidden Markov Models.

 These methods can be used for practical estimation of neural connectivity in an Expectation-
Maximization approach; for more details see (Mishchenko, Vogelstein, and Paninski, AOAS:
http://www.stat.columbia.edu/~liam/research/pubs/yuri-ca-network.pdf).
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