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Hidden neural components in functional connectivity estimationINTRODUCTION: We present a rigorous formalism for incorporatinghidden neural circuit components into functional connectivity estimation. A Hidden neural components in functional connectivity estimationMishchenko Y., Paninski L. (2010) Efficient methods for sampling spike trains in networks of coupled neurons. Submitted Annals of Applied Statistics.hidden neural circuit components into functional connectivity estimation. Acentral goal of neuroscience is to understand the connectivity of neuralcircuits. Functional approach to this problem consists in statistical Observed 
Mishchenko Y., Paninski L. (2010) Efficient methods for sampling spike trains in networks of coupled neurons. Submitted Annals of Applied Statistics.(http://www.stat.columbia.edu/~liam/research/pubs/yuri-network-samp.pdf)Observed neurons:circuits. Functional approach to this problem consists in statisticalanalysis of neural activity observed, e.g., via multi-electrode recordings orcalcium imaging. The biggest challenge for functional approach remains Observed (calcium  imaging or Neurons are modeled as a network of coupled GLMs: Notation legend:n (t) –spike variable of neuron ii tJfPtn ))](([~)(Observed neurons:

calcium imaging. The biggest challenge for functional approach remainsthat of hidden neural components – that is the neurons whose activity (calcium  imaging or multi-electrode rec.)
network of coupled GLMs: ni(t) –spike variable of neuron i at time t (ni(t) =0 or 1)w (τ) – effective conn. matrix∑ ∑ < −+⋅+= j t jijiii
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that of hidden neural components – that is the neurons whose activitycould not be observed but that contributed inputs to observed neurons.In order to properly account for the impact of such hidden components in
multi-electrode rec.) wij(τ) – effective conn. matrixki – stimulus filter of neuron i∑ ∑ < −+⋅+= j t jijiii ntwtSktbtJ τ ττ )()()()()(

(calcium imaging observations model, if needed:)In order to properly account for the impact of such hidden components inthe connectivity estimate, we model the observations using a neural iS(t) – external stimulusf(J) – spiking nonlinearity )()()1()( icici tnAtCtC τ +∆−∆−=(calcium imaging observations model, if needed:)
the connectivity estimate, we model the observations using a neuralnetwork with observed and hidden neurons. P(connectivity|observations)is then obtained by integrating out the activity of hidden neurons using

f(J) – spiking nonlinearity (here, f(J)=exp(J) ∆; ∆ is time discretization step))),(Hill()( cii tCtF α=is then obtained by integrating out the activity of hidden neurons usingMonte Carlo techniques. We develop a block-wise Gibbs approach and aset of specialized Metropolis-Hastings samplers to produce samples from Hidden 
time discretization step)Ci(t) – calcium concentration variable of neuron i at time tHidden neurons: cii

set of specialized Metropolis-Hastings samplers to produce samples fromthe joint conditional distributions of the activity of observed and hidden Hidden (not observed) variable of neuron i at time tFi(t) –fluorescence variable of neuron i at time t
Hidden neurons:

∑∑
ii tJfPtn ))](([~)( ''the joint conditional distributions of the activity of observed and hiddenneurons in the network, taking advantage of weak-coupling expansion ofthe conditional likelihoods and fast forward-backward algorithms from the

(not observed) of neuron i at time tτc, Ac, αc – fluor. calcium  imaging model parameters∑∑ −+⋅+= jjiiii ntwtSktbtJ ττ )()()()()( ''''the conditional likelihoods and fast forward-backward algorithms from thetheory of Hidden Markov Models. These allow us to perform Monte Carlointegration in P(connectivity| observations) efficiently for very large neural Maximum a Posteriori connectivity matrix can be estimated using the Expectation (*) EM algorithm is an iterative method for locally Maximum a Posteriori estimation in complex (Pillow et al (2008) Nature 454, 995) imaging model parameters∑∑<j t jjiiii τ ''''
integration in P(connectivity| observations) efficiently for very large neuralpopulations in neurobiologically relevant settings. Maximum a Posteriori connectivity matrix can be estimated using the ExpectationMaximization (EM) algorithm (*). A key problem is how to produce samples fromhigh dimensional (dim~NT) distribution over the joint activity of observed and hidden (*) EM algorithm is an iterative method for locally Maximum a Posteriori estimation in complex setting with hidden variables. Each iteration consists of two steps:high dimensional (dim~NT) distribution over the joint activity of observed and hiddenneurons for E-step (optimization in M-step reduces to a simple GLM fitting and is

setting with hidden variables. Each iteration consists of two steps:
Sampling one neuron P(ni|{n}\i;w) for hidden component • E-step: Calculate average log-probability over hidden variables given current w(l):neurons for E-step (optimization in M-step reduces to a simple GLM fitting and isrelatively straightforward), ],|,,[~},,{ wFnnCPnnC kkkEfficient Metropolis-Hastings (MH) sampling schemes -i \iSampling one neuron P(ni|{n}\i;w) for hidden component ( ) ]|,,,[ln; )(],|,,[)( )( lhowFnnCPl wnnCFPEwwQ lho=],|,,[~},,{ wFnnCPnnC hokhkokEfficient Metropolis-Hastings (MH) sampling schemes - ( ) ],|,,[ howFnnCP ho

( )• M-step: Obtain new approximation w(l+1) by maximizing expected log-probability:Inspect P(n |{n} ;w) in the limit of small w (weak coupling):
Block-wise Gibbs approach: sample spike trains one neuron at a time, ( ) )(ln;maxarg )()1( wPwwQw ll +=+Inspect P(ni|{n}\i;w) in the limit of small w (weak coupling):We find that in the weak coupling limit the conditioned spike train Constructing efficient solutions for this problem is the main goal of this work.

i \i iSampling one neuron P(ni|{n}\i; Fi,w) for observed componentBlock-wise Gibbs approach: sample spike trains one neuron at a time,
];},{,|[~}{ wnnFnPn

We find that in the weak coupling limit the conditioned spike train ni~P(ni|{n}\i;w) is a non-uniform Poisson spike train that can be described by  an “effective” current, Efficient Metropolis-Hastings (MH) sampling schemes -];},{,|[~}{ \ wnnFnPn ihoii for all i in a cycle∑ ∆−−+=a bfntwtJtJ τττ ]))(()()[()()(
i i \idescribed by  an “effective” current, \ihoii To generate proposals for the spike train ni we adapt filter-backward sample-forward algorithm from the theory of Hidden Markov Models. We first pre-compute approximately, backward in t,Thus, we want to develop a method to efficiently sample one spike train given all the ∑>≠ ∆−−+= tij jjjiia bfntwtJtJ τ τττ, ]))(()()[()()( from the theory of Hidden Markov Models. We first pre-compute approximately, backward in t,P(F(t:T)|si(t),Ci(t)) as a mixture of Gaussians, and then sample ni forward in t using:Thus, we want to develop a method to efficiently sample one spike train given all the other neurons in the network, P(ni|{n}\i;w) (sufficient for the above objective).>≠ tij τ,Note close connection with the work of (Pillow & Latham (2007) NIPS). 

For stronger couplings, we incorporate strong short-delay interactionsexactly via a Hidden Markov Model dynamics and weak long-delay Note: We assume that the size of the hidden component N is known; in practice, a modelselection method such as BIC, AIC, or cross-validation should be used to select N. )}{);(|)(())(),(|):((~)( \iiiHMMiiii ntstsPtCtsTtFPts ∆−×exactly via a Hidden Markov Model dynamics and weak long-delayinteractions approximately via small-w expansion (a hybrid approach): selection method such as BIC, AIC, or cross-validation should be used to select N.
FIG: Acceptance rate R of the hybrid
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si(t) encodes neuron’s spiking during past K time steps, so that all refractory self-interactions are incorporated in PHMM(si(t)|si(t-∆))}),({)( tKtnts ii ≤<∆−= ττ "100100001")(.. K=tsge i FIG: Performance of above MH spike train sampler onsimulated calcium imaging data. Acceptance rate R (thelarge network (right) simulatedsettings vs. MH-only algorithm and"100100001")(.. K=tsge isi(t) encodes neuron’s spiking during past K time steps, thus, all τ<t-K∆∆
simulated calcium imaging data. Acceptance rate R (thehigher is the better) is high in the intermediate-high(eSNR≈4-10) and very-low (eSNR≈1) SNR regimes, while in

settings vs. MH-only algorithm andshort-delay HMM-only algorithm.Use of hybrid strategy allows us toiterms in Ji are explicitly incorporated in PHMM(si(t)|si(t-∆)) (if Ji has exactly K time lags, then si(t) in fact suffices to fully describe the state of neuron) (eSNR≈4-10) and very-low (eSNR≈1) SNR regimes, while inthe intermediate-low (eSNR≈1-2) SNR regime the samplerUse of hybrid strategy allows us tosignificantly and uniformly out-perform such MH- or MHH-onlyK time lags, then si(t) in fact suffices to fully describe the state of neuron)
The spike train n then can be sampled using standard fast forward-

the intermediate-low (eSNR≈1-2) SNR regime the samplersuffers significant performance drop due to non-Gausianityof P(C|F) (i.e., Poisson fluorescence noise, solid black).perform such MH- or MHH-onlysamplers.The spike train ni then can be sampled using standard fast forward-backward procedure from the theory of Hidden Markov Models. of P(C|F) (i.e., Poisson fluorescence noise, solid black).Performance does not degrade if P(C|F) is Gaussiansamplers.
Extracting spike trains from calcium imaging data: Performance does not degrade if P(C|F) is Gaussian(dashed gray). Inset shows two examples of simulatedfluorescence (top) and deduced posterior spike probabilities
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Extracting spike trains from calcium imaging data:P(n(t)|{n}) est. with MH using different approximations J FIG: Deduced posterior calciumComparison of P(n(t)|{n}) and  approximations Ji and Ja fluorescence (top) and deduced posterior spike probabilitiesin low (eSNR=2) and intermediate (eSNR=5) SNR settings.
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, a.u. probability (bottom) for a real calciumimaging data sample, courtesy of T.Sippy, R. Yuste, J. Vogelstein. • We develop efficient methods for sampling from the spike train of a single neuron given the
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Sippy, R. Yuste, J. Vogelstein.Positions of the true spikes, identified • We develop efficient methods for sampling from the spike train of a single neuron given thespikes of all of the other neurons putatively connected to it.• By the theory of Gibbs sampling, this enables us to sample also from the full distribution of a[Ca] c
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Positions of the true spikes, identifiedvia simultaneous patch-clamprecording, are indicated with red stars. • By the theory of Gibbs sampling, this enables us to sample also from the full distribution of ahidden population spike trains given the observations of the spike trains from a set ofrecording, are indicated with red stars.Spike positions and respective jumps hidden population spike trains given the observations of the spike trains from a set ofneurons, collected with multi-electrodes or calcium imaging recordings.• These methods are based on two ideas: a weak-coupling approximation of the spike train log-
Spike positions and respective jumpsin calcium concentration are allaccurately inferred from the calcium
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yFIG: Comparison of delayed Ji(t) and full Ja(t) firing rates with the true posterior firing • These methods are based on two ideas: a weak-coupling approximation of the spike train log-likelihood and the forward-backward algorithms from the theory of Hidden Markov Models.accurately inferred from the calciumimaging data.
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yFIG: Comparison of delayed Ji(t) and full J (t) firing rates with the true posterior firingrate P(ni(t)|{n}) in simulated settings (left) and results of MH estimation of P(ni(t)|{n})in the same settings using Poisson proposals using a uniform, J (t), and Ja(t) currents likelihood and the forward-backward algorithms from the theory of Hidden Markov Models.• These methods can be used for practical estimation of neural connectivity in an Expectation-Maximization approach; for more details see (Mishchenko, Vogelstein, and Paninski, AOAS:Note that our approach allows drawingfull samples from the posterior P(n|F)
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in the same settings using Poisson proposals using a uniform, Ji(t), and Ja(t) currents(right). Actual spikes are indicated with stars. Inset shows the autocorrelationfunctions for such different MH samplers. Longer sample auto-correlation leads to Maximization approach; for more details see (Mishchenko, Vogelstein, and Paninski, AOAS:http://www.stat.columbia.edu/~liam/research/pubs/yuri-ca-network.pdf).full samples from the posterior P(n|F)as opposed, e.g., to only computingPoste
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functions for such different MH samplers. Longer sample auto-correlation leads tolonger mixing time and is bad. Advanced-time correction in Ja(t) (i.e. τ>t terms in Ja) http://www.stat.columbia.edu/~liam/research/pubs/yuri-ca-network.pdf).We thank J. Vogelstein, T. Sippy, M. Nikitchenko, R. Yuste, and J. Pillow for calcium imagingas opposed, e.g., to only computingmarginals p(ni(t)|Fi) such as in(Vogelstein et al. (2009) Biophys J).Poste
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longer mixing time and is bad. Advanced-time correction in J (t) (i.e. τ>t terms in J )allows us to both better approximate the true posterior spiking rate in the proposalsamples and improve dramatically performance of the Metropolis-Hastings samplers. Time, ticks data, many insightful discussions and helpful suggestions.(Vogelstein et al. (2009) Biophys J).samples and improve dramatically performance of the Metropolis-Hastings samplers.


