inferring retinal cone locations and functional connectivity from ganglion cell recordings
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introduction

Recently, it has been shown [3] that it is possible to get
a handle on both the input and the output cells of
macaque retinas, and the functional connections
between them: if sufficiently fine-grained stimuli are
used to excite the retina, the Spike Triggered Average
receptive field of ganglion cells appear to be composed
of small islands of light sensitivity, which are in fact the
receptive fields of individual cones. Here, we address
the problem of identifying the number, locations and
types of cones in a way that provides information on
how certain we can be of our inference. This is done
using Markov Chain Monte Carlo (MCMC) on a
familiar encoding model of ganglion cells where the
functional weights have been integrated out. Ve obtain
inferences of higher quality than with the greedy
method used in [3].
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Spike Triggered Averages

We assume STAs are separable in space and time.
Consider the spatial components of a few STA:s.

High resolution

Low res. (downsampled)

Small islands of light sensitivity are visible within the
receptive field center, only in the high resolution STA.

[ G. Field, J. Gauthier, A. Sher, M. Greschner, T. Machado, L. Jepson,
J. Shlens, D. Gunning, K. Mathieson, L. Paninski, A. Litke, and E.J.

Chichilnisky , Nature 2010 ] shows we are seeing cones.

map of cones alignment

on midget on parasol

LNP model
n(t) ~ Poiss| et 4t ]

n(t) : spike train of a ganglion cell
s; : stimulus used to excite cells.

b e R : offset parameter.

k : a linear filter acting on the stimulus s;.
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a : vector of functional weights between cones and ganglion cells

WV : each column is a cone receptive field
both a and W depend on the set of cone locations and colors

log-likelihood Parallel Tempering
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MCMC on a sequence of coupled MCMC instances
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Greedy, MCMC and Parallel tempering

MCMC with Parallel tempering

achieves higher likelihoods than
, regular MCMC and than the
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greedy method used previously.
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hard cone exclusion prior
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number of cones

Cones cannot overlap in space: we place a hard
exclusion prior on cone locations.

The cones found by
MCMC avoid some
pitfalls of greedy
optimization.

visualizing the evidence

lgnoring overlaps
between cones due

to pixelization gives:
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local maxima are a problem

Due to the hard cone exclusion prior and the strength
of the evidence pooled across ganglion cells, MCMC
with these moves rapidly gets stuck in local maxima. STA
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