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introduction
Recently, it has been shown [3] that it is possible to get 
a handle on both the input and the output cells of 
macaque retinas, and the functional connections 
between them: if sufficiently fine-grained stimuli are 
used to excite the retina, the Spike Triggered Average 
receptive field of ganglion cells appear to be composed 
of small islands of light sensitivity, which are in fact the 
receptive fields of individual cones.  Here, we address 
the problem of identifying the number, locations and 
types of cones in a way that provides information on 
how certain we can be of our inference.  This is done 
using Markov Chain Monte Carlo (MCMC) on a 
familiar encoding model of ganglion cells where the 
functional weights have been integrated out.  We obtain 
inferences of higher quality than with the greedy 
method used in [3].

stimulus
• Spatio-temporal     
‘white noise’ :  binary RGB

• High-resolution pixels: 
5-6 micrometers wide

• 15-30Hz frames

• 30-240 min. experiments

responses :  200 - 50,000 spikes / ganglion cell

Spike Triggered Averages
We assume STAs are separable in space and time. 
Consider the spatial components of a few STAs.

   Low res. (downsampled)          High resolution

Small islands of light sensitivity are visible within the 
receptive field center, only in the high resolution STA.

[ G. Field, J. Gauthier, A. Sher, M. Greschner, T. Machado, L. Jepson, 
J. Shlens, D. Gunning, K. Mathieson, L. Paninski, A. Litke, and E.J. 
Chichilnisky , Nature 2010 ]   shows we are seeing cones.
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For cells with fewer spikes, are these cones or noise?

LNP model

Maximum likelihood       and         :

maximum-likelihood :

taylor expansion around max. likelihood value of 

Ignoring terms that do not depend on k, this further approximation yields:
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Note that these last approximations are self-consistent in the sense that the value of k obtained by maxi-
mizing the approximate log-likelihood without any constraints on k is again STA/σ2; this later calculation
is once again done by equating the gradient with respect to k of the approximate log-likelihood to zero.

We now have an approximate log-likelihood which is quadratic in k, corresponding to a gaussian likelihood.
This will later allow us to analytically integrate out the functional connectivity weights a that will be
introduced in the next section.

Weighted sums of cone receptive fields

We now assume that each ganglion cell’s linear filter k is a weighted sum of appropriately placed cone re-
ceptive fields. The same set of cones is shared by all the ganglion cells in a recording. We also assume that
cones have typical and known receptive fields that only depend on each cone’s location and color type: a
cone of a given color has a circular gaussian receptive field of a certain known width. The vector of weights,
which depends implicitely on the number of cones as well as their locations and colors, will be denoted by a.

We limit ourselves to a fixed region of interest comprising Npixel pixels. Cones are placed with sub-pixel
resolution (cone centers are not assumed to be located at pixel centers or corners), and their receptive fields
must be pixelized by projection onto the Npixel squares representing pixels. The pixelized receptive field
is obtained by first placing the spatial component of a stereotyped cone receptive field (a gaussian) at its
location coordinates, without regard for color. This stereotyped receptive field is then integrated over the
square surface of each stimulus pixel, so that we have calculated the relative integrated sensitivity of the
cone to each pixel. This vector of Npixel numbers is then tripled in size by taking a kronecker product with
the 3-element color sensitivity of the cone. (Similarly the STAs, which are already pixelized and in color by
construction, can be flattened into a column vector of size 3Npixels.) In this manner, we represent a set of
cones by a matrix W where each column consists in a pixelized cone receptive field flattened into a column
vector. Taking a weighted sum of cone receptive fields then reduces to multiplying this matrix on the right
by a vector of weights:

k = W(cones) a.

In this context, the Ncones by Ncones square matrix WTW contains the dot products between pairs of
pixelized cone receptive fields.

In practice, we know that cones are never closer to each other than a certain exclusion distance, correspond-
ing to roughly one cone diameter (which is different for the three cone types). We can enforce such a cone
exculsion with the use of a hard prior that gives zero probability to any cone configuration with cones that
are too close together. In practice, we implement this by only proposing Monte Carlo moves that respect
cone exclusion.

A consequence of this hard cone exclusion prior is that cone configurations that respect it have non-
overlapping cone receptive fields. One would therefore naively conclude that for cone configurations that
respect the exclusion distance, the matrix of dot products WTW is proportional to the identity. However,
two cone receptive fields that are not overlapping can both overlap a same pixel, which introduces non-zero
terms off the diagonal of WTW. In this light, WTW can be seen as capturing the effect of pixelization,
which is a property of the problem at hand that affects any combination of cone configuration and weights.
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:

     

cones
a : vector of functional weights between cones and ganglion cells 
W :  each column is a cone receptive field
	

 	

 both a and W depend on the set of cone locations and colors
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Experimental methods summary

The same protocols as in [3] were used to collect similar data. Extracellular multi-electrode recordings

were obtained from ganglion cells of isolated retinas taken from macaque monkeys (Macaca fascicularis and

Macaca mulatta) used in other laboratories [1]. Spikes from several hundred cells were segregated offline [6].

Receptive-field maps were obtained using a fine grained random colored checkerboard stimulus projected

onto the retina.

LNP framework

We model all the ganglion cells whose spikes were recorded simultaneously during an experiment jointly,

with each cell indexed by i. However, to keep our notation simple, we start by supressing i and focus on a

single cell. As in [3] , we model each ganglion cell as a Linear-Nonlinear-Poisson spike generator, with an

exponential nonlinearity:

n(t) ∼ Poiss[ eb+k.st dt ]

st : stimulus used to excite cells.

n(t) : spike train of a ganglion cell, discretized into spike counts per time bin.

b ∈ R : offset parameter.

k : a linear filter acting on the stimulus st.

Nspikes : total number of spikes of a ganglion cell.

STA =
1

Nspikes

�
t∈spikes st : spike triggered average of a ganglion cell.

1

Locating cones from retinal ganglion cell recordings

November 2010

Abstract

Recently, it has been shown [3] that it is possible to get a handle on both the input and the output cells of

macaque retinas, and the functional connections between them. Indeed, if sufficiently fine-grained stimuli are

used to excite the retina, the spike triggered average receptive field of ganglion cells appear to be composed

of small islands of light sensitivity, which are in fact the receptive fields of individual cones. Here, we address

the problem of identifying the number, locations and types of cones in a way that provides information on

how certain we can be of our inference. This is done using Markov Chain Monte Carlo (MCMC) on a familiar

encoding model of ganglion cells where the functional weights have been integrated out. As we will see, we

obtain inferences of higher quality than with the greedy method used in [3].

Introduction

...

Experimental methods summary

The same protocols as in [3] were used to collect similar data. Extracellular multi-electrode recordings

were obtained from ganglion cells of isolated retinas taken from macaque monkeys (Macaca fascicularis and

Macaca mulatta) used in other laboratories [1]. Spikes from several hundred cells were segregated offline [6].

Receptive-field maps were obtained using a fine grained random colored checkerboard stimulus projected

onto the retina.

LNP framework

We model all the ganglion cells whose spikes were recorded simultaneously during an experiment jointly,

with each cell indexed by i. However, to keep our notation simple, we start by supressing i and focus on a

single cell. As in [3] , we model each ganglion cell as a Linear-Nonlinear-Poisson spike generator, with an

exponential nonlinearity:

n(t) ∼ Poiss[ eb+k.st dt ]

st : stimulus used to excite cells.

n(t) : spike train of a ganglion cell, discretized into spike counts per time bin.

b ∈ R : offset parameter.

k : a linear filter acting on the stimulus st.

Nspikes : total number of spikes of a ganglion cell.

STA =
1

Nspikes

�
t∈spikes st : spike triggered average of a ganglion cell.

1

Locating cones from retinal ganglion cell recordings

November 2010

Abstract

Recently, it has been shown [3] that it is possible to get a handle on both the input and the output cells of

macaque retinas, and the functional connections between them. Indeed, if sufficiently fine-grained stimuli are

used to excite the retina, the spike triggered average receptive field of ganglion cells appear to be composed

of small islands of light sensitivity, which are in fact the receptive fields of individual cones. Here, we address

the problem of identifying the number, locations and types of cones in a way that provides information on

how certain we can be of our inference. This is done using Markov Chain Monte Carlo (MCMC) on a familiar

encoding model of ganglion cells where the functional weights have been integrated out. As we will see, we

obtain inferences of higher quality than with the greedy method used in [3].

Introduction

...

Experimental methods summary

The same protocols as in [3] were used to collect similar data. Extracellular multi-electrode recordings

were obtained from ganglion cells of isolated retinas taken from macaque monkeys (Macaca fascicularis and

Macaca mulatta) used in other laboratories [1]. Spikes from several hundred cells were segregated offline [6].

Receptive-field maps were obtained using a fine grained random colored checkerboard stimulus projected

onto the retina.

LNP framework

We model all the ganglion cells whose spikes were recorded simultaneously during an experiment jointly,

with each cell indexed by i. However, to keep our notation simple, we start by supressing i and focus on a

single cell. As in [3] , we model each ganglion cell as a Linear-Nonlinear-Poisson spike generator, with an

exponential nonlinearity:

n(t) ∼ Poiss[ eb+k.st dt ]

st : stimulus used to excite cells.

n(t) : spike train of a ganglion cell, discretized into spike counts per time bin.

b ∈ R : offset parameter.

k : a linear filter acting on the stimulus st.

Nspikes : total number of spikes of a ganglion cell.

STA =
1

Nspikes

�
t∈spikes st : spike triggered average of a ganglion cell.

1

Locating cones from retinal ganglion cell recordings

November 2010

Abstract

Recently, it has been shown [3] that it is possible to get a handle on both the input and the output cells of

macaque retinas, and the functional connections between them. Indeed, if sufficiently fine-grained stimuli are

used to excite the retina, the spike triggered average receptive field of ganglion cells appear to be composed

of small islands of light sensitivity, which are in fact the receptive fields of individual cones. Here, we address

the problem of identifying the number, locations and types of cones in a way that provides information on

how certain we can be of our inference. This is done using Markov Chain Monte Carlo (MCMC) on a familiar

encoding model of ganglion cells where the functional weights have been integrated out. As we will see, we

obtain inferences of higher quality than with the greedy method used in [3].

Introduction

...

Experimental methods summary

The same protocols as in [3] were used to collect similar data. Extracellular multi-electrode recordings

were obtained from ganglion cells of isolated retinas taken from macaque monkeys (Macaca fascicularis and

Macaca mulatta) used in other laboratories [1]. Spikes from several hundred cells were segregated offline [6].

Receptive-field maps were obtained using a fine grained random colored checkerboard stimulus projected

onto the retina.

LNP framework

We model all the ganglion cells whose spikes were recorded simultaneously during an experiment jointly,

with each cell indexed by i. However, to keep our notation simple, we start by supressing i and focus on a

single cell. As in [3] , we model each ganglion cell as a Linear-Nonlinear-Poisson spike generator, with an

exponential nonlinearity:

n(t) ∼ Poiss[ eb+k.st dt ]

st : stimulus used to excite cells.

n(t) : spike train of a ganglion cell, discretized into spike counts per time bin.

b ∈ R : offset parameter.

k : a linear filter acting on the stimulus st.

Nspikes : total number of spikes of a ganglion cell.

STA =
1

Nspikes

�
t∈spikes st : spike triggered average of a ganglion cell.

1

Locating cones from retinal ganglion cell recordings

November 2010

Abstract

Recently, it has been shown [3] that it is possible to get a handle on both the input and the output cells of

macaque retinas, and the functional connections between them. Indeed, if sufficiently fine-grained stimuli are

used to excite the retina, the spike triggered average receptive field of ganglion cells appear to be composed

of small islands of light sensitivity, which are in fact the receptive fields of individual cones. Here, we address

the problem of identifying the number, locations and types of cones in a way that provides information on

how certain we can be of our inference. This is done using Markov Chain Monte Carlo (MCMC) on a familiar

encoding model of ganglion cells where the functional weights have been integrated out. As we will see, we

obtain inferences of higher quality than with the greedy method used in [3].

Introduction

...

Experimental methods summary

The same protocols as in [3] were used to collect similar data. Extracellular multi-electrode recordings

were obtained from ganglion cells of isolated retinas taken from macaque monkeys (Macaca fascicularis and

Macaca mulatta) used in other laboratories [1]. Spikes from several hundred cells were segregated offline [6].

Receptive-field maps were obtained using a fine grained random colored checkerboard stimulus projected

onto the retina.

LNP framework

We model all the ganglion cells whose spikes were recorded simultaneously during an experiment jointly,

with each cell indexed by i. However, to keep our notation simple, we start by supressing i and focus on a

single cell. As in [3] , we model each ganglion cell as a Linear-Nonlinear-Poisson spike generator, with an

exponential nonlinearity:

n(t) ∼ Poiss[ eb+k.st dt ]

st : stimulus used to excite cells.

n(t) : spike train of a ganglion cell, discretized into spike counts per time bin.

b ∈ R : offset parameter.

k : a linear filter acting on the stimulus st.

Nspikes : total number of spikes of a ganglion cell.

STA =
1

Nspikes

�
t∈spikes st : spike triggered average of a ganglion cell.

1

With this notation, the log-likelihood of seeing spike train n(t) given stimulus st and parameters b and k is,

up to a normalization constant:

log p( n(t) | b , k , st ) =

�

t

n(t)(b+ k.st)− eb+k.stdt + const

= Nspikes (b+ k.STA)−
�

t

eb+k.stdt + const

This type of model has been shown [7] to be very adequate for macaque parasol ganglion cells.

Approximate log-likelihood

Even though the actual stimulus consisted in binary light intensities in each pixel and color channel, it is

convenient to approximate the stimulus in each pixel as having been gaussian with covariance σ2
in units

of light intensity. This allows for the following simplification, which exposes the ganglion cell’s STA as a

sufficient statistic of the model:

log p( n(t) | b , k , st ) ≈ Nspikes (b+ k.STA) − T

�
eb+k.sp(s)ds + const

≈ Nspikes (b+ k.STA) − T exp

�
b+

σ2

2
||k||2

�
+ const (1)

This approximation is reasonable as long as k spans enough pixels across space and time for the central limit

theorem to take effect. If we do not impose any constraints, structure or regularization on the linear filter

k, then maximizing the likelihood results in k being proportional to STA; this becomes apparent by noting

that the gradient of (1) with respect to k is zero when (1) is maximized (??). In this setting, we could write

k = αSTA and solve for the unknowns α and b which maximize the likelihood:

log p( n(t) | b,α, st ) ≈ Nspikes(b+ α||STA||2) − T exp

�
b+

σ2α2

2
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α = 1/σ2

b = log
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2σ2

In what follows, k will be constructed from cone receptive fields, and will therefore not be strictly proportional

to the STA. However, as it turns out, the posterior distribution of k we will obtain will be close to STA/σ2
,

and in particular its norm will be close to ||STA||/σ2
to allow us to make two further benign approximations.

First, we fix the offset parameter b of each ganglion cell to be the value determined above once and for all:
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Second, we linearize the exponential in (2) with respect to the variable σ2||k||2/2 around the value it would

have if k were not constrained, i.e. at ||STA||2/2σ2
. This approximation is valid as long as the posterior

distribution of σ2||k||2/2 we obtain as a result of our inference is close to ||STA||2/2σ2
, which it will be.
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Ignoring terms that do not depend on k, this further approximation yields:
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Note that these last approximations are self-consistent in the sense that the value of k obtained by maxi-
mizing the approximate log-likelihood without any constraints on k is again STA/σ2; this later calculation
is once again done by equating the gradient with respect to k of the approximate log-likelihood to zero.

We now have an approximate log-likelihood which is quadratic in k, corresponding to a gaussian likelihood.
This will later allow us to analytically integrate out the functional connectivity weights a that will be
introduced in the next section.

Weighted sums of cone receptive fields

We now assume that each ganglion cell’s linear filter k is a weighted sum of appropriately placed cone re-
ceptive fields. The same set of cones is shared by all the ganglion cells in a recording. We also assume that
cones have typical and known receptive fields that only depend on each cone’s location and color type: a
cone of a given color has a circular gaussian receptive field of a certain known width. The vector of weights,
which depends implicitely on the number of cones as well as their locations and colors, will be denoted by a.

We limit ourselves to a fixed region of interest comprising Npixel pixels. Cones are placed with sub-pixel
resolution (cone centers are not assumed to be located at pixel centers or corners), and their receptive fields
must be pixelized by projection onto the Npixel squares representing pixels. The pixelized receptive field
is obtained by first placing the spatial component of a stereotyped cone receptive field (a gaussian) at its
location coordinates, without regard for color. This stereotyped receptive field is then integrated over the
square surface of each stimulus pixel, so that we have calculated the relative integrated sensitivity of the
cone to each pixel. This vector of Npixel numbers is then tripled in size by taking a kronecker product with
the 3-element color sensitivity of the cone. (Similarly the STAs, which are already pixelized and in color by
construction, can be flattened into a column vector of size 3Npixels.) In this manner, we represent a set of
cones by a matrix W where each column consists in a pixelized cone receptive field flattened into a column
vector. Taking a weighted sum of cone receptive fields then reduces to multiplying this matrix on the right
by a vector of weights:

k = W(cones) a.

In this context, the Ncones by Ncones square matrix WTW contains the dot products between pairs of
pixelized cone receptive fields.

In practice, we know that cones are never closer to each other than a certain exclusion distance, correspond-
ing to roughly one cone diameter (which is different for the three cone types). We can enforce such a cone
exculsion with the use of a hard prior that gives zero probability to any cone configuration with cones that
are too close together. In practice, we implement this by only proposing Monte Carlo moves that respect
cone exclusion.

A consequence of this hard cone exclusion prior is that cone configurations that respect it have non-
overlapping cone receptive fields. One would therefore naively conclude that for cone configurations that
respect the exclusion distance, the matrix of dot products WTW is proportional to the identity. However,
two cone receptive fields that are not overlapping can both overlap a same pixel, which introduces non-zero
terms off the diagonal of WTW. In this light, WTW can be seen as capturing the effect of pixelization,
which is a property of the problem at hand that affects any combination of cone configuration and weights.
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log-likelihood

prior on weights

integrating out the weights

Marginalizing out the weights a

Upon replacing k with its value Wa in the approximate log-likelihood (3), we notice that the log-likelihood

is a quadratic function of a:
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Nspikes
log p( n(t) | W , a , STA ) ≈ STAT Wa − σ2

2
aTWTWa + const. (4)

We can marginalize a out to obtain a likelihood that only depends on cone locations and colors, after having

specified an apropriate prior on a. Since cone receptive fields do not overlap due to the hard exclusion prior,

one might naively expect the weights a to be independent of each other in the absence of data, implying

that a gaussian prior with a covariance proportional to the identity would be apropriate. However, as noted

in the previous section, two cones whose receptive fields do not overlap can overlap a common pixel, and

the pixelized cone receptive fields can overlap. The matrix which captures the overlaps due to pixelation

is WTW, and it is natural to consider a prior inverse covariance matrix of the form gWTW for some

proportionality constant g. Such a prior is also very convenient, since the inverse covariance of the weights a
in the approximate likelihood of the data itself does not depend on the data and is of the same form, namely

σ2 WTW: this will simplify calculations. Since weights between cones and ganglion cells can be positive or

negative, we take a zero mean prior, which leads to:

p (a | cones ) =
1�

|2π(gWTW)−1|
exp

�
−1

2
aT gWTWa

�
(5)

p ( data | cones ) =

�
da p (a | cones ) p ( data | cones ,a )

∝
�

da exp

�
Nspikes

�
STAT Wa − σ2 aTWTWa / 2

�
− g aTWTWa / 2

�

2 log p ( data | cones ) =
N2

spikes

Nspikes σ2 + g
STAT W

�
WTW

�−1
WT STA

− log

����
2π

g
(WTW)

−1

���� + log

����
2π

Nspikes σ2 + g
(WTW)

−1

����

=
N2

spikes

Nspikes σ2 + g
STAT W

�
WTW

�−1
WT STA + Ncones log

�
g

Nspikes σ2 + g

�

(6)

The first term in (6) is always positive. It reflects the likelihood of placing cones at particular locations, by

how much the cones (represented in WTW) overlap the STA (which is implicitly present in y). The second
term, which stems from the variable dimensionality of the gaussian integral we just took, is always negative,

and penalizes Ncones. This second term effectively sets the boundary between cone locations that stand out

from the noise and cone locations which cannot be distinguished from it: when adding an additional cone,

the data likelihood will become larger only if the additional contribution of the first term is larger than

log (Nspikes σ2
+ g) − log g.

Since k = Wa, the prior (5) can be seen as a prior on k, and g is the inverse covariance of this prior:

p( k | cones ) ∝ exp( −g ||k||2/2). Recall that the calculation of the norm of k was done in advance of

the inference when we calculated the offset parameter b, which gave k ≈ STA/σ2
. Therefore we choose

the scalar parameter g so that corresponding prior on k has a variance equal to the mean square norm of

STAi/σ2
across ganglion cells i; this is achieved by choosing

g =
σ4 NGC�
i ||STAi||2

4hard cone exclusion prior
Cones cannot overlap in space: we place a hard 
exclusion prior on cone locations.

visualizing the evidence

Ignoring overlaps

between cones due 

to pixelization gives:
WTW = I

MCMC moves

• cone addition and deletion

• change of cone color

• shift of cone locations

local maxima are a problem
Due to the hard cone exclusion prior and the strength 
of the evidence pooled across ganglion cells, MCMC 
with these moves rapidly gets stuck in local maxima.

Parallel Tempering
In order to overcome local maxima, we want to flatten 
the log-likelihood landscape, while sampling only from 
the true log-likelihood.  This can be done by doing 
MCMC on a sequence of coupled MCMC instances 
with progressively increasing ‘temperatures‘         .

log p ( data | cones , β, δ ) =
1

2

�

i

N2
spikesi

β(Nspikesi σ
2 + g)

�
STAT

i W
�
WTW

�−1
WT STAi

�δ

+
Ncones

2β
log

�
g

Nspikesi σ
2 + g

�
(8)

In practice, we take a few hundred replicas of the system with γ = (β, δ) ranging from (1, 1) to (0.4, 0.3).

Finding the most likely configuration

Finding the most likely configuration is a classical problem of global optimization in a highly pathological

energy landscape. Some of the strategies that come to mind are a greedy search, simulated annealing, tabu

search, stochastic tunneling, and similar algorithms. In practice, the proceedure we have found to be best

suited to this problem is as follows. We run many independent MCMC chains until they get stuck. Each

frozen configuration we end up with in this manner is good in some regions and less good in others. In order

to construct a single configuration that is most likely in all regions with strong evidence, we proceed by

doing parallel tempering with each replica initialized with one of the frozen configurations, using only swap

moves and with a log-likelihood that is simply scaled by an inverse temperature β. This procedure results

in local groups of cones which are most likely being swapped towards the replica with lowest temperature,

which ends up being much closer to the global optimum than any of the frozen configurations we started

with. Using swap moves only is enough for the best local configurations to accumulate in the configuration

with highest β (= 1), while not doing regular MCMC moves keeps replicas with low β from drifting back to

unlikely configurations.

Results

Our dataset

We apply our MCMC cone finding algorithms to a dataset collected from 21 ganglion cells. Our model only

requires knowing these cells’ STAs, and the number of recorded spikes for each cell. We limit ourselves to a

reasonably wide region of interest in cone location space which spans 26 by 46 stimulus pixels. This region

was chosen to include most of the power from all the ganglion cell STAs. As mentioned earlier, permissible

cone locations were chosen to be a square lattice 4 times finer than the pixel lattice, for a total of 16 possible

cone locations per pixel.

The greedy algorithm

We compare our MCMC results to the configuration obtained by a straightforward greedy procedure: using

the same posterior (6) as for MCMC, cones are added one by one with the location and type that maximizes

the posterior given all the cones accumulated so far. This greedy accumulation of cones starts without cones,

and stops when adding a cone can only reduce the posterior.

On our dataset, the greedy procedure results in a cone configuration with 111 red and green cones (no blue

cones were inferred) with a posterior likelihood of 31156 nats.

MCMC results

Running MCMC without parallel tempering, i.e. with a single instance, leads to configurations with posterior

likelihoods that stop increasing after a few thousand iterations: each MCMC run gets stuck in a small region

of configuration space. Nonetheless, most of the configurations obtained in this manner have higher posterior

likelihoods than the greedy configuration (Fig. 5). This is not surprising, since in some sense, MCMC is

10

Regular MCMC moves within each instance are 
alternated with swap moves which exchange a cluster 
of cones between neighboring configurations:

Figure 3: Overlay of two cone configurations (brown and light blue), making the overlap relation apparent
by partial transparency. Color here denotes belonging to one of two replicas, and is not to be confused with
cone type, which is not denoted in this figure. In this toy example, the transitive closure of the overlap
relation defines two equivalence classes of connected cones. The equivalence class (or connected component)
on the left has two brown and three light blue cones, while the one on the right has three brown and three
light blue cones.

system indexed by j, each with a different γj . The only replica of interest to us has γ = 1, since only it has not
been flattened. Other replicas have progressively smaller γ, which makes their energy landscape progressively
more distorted and flatter. In this manner, we consider a system of N independent cone configurations, each
with different log-likelihood functions determined by γ. Each Monte Carlo iteration proceeds in two phases.
First, each replica undergoes a regular MCMC iteration as described above, independently of other replicas.
Then swap moves are proposed consisting of swapping groups of cones from pairs of neighboring replicas.
This exchange of cones between replicas j and j + 1 is accepted or rejected according to the joint log-
likelihood log pγj ( data | conesj ) + log pγj+1( data | conesj+1 ). Since we are using a symmetric rule and not
Metropolis-Hastings the move consisting of exchanging the group k of cones between replicas j and j + 1,
which would replace conesj with k(conesj) in replica j and conesj+1 with k(conesj+1) in replica j+1, would
be accepted with probability:

Paccept =
pγj ( data | k(conesj) ) pγj+1( data | k(conesj+1) )

pγj ( data | conesj ) pγj+1( data | conesj+1 ) + pγj ( data | k(conesj) ) pγj+1( data | k(conesj+1) )

Since the joint likelihood of the pair of replicas is the product of two terms which each depend on one of
the replicas only, it does not introduce any coupling between their two likelihoods: the two replicas stay
independent. Since our acceptance/rejection scheme observes detailed balance for the pair system, the sam-
pling distribution of the replicas are guaranteed to be pγi and pγi+1 respectively, even though groups of cones
are being swapped between replicas. In particular, the configurations sampled for the replica with γ = 1
conform to the desired distribution p( data | cones ).

The groups of cones proposed for swapping are chosen to be the smallest groups that must be swapped with
each other if one is to respect cone exclusion. These groups of cones can be found by simple agglutination.
If cone1 in replica j overlaps cone2 in replica j + 1, then these two cones must be swapped together. If in
turn cone cone2 in replica j+1 overlaps cone cone3 in replica j, by virtue of transitivity, all three cone must
be swapped together. This agglutination is continued until the cones in the group overlap no other cones
than themselves. If cones are left that have not been agglutinated into a group yet, a new group is started
with one of them chosen at random. This agglutination could in principle percolate, leading to minimal

8

        
Figure 4: For the same pair of configurations as in the previous figure (left), two swap moves would be
considered, one for each equivalence class (right). Each of the two admissible swap moves consists in swapping
the brown cones in one equivalence class with the light blue ones in the same equivalence class. Note that
only the colors of cones, here denoting belonging to one of two replicas, are changed; cone type (not denoted
in this figure) and spatial location are unchanged.

groups of cones which comprise most or all of the cones across the pair of replicas. However in practice,
the sizes of groups obtained are small and localized. This is very convenient, since the smaller the groups
of cones proposed for swapping, the greater the chances of accepting that MCMC move. More formally,
the agglutination procedure described above is a simple algorithm for computing the transitive closure [5]
of a simple overlap relation R between cones. For cone1 in replica j and cone2 in neighboring replica j + 1,
R(cone1, cone2) is true if and only if swapping cone1 to replica j + 1 would require swapping cone2 out of
replica j +1 into replica j in order to preserve cone exclusion. In other words, R(cone1, cone2) is true when
the two cones overlap in space, even though they currently belong to different replicas. This relation R is
reflexive (every cone overlaps itself) and symmetric (if cone1 overlaps cone2, then cone2 overlaps cone1). The
’must be swapped together’ relation which we calculate is the transitive closure of R: it is the smallest binary
relation which is true when R is true and which is also transitive. Calculating the transitive closure of R
is computationally straighforward: one prodeeds by agglutination similarly to the way described above; we
use a particularly simple and fast algorithm called the Floyd-Warshall algorithm [8,11]. Once it is obtained,
this transitive closure defines a number of equivalence classes, i.e. a number of groups of cones which must
be swapped together. We use these groups directly as proposed swaps. Figure 3 shows an example where
two groups of cones must be swapped together, while Figure 4 shows the two corresponding swap moves.

Flattening the data likelihood

The simplest most commonly used way of flattening an energy landscape for use with parallel tempering is to
simply scale the log-likelihood by a proportionality factor β, which is interpreted as an inverse temperature.
In practice for our problem, this can help unfreeze cones that are in regions with very little evidence, while
cones remain stuck in regions with mildly more evidence. We can try to unfreeze cones more uniformly across
space by scaling the log-likelihood in a way that evens out the effective evidence. We do this by raising the

STAT
i W

�
WTW

�−1
WT STAi term in (6) to a power δ smaller than 1. In this way, we carry out parallel

tempering with a chain of data likelihoods of the form:

9

results

MCMC with Parallel tempering 
achieves higher likelihoods than 
regular MCMC and than the 
greedy method used previously.

The cones found by 
MCMC avoid some 
pitfalls of greedy 
optimization.

denoised STAs

         STA         denoised STA w/ 2 color maps

10/11/22 14:08LL_ncones.svg

Page 1 of 1file:///Users/kolia/Desktop/stats/LL_ncones.svg

31156

111

32050

117

31971

number of cones

lo
g 

po
st

er
io

r

Greedy , MCMC and Parallel tempering

M
M M

M

M

M M

M

M

M

M

M

M

M

M

M

M M

M

M

M

M

M

M
M

M

M

M

M

M

M

M
M

M

M

M M

M
M

M
M

M

M

M

M

M

M

M

M

M

M

MM

M

M

M M

M

M

M

M

M

M

M

M

MM

M

M

M

M
M

M

M

MM

M M

M

M

M MM

M

M

M

M

M

M

M

M

M

M

M

M

M
M

M

M

M
MM
M

M

M

M

M

M

M

M

M
M

M

M
M

M

M

M

M

M

M

M

M

MM

M

M

M

M

M

M
M

M

M

M

M

M
M

M

M

M

M

M MM

M

M

MM

M
M

M
M

MM M

M

M

M
M

M

M

M

M
M

M
M

M

M

M

M
M

M

M M

M

M

M

M

M

M

M

M

M
M

M

MM

M

M

M

M

M

MM

M
MM

M

M

M

M

M

M

M

MM

M

M

M

M

M

M
M

MM

M

M

MM

M

M

M
M M

M

M

M

M

M

M

M

M

M

M

M
M M

M

M

M
M
M

M

M
M

M

M

M

M

M

M

M

M

M

MM
M

M

M

M

M

M
M

M

M

MM

MM

M

M M

M

MM

M

M
M

M

M
M M

M

M

M

M

M

M

M

M

M

M

M

M

M
M

M

M
M

M

M

M

M

M

M

M

M

M

M

M

M
M

M

M

M

M

M
M

M

M

M
M

M

M

M
MM

M
M

M

M

MM M

MM

M
M

M

M

M

M M

M

M M

M

M
M M

M

M

M
M

M

M
M

MM
M

M

M

M

M

M

M

M

M

MM

M
M

M

M M

M

M

M

M

M

M

M

MM

M

M
M

M

M M

M

M

M

M
M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M
M M

M

M

M

M

M

M

M

M

M

M
M

M

M

M

M

M

M

M

M

M

M
M
M

M

M

M

M

M

M

M

M

M

M

M

M

M M

M

M

M
M
M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M
M
M

M

M M

M

M

M

M
M M

M

MM

M M

M

M M

M

MM

M

M

MM

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

MM M

M

M

M

M

M

M

M

M

M

M
M

M

M

M

M

M

M

M
M

MM

M

M

M

M

M

M

M
M

M
M

M
M

M

M
M

M

M

MM

M

M

MM
M

M

M

MM

M MM
M

M
M

MM

M

M

M

M

M

M M

M

MM M

M

M

M
M

M

M

M
M

M
M

M

M

M

M
M

MM

M

M
M

M M

M

MM

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M
M
M

M

M

M

M

M

MM

M

M

M

M

M

MM
M

M

M

M

M

M

M
M

M
M

M

M

M

M

M

M

M

M

M M

M

M

M

M

M

M

M
M

M

M

M

M

M

M
M
M

M

M

M

M

M

M

M

MM

M

M

M

M

M

M

M

M

M

M
M

M
M

M

M
M

M

M

M

M

M

MM

M
MM

M

M

M
M

M

M
M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M M

M

MM

M
M

M
M

M

M

M

M

M

M

M

M

M
M

M MM
MM

M

M

M

M

M

M

M

M

M

M

M

M MM

M

M M

M

M

M

M

M

M

M

M
M

M

M

M

M

M

M

M

M

M
M

M

M

M

M

M

M

M M

M

M

M
M

M
MM

M

M

M M
M

M

M

M
M

M M

M

M

M

M
M

M

M

M
M

M

MM

M

M

M

M
MMM

M

M M

M

MM

MM

M

M

M

M
MM

M

M

M
M M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M

M
M
M

M

M

M

M

M

M

M
M

M

M

M

M

M
M

M

M

M

M

M

M M
M

M

M

M

M

M

MM

MM

M

M

M
M M

M

M

M

M
M

M

M
M

M

M

M

M

MM

M

M

M

M
M

M
M

M

M

M

M

M

M

M

M

M

M
M

M

M

M

M

M

M

M
M

M

M

M

M

M

M

M

M M

M

M

M

M

M

M

M

M

M

M

M

M

M

M
M MM

M

M

MMM M

M

M

MM

M

M

M

M

M

M

M

M

M

M

M

M

M

MM

M

M

M

M

M

MM
M

M

M

M

M

M

M

M

M

MM M

M

M

M

M

MM

M

M

M

M

M

M

M

M

M

M

M

M

M M
M
MM

M

M
M

M

M

M
M
M

M

M

M

M

M

M

M

M
M

M

M

M

M

M
M

M

M

M

M

M M

M

M

M

M

M

M

M
M

M

M

M M
M M

M

M

M

M

M

M

M

M

M

M

M

M

M

M M

M

M M
M

M M
M

M

M

M

M

M
MM M

M

M

M

M

M
M

M

MM

M

M

PP PP
PPPP

PP

PP

PP
PP

PP

PPPPPPPP PP
PP

PP
PP
PP
PP
PP

PP
PP

PP
PP

PP PPPP
PPPP PP PP

PP
PP PP
PP

PPPP
PP PP

PP

PPPP
PP

PP

PP
PPPP

PP PP
PP

PPPP PP
PPPP

PP
PP

PP

PP
MM
PP

GG

Figure 5: Posterior log-likelihood plotted against number of cones for (G) the greedy solution, (M) best

configurations over regular single-instance MCMC runs, and (P) best configurations over parallel tempering

runs initialized with subsets of 20-30 configurations from (M). In each category (G, M and P), the marker

for the cone configuration with highest likelihood is magnified, and its log- posterior likelihood given.

similar to a greedy algorithm with some amount of backtracking. The best out of 1178 independent single-

instance MCMC runs had 111 cones and a posterior likelihood of 31971 nats.

Swap-only parallel tempering results

As mentioned in methods, in order to find highly likely configurations, we ran swap-only parallel tempering

with 20-30 replicas initialized with different subsets of the configurations found with single-instance MCMC

as described in the previous section. In this manner we obtained cone configurations which often had higher

posteriors than any of the single MCMC configurations we started out with (Fig. 5). The best out of 60

parallel tempering runs had 110 cones and a posterior likelihood of 32050 nats. In particular, the difference
in log-posterior between the best single replica MCMC and the best configuration obtained by parallel

tempering was 79 nats, which is significant.

Differences between Greedy, MCMC, and Parallel tempering solutions

Upon observation of the most likely configurations obtained by the three methods (Fig. 6), there are few

differences between the most likely configurations obtained with MCMC and Parallel tempering. The differ-
ences are more extensive between the Greedy configuration and the other two. This is because both MCMC

and Parallel tempering allow for reconsidering the placement of cones that have already been placed, whereas

the greedy method never goes back on the decision to place a particular cone in a particular location. This

leads the greedy method to make mistakes both by omission and by exclusion (markers ’1’ and ’2’ in Fig. 6)).

More worryingly, this leads the Greedy method to make mistakes both in regions with a lot of evidence (the

bright regions in Fig. 6) and regions with little evidence (the darker regions). In contrast, the most likely

MCMC and Parallel tempering configurations agree in regions with a lot of evidence, and differences are

most pronounced in regions with less evidence. One reason for this may be that regions with little evidence
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Greedy  MCMC  Parallel tempering

1

2

Figure 6: Superposition of the greedy configuration, the most likely out of 1178 single-instance MCMC
runs, and the most likely out of 60 swap-only parallel tempering runs. The background colorscale image is
a depiction of the evidence for the presence of cones of different colors across visual space (see main text).
Cones concentrate mostly in bright regions, i.e. in regions with a lot of evidence for cones of a particular
color. Regions that are darker than a certain threshold are devoid of cones, because the evidence for cones
in these regions is smaller than the penalty incurred for adding a new cone, which is induced by the prior
on weights (see text explaining eq. (6)). The greedy method makes mistakes both by omission (marker ’1’)
and by spurious inclusion ’2’. In both cases, this is due to the fact that the greedy solution first laid down
cones immediately under the markers, whose positions were subsequently not reconsidered when trying to
lay down new cones. Note that the evidence colormap was altered to accentuate differences between red and
green.
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With this notation, the log-likelihood of seeing spike train n(t) given stimulus st and parameters b and k is,

up to a normalization constant:

log p( n(t) | b , k , st ) =

�

t

n(t)(b+ k.st)− eb+k.stdt + const

= Nspikes (b+ k.STA)−
�

t

eb+k.stdt + const

This type of model has been shown [7] to be very adequate for macaque parasol ganglion cells.

Approximate log-likelihood

Even though the actual stimulus consisted in binary light intensities in each pixel and color channel, it is

convenient to approximate the stimulus in each pixel as having been gaussian with covariance σ2
in units

of light intensity. This allows for the following simplification, which exposes the ganglion cell’s STA as a

sufficient statistic of the model:

log p( n(t) | b , k , st ) ≈ Nspikes (b+ k.STA) − T

�
eb+k.sp(s)ds + const

≈ Nspikes (b+ k.STA) − T exp

�
b+

σ2

2
||k||2

�
+ const (1)

This approximation is reasonable as long as k spans enough pixels across space and time for the central limit

theorem to take effect. If we do not impose any constraints, structure or regularization on the linear filter

k, then maximizing the likelihood results in k being proportional to STA; this becomes apparent by noting

that the gradient of (1) with respect to k is zero when (1) is maximized (??). In this setting, we could write

k = αSTA and solve for the unknowns α and b which maximize the likelihood:

log p( n(t) | b,α, st ) ≈ Nspikes(b+ α||STA||2) − T exp

�
b+

σ2α2

2
||STA||2

�
+ const

�
α = 1/σ2

b = log

�
Nspikes

T

�
− ||STA||2

2σ2

In what follows, k will be constructed from cone receptive fields, and will therefore not be strictly proportional

to the STA. However, as it turns out, the posterior distribution of k we will obtain will be close to STA/σ2
,

and in particular its norm will be close to ||STA||/σ2
to allow us to make two further benign approximations.

First, we fix the offset parameter b of each ganglion cell to be the value determined above once and for all:

1

Nspikes
log p( n(t) | k , STA ) ≈ (2)

log

�
Nspikes

T

�
− ||STA||2
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k, then maximizing the likelihood results in k being proportional to STA; this becomes apparent by noting
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Ignoring terms that do not depend on k, this further approximation yields:
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Note that these last approximations are self-consistent in the sense that the value of k obtained by maxi-
mizing the approximate log-likelihood without any constraints on k is again STA/σ2; this later calculation
is once again done by equating the gradient with respect to k of the approximate log-likelihood to zero.

We now have an approximate log-likelihood which is quadratic in k, corresponding to a gaussian likelihood.
This will later allow us to analytically integrate out the functional connectivity weights a that will be
introduced in the next section.

Weighted sums of cone receptive fields

We now assume that each ganglion cell’s linear filter k is a weighted sum of appropriately placed cone re-
ceptive fields. The same set of cones is shared by all the ganglion cells in a recording. We also assume that
cones have typical and known receptive fields that only depend on each cone’s location and color type: a
cone of a given color has a circular gaussian receptive field of a certain known width. The vector of weights,
which depends implicitely on the number of cones as well as their locations and colors, will be denoted by a.

We limit ourselves to a fixed region of interest comprising Npixel pixels. Cones are placed with sub-pixel
resolution (cone centers are not assumed to be located at pixel centers or corners), and their receptive fields
must be pixelized by projection onto the Npixel squares representing pixels. The pixelized receptive field
is obtained by first placing the spatial component of a stereotyped cone receptive field (a gaussian) at its
location coordinates, without regard for color. This stereotyped receptive field is then integrated over the
square surface of each stimulus pixel, so that we have calculated the relative integrated sensitivity of the
cone to each pixel. This vector of Npixel numbers is then tripled in size by taking a kronecker product with
the 3-element color sensitivity of the cone. (Similarly the STAs, which are already pixelized and in color by
construction, can be flattened into a column vector of size 3Npixels.) In this manner, we represent a set of
cones by a matrix W where each column consists in a pixelized cone receptive field flattened into a column
vector. Taking a weighted sum of cone receptive fields then reduces to multiplying this matrix on the right
by a vector of weights:

k = W(cones) a.

In this context, the Ncones by Ncones square matrix WTW contains the dot products between pairs of
pixelized cone receptive fields.

In practice, we know that cones are never closer to each other than a certain exclusion distance, correspond-
ing to roughly one cone diameter (which is different for the three cone types). We can enforce such a cone
exculsion with the use of a hard prior that gives zero probability to any cone configuration with cones that
are too close together. In practice, we implement this by only proposing Monte Carlo moves that respect
cone exclusion.

A consequence of this hard cone exclusion prior is that cone configurations that respect it have non-
overlapping cone receptive fields. One would therefore naively conclude that for cone configurations that
respect the exclusion distance, the matrix of dot products WTW is proportional to the identity. However,
two cone receptive fields that are not overlapping can both overlap a same pixel, which introduces non-zero
terms off the diagonal of WTW. In this light, WTW can be seen as capturing the effect of pixelization,
which is a property of the problem at hand that affects any combination of cone configuration and weights.
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In what follows, k will be constructed from cone receptive fields, and will therefore not be strictly proportional

to the STA. However, as it turns out, the posterior distribution of k we will obtain will be close to STA/σ2
,

and in particular its norm will be close to ||STA||/σ2
to allow us to make two further benign approximations.

First, we fix the offset parameter b of each ganglion cell to be the value determined above once and for all:
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Second, we linearize the exponential in (2) with respect to the variable σ2||k||2/2 around the value it would

have if k were not constrained, i.e. at ||STA||2/2σ2
. This approximation is valid as long as the posterior

distribution of σ2||k||2/2 we obtain as a result of our inference is close to ||STA||2/2σ2
, which it will be.
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Assume cones exist

In order to locate cones, we make the assumption that they have typical and known receptive
fields wj, for the three types of cones j. We then assume that the ganglion cell’s k is a weighted
sum of appropriately placed cone receptive fields, and that the same set of cones is shared by
all ganglion cells. To simplify things, we fix b to be the value determined above once and for
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Ignoring terms that do not depend on k, this further approximation yields:
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Note that these last approximations are self-consistent in the sense that the value of k obtained by maxi-
mizing the approximate log-likelihood without any constraints on k is again STA/σ2; this later calculation
is once again done by equating the gradient with respect to k of the approximate log-likelihood to zero.

We now have an approximate log-likelihood which is quadratic in k, corresponding to a gaussian likelihood.
This will later allow us to analytically integrate out the functional connectivity weights a that will be
introduced in the next section.
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We now assume that each ganglion cell’s linear filter k is a weighted sum of appropriately placed cone re-
ceptive fields. The same set of cones is shared by all the ganglion cells in a recording. We also assume that
cones have typical and known receptive fields that only depend on each cone’s location and color type: a
cone of a given color has a circular gaussian receptive field of a certain known width. The vector of weights,
which depends implicitely on the number of cones as well as their locations and colors, will be denoted by a.

We limit ourselves to a fixed region of interest comprising Npixel pixels. Cones are placed with sub-pixel
resolution (cone centers are not assumed to be located at pixel centers or corners), and their receptive fields
must be pixelized by projection onto the Npixel squares representing pixels. The pixelized receptive field
is obtained by first placing the spatial component of a stereotyped cone receptive field (a gaussian) at its
location coordinates, without regard for color. This stereotyped receptive field is then integrated over the
square surface of each stimulus pixel, so that we have calculated the relative integrated sensitivity of the
cone to each pixel. This vector of Npixel numbers is then tripled in size by taking a kronecker product with
the 3-element color sensitivity of the cone. (Similarly the STAs, which are already pixelized and in color by
construction, can be flattened into a column vector of size 3Npixels.) In this manner, we represent a set of
cones by a matrix W where each column consists in a pixelized cone receptive field flattened into a column
vector. Taking a weighted sum of cone receptive fields then reduces to multiplying this matrix on the right
by a vector of weights:

k = W(cones) a.

In this context, the Ncones by Ncones square matrix WTW contains the dot products between pairs of
pixelized cone receptive fields.

In practice, we know that cones are never closer to each other than a certain exclusion distance, correspond-
ing to roughly one cone diameter (which is different for the three cone types). We can enforce such a cone
exculsion with the use of a hard prior that gives zero probability to any cone configuration with cones that
are too close together. In practice, we implement this by only proposing Monte Carlo moves that respect
cone exclusion.

A consequence of this hard cone exclusion prior is that cone configurations that respect it have non-
overlapping cone receptive fields. One would therefore naively conclude that for cone configurations that
respect the exclusion distance, the matrix of dot products WTW is proportional to the identity. However,
two cone receptive fields that are not overlapping can both overlap a same pixel, which introduces non-zero
terms off the diagonal of WTW. In this light, WTW can be seen as capturing the effect of pixelization,
which is a property of the problem at hand that affects any combination of cone configuration and weights.
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Marginalizing out the weights a

Upon replacing k with its value Wa in the approximate log-likelihood (3), we notice that the log-likelihood

is a quadratic function of a:

1

Nspikes
log p( n(t) | W , a , STA ) ≈ STAT Wa − σ2

2
aTWTWa + const. (4)

We can marginalize a out to obtain a likelihood that only depends on cone locations and colors, after having

specified an apropriate prior on a. Since cone receptive fields do not overlap due to the hard exclusion prior,

one might naively expect the weights a to be independent of each other in the absence of data, implying

that a gaussian prior with a covariance proportional to the identity would be apropriate. However, as noted

in the previous section, two cones whose receptive fields do not overlap can overlap a common pixel, and

the pixelized cone receptive fields can overlap. The matrix which captures the overlaps due to pixelation

is WTW, and it is natural to consider a prior inverse covariance matrix of the form gWTW for some

proportionality constant g. Such a prior is also very convenient, since the inverse covariance of the weights a
in the approximate likelihood of the data itself does not depend on the data and is of the same form, namely

σ2 WTW: this will simplify calculations. Since weights between cones and ganglion cells can be positive or

negative, we take a zero mean prior, which leads to:

p (a | cones ) =
1�

|2π(gWTW)−1|
exp

�
−1

2
aT gWTWa

�
(5)

p ( data | cones ) =
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(6)

The first term in (6) is always positive. It reflects the likelihood of placing cones at particular locations, by

how much the cones (represented in WTW) overlap the STA (which is implicitly present in y). The second
term, which stems from the variable dimensionality of the gaussian integral we just took, is always negative,

and penalizes Ncones. This second term effectively sets the boundary between cone locations that stand out

from the noise and cone locations which cannot be distinguished from it: when adding an additional cone,

the data likelihood will become larger only if the additional contribution of the first term is larger than

log (Nspikes σ2
+ g) − log g.

Since k = Wa, the prior (5) can be seen as a prior on k, and g is the inverse covariance of this prior:

p( k | cones ) ∝ exp( −g ||k||2/2). Recall that the calculation of the norm of k was done in advance of

the inference when we calculated the offset parameter b, which gave k ≈ STA/σ2
. Therefore we choose

the scalar parameter g so that corresponding prior on k has a variance equal to the mean square norm of

STAi/σ2
across ganglion cells i; this is achieved by choosing

g =
σ4 NGC�
i ||STAi||2
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where NGC is the number of ganglion cells.

The log-posterior of observing the spikes from one ganglion cell given a particular cone configuration was

given above by (6). For a given recording with multiple ganglion cells, we are interested in the sum of

log-posterior terms over all ganglion cells. Indexing ganglion cells by i:

log p ( data | cones ) =
1

2

�

i
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Nspikesi σ
2 + g

STAT
i W

�
WTW

�−1
WT STAi

+
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2
log

�
g

Nspikesi σ
2 + g

�
(7)

Now that we have marginalized out ai for all ganglion cells indexed i, we do not need to keep track of

these weights during our MCMC simulations, which is a great computational relief. However, we still have

complete knowledge of the weights ai, since given any cone configuration, their posterior distribution is

jointly gaussian with a known mean and covariance given by (for ganglion cell i):

E (ai | cones , data ) =
�
(Nspikesi σ

2
+ g)WTW

�−1
Nspikesi σ2 WT STA

Cov (ai | cones , data ) =
�
(Nspikesi σ

2
+ g)WTW

�−1

We can use these expressions to estimate E (ai | data ) by sampling from p( cones | data ) and using a sum

over these samples to approximate:

E (ai | data ) =

�
dcones E (ai | cones , data ) p( cones | data)

This is both computationally and statistically more efficient than the naive alternative of forming E (ai | data )
by sampling from p( a , cones | data) and averaging over cones.

Visualizing the evidence

If we take the stereotyped cone receptive field to have support in a region smaller than the exclusion distance

enforced by the prior, then ignoring pixelation effects, the matrix WTW would be diagonal. In fact, it would

be proportional to the identity with a known proportionality factor v2 = ||cone receptive field||2, which we

can set to be 1. For visualization purposes, we would like to see how the addition of a cone of a particular

color in a particular location would change the posterior, ignoring information about any particular cone

configuration. To this end, we can ignore the second term in (8), which depends on the number of cones in

a configuration, and consider only the first term with WTW taken to be the identity. For a particular cone
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Instead of the approximate posterior log-likelihood of a particular configuration, for visualization purposes

we want to see the vector D of approximate posterior log-likelihoods for all the possible singleton matrices

W, that is for all possible single cone configurations, where the single cone takes all possible positions and

colors. Like the STAs, this vector D has size 3 ∗Npixels.
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, where COLOR is the (known) 3 by 3 matrix of light sensitivities for each of the three
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where NGC is the number of ganglion cells.
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We can use these expressions to estimate E (ai | data ) by sampling from p( cones | data ) and using a sum

over these samples to approximate:
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This is both computationally and statistically more efficient than the naive alternative of forming E (ai | data )
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Figure 1: Visual summary Q of the evidence for cones across spatial locations. Dark areas show less evidence
for the presence of a cone, while red, green and blue areas show evidence for cones of the corresponding types.

colors. We can then use Q as a way to visualize all the information that the ganglion cells carry about the
presence of cones at various locations in x-y-color space; the brighter the color, the more likely it is for a
cone of that color to be present at a particular location; see Figure 1.

MCMC sampling strategy

Finding the set of likely cone configurations entails sampling from the product of this distribution with the
hard cone exclusion prior on cone configurations. This is done by doing a random walk in cone configuration
space using Markov Chain Monte Carlo. However the likelhood function has many deep local maxima, and
if it is carried out naively, MCMC will get stuck in them.

The sampling problem behaves differently in regions of visual space where the ganglion cell recordings carry
strong evidence about cone locations, and regions with a dearth of evidence. A region with strong evidence,
where for example a sharp ganglion cell STA was recorded, will constrain cone placement more than a region
outside of the receptive field center of all recorded ganglion cells. In Figure 1, the former show as bright
regions, while the latter are dark.

For regions where there is a lot of evidence for cones, the typical differences in likelihood between different
configurations are very large: if we were to sample from the distribution of cone configurations in such
regions, one particular configuration would prevail as being astronomically more likely than all other con-
figurations. For these regions, all that is important is to find the single most likely configuration. On the
other hand, in regions where there is little evidence constraining cone configurations, the small differences
in likelihoods of various configurations warrant sampling from the ensemble of possible configurations.

To deal with these two different regimes, we proceed in two phases. First, we find the most likely cone
configuration, ensuring that cone locations in regions with a lot of evidence are where they are likely to be.
We then initialize MCMC with this configuration, effectively sampling cone locations only in regions with a
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Figure 2: Shift moves in the four cardinal directions. The modified cone locations in each proposed move
are denoted by empty circles. Shifting the green cone in each direction induces shifts of cones that are in
the way.

dearth of information, since the cones in locations with a lot of information have almost zero probability of
moving during MCMC sampling.

Monte Carlo moves

The data likelihood (8) depends only on the set of cone locations and colors, since the weights from cones
to ganglion cells have been marginalized out. The posterior we wish to sample from consists of the product
of the data likelihood with the hard cone exclusion prior. Sampling proceeds by only proposing random
changes in the current cone configuration that respect the hard cone exclusion prior, accepting or rejecting
each change in accordance to the data likelihood.

The proposed Monte Carlo moves we use are generated as follows: first, a possible cone location is chosen.
If this location is currently empty, the four possible moves considered are the placement of one of the three
cone types at that location, or not changing anything. If the pixel is currently occupied by a cone, the
possible moves are to change its color, remove it, not change it at all, or shift it to a neighboring pixel.
Cone shifts to neighboring pixels are propagated to any cones that are in the way: for example, the naive
move consisting in shifting a single cone to the left is replaced by a shift to the left of all cones which
must be moved together in order to respect the cone exclusion (Fig. 2). In other words, if there are one
or more cones in contact with the left of the cone being shifted, those cones are bumped over to the left with it.

At each iteration, two possible locations are chosen with a bias for choosing locations already occupied by a
cone. Each location is expanded to the corresponding set of cone color and position moves described above,
resulting in ∼12 proposed moves. The sampling is then done using a symmetric rule, i.e. a move is chosen
among the ∼12 proposed moves with a probability proportional to its likelihood.

In order to avoid getting stuck in shallow local maxima, we use parallel tempering [4, 9, 10], also known as
replica exchange Monte Carlo - see [2] for a review. The idea is to replace the data likelihood p( data | cones )
with a family of functions pγ( data | cones ) where pγ=1( data | cones ) is equal to the true data likelihood, and
which become flatter (with less pronounced local maxima) as γ becomes smaller. In order for this to help
sampling from the true distribution p( data | cones ), we augment the system to a set of N replicas of the same
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