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Representation of the spatial

environment in the brain
• Place Field ⇐⇒ neurons in the rodent hippocampus respond selectively

depending on the animal’s current location.

• In many situations, e.g. learning, the place field is time varying.

nt ∼ f(xt, t) + noise ∼ 〈Bt, qt〉 + noise

f(x, t) ∼ time varying place field

Bt ∼ N × N -pixel indicating the current location

qt ∼ N × N -pixel time varying place field

Figure 1: Trajectory of a

rat through a square envi-

ronment is shown in black.

Red dots indicate locations

at which the particular en-

torhinal cell being exam-

ined fired.



Dynamic receptive field estimation

The activity of a neuron in a sensory brain region depends on the linear

projection of the stimulus into the time varying receptive field.

nt ∼ 〈Bt, qt〉 + noise

Bt ∼ N × N -pixel time varying visual stimuli

qt ∼ N × N -pixel time varying receptive field

Main question: How to estimate the time varying receptive field?



One common problem:

• Understanding the dynamics of large systems for which

limited and noisy observations are available.

• Classical solutions include state space models. See [1, 2, 3].

• Standard implementations of the Kalman filter require

O(dim(q)3) time and O(dim(q)2) memory per time step,

and are therefore impractical for applications involving very

high-dimensional (dim(q) ∼ 100 × 100) systems.



Fast low-SNR optimization

• When there are no observations the uncertainty reflects our prior belief

such as smoothness and/or boundedness of the receptive/place fields.

• Observations decrease the uncertainty.

• The decrease in the uncertainty due to low snr observation is small in

magnitude and only changes our uncertainty in one direction.

• The effect of previous observations decays exponentially fast.

• The difference between the uncertainty of no observation and low snr

observation is effectively a low rank matrix, i.e. Ct = C0 + UtDtU
T

t .

• All computations are fast: optimal smoother requires

O(n3 + n dim(q) log dim(q)) time and O(n dim(q)) space; n =rank(Ut).

• Can be used for fast experimental design. See [4, 5]



The model

• Smoothness along the temporal and spatial dimensions:

qt+1 = Aqt + ǫt qt ∼ receptive/place field ǫ ∼ N (0, V )

A ∼ temporal correlation V ∼ spatial correlation

Three independent samples ǫt drawn from the Gaussian prior with

covariance matrix V .
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• Noisy low dimensional observations:

yt+1 = Btqt + ηt Bt ∼ visual/spatial stimuli ηt ∼ N (0, Wt)



Standard Kalman recursion

µt = E[qt|y1:t] Ct = cov[qt|y1:t]

- no observation, equilibrium covariance: AC0A+V = C0 or C0 = V (I −AAT )−1.

µt = Ct
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- computational difficulty → Ct costs O(dim(q)3) time (O(dim(q)2) is B is low

rank), and O(dim(q)3) space



Low snr observation

• no observation: Ct = C0 = V (I − AAT )−1

• single observation at t = 1 and no observation for t > 1:

C1 =
h

C
−1

0 + B
T

1 W
−1

B1

i

−1

= C0 − C0B
T

1 (B1C
−1

0 B
T
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−1)−1
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= C0 + U1D1U
T

1 rank(U1) = rank(B1)

similarly Ct+1 = C0 + A
t
U1D1(A

t
U1)

T
.

Since A is stable, the perturbation to Ct+1 around the equilibrium covariance

C0 caused by a lag t observation decays exponentially in t



Fast methods

- Approximating Ct ∼ C0 + UtDtU
T

t where Ut is low rank, i.e.

n := rank(Ut) << dim(q) allows us to perform fast efficient recursion:

- Updating Ut and Dt costs O(n3 + nN log N) time and O(nN) space.
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Figure 2: Ct is fairly close to C0; in particular, I − C
−1

0
Ct has low effective

rank. Left: true Ct. Middle: C0.



One dimensional place field data

f(x,t)
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The superimposed black trace in all but the lower left panel indicates the simulated path xt of the animal.

Upper left: true simulated place field qt(x) is shown in color. Top middle and right panels: estimated place

fields, forward (E(qt|y1:t)) and forward-backward (E(qt|y1:T )), respectively. Bottom middle and right

panels: marginal variance of the estimated place fields, forward (var(qt|y1:t)) and forward-backward

(var(qt|y1:T )), respectively. Lower left panel: effective rank of C0 − Cs
t as a function of t in the

forward-backward smoother; the effective rank is largest when xt samples many locations in a short time

period.
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Comparison of the true vs. approximate covariance. Left panel: true covariance.

Middle panel: approximate covariance. The maximal pointwise error between

these two matrices is about 1%. Right panel: true and approximate mean µt.

The black trace indicates the true mean and the red trace (barely visible) the

approximate mean.



Tracking a time-varying one-dimensional

receptive field
true f(t)
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Figure 3: Second

panel: the stimulus

Bt was chosen to

be spatiotemporal

white Gaussian

noise. Third

panel: simulated

output observed

according to the

Gaussian model

nt = Btq
t + ηt.
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