Optimal experimental design for sampling voltage on dendritic trees

Jonathan Huggins

September 20, 2010

Jonathan Huggins Optimal sampling of voltage on dendritic trees

Table of contents

- 2 The Kalman filter-smoother
- Submodular optimization

Background and problem description

The Kalman filter-smoother Submodular optimization Results Concluding Thoughts References

Table of Contents

1 Background and problem description

- 2 The Kalman filter-smoother
- 3 Submodular optimization
- 4 Results
- 6 Concluding Thoughts

Dendritic voltage sensing

- underlying experimental task: voltage sensing
- measure the potential difference across the membrane of the dendritic tree

modified from Llinas and Sugimori 1980

Jonathan Huggins

Optimal sampling of voltage on dendritic trees

Background and problem description

he Kalman filter-smoother Submodular optimization Results Concluding Thoughts References

Voltage sensing methods

- state-of-the-art techniques:
 - multi-electrode recording
 - laser-based scanning techniques
- trade-off between spatial completeness and SNR
- our focus: the low SNR setting

Background and problem description

The Kalman filter-smoother Submodular optimization Results Concluding Thoughts References

What do we learn?

- biophysical quantities of interest
- e.g. passive cable parameters
- e.g. spatial membrane density distribution of voltage-gated channels

- 4 同 2 4 日 2 4 日 2

The challenges

Two challenges to address:

- infer voltages across the full dendrite when < 10% of the dendrite is simultaneously observed
- 2 choose the best sampling scheme

Jonathan Huggins Optimal sampling of voltage on dendritic trees

Table of Contents

Background and problem description

2 The Kalman filter-smoother

- 3 Submodular optimization
- 4 Results
- 6 Concluding Thoughts

The Kalman filter

- how to solve our difficulties? Statistics!
- specifically, the statistical model known as a Kalman filter-smoother
- why the Kalman filter?
 - models the dynamics to a good first approximation (in non-spiking situations)
 - incorporate noisy observations
 - provides "error bars"

・ 同 ト ・ ヨ ト ・ ヨ ト

- break dendrite into discrete compartments
- break time into discrete steps
- dt = time step length
- *T* = number of time steps
- N = number of dendritic compartments

- 4 同 2 4 日 2 4 日 2

The cable equation

$$V_{t+dt}(x) = V_t(x) + dt(-g_x V_{t+dt}(x) + \sum_{w \in N(x)} a_{xw} [V_{t+dt}(w) - V_{t+dt}(x)]).$$
(1)

- $V_t(x)$ is the voltage in compartment x at time t
- g_x is the membrane conductance in compartment x
- N(x) is the set of compartments adjoining x
- *a_{xw}* is the intercompartmental conductance between compartments *x* and *w*

The Kalman equations

$$V_{t+dt} = AV_t + \epsilon_t, \ \epsilon_t \sim \mathcal{N}(0, \sigma^2 dt I)$$
(2)

$$y_t = B_t V_t + \eta_t, \ \eta_t \sim \mathcal{N}(\mu_t^y, W_t).$$
(3)

- A is a matrix that implements the backward-Euler implementation of the cable equation
- ϵ_t is Gaussian process noise
- {y_t} are the vectors of the observed voltages
- η_t is Gaussian observation noise
- *B_t* is a matrix that specifies how the observations are related instantaneously to the voltage vector
- W_t is the covariance matrix that defines the noisiness of the observations

Calculating the covariance matrix

 well known how to calculate mean of all voltages given observations

$$\mu_t^s = E(V_t | Y_{1:T})$$

and the covariances

$$C_t^s = Cov(V_t|Y_{1:T})$$

- $Y_{1:t}$ denotes all of the observed data up to time t
- **problem:** standard methods to calculate mean and covariances require $\mathcal{O}(N^3)$ time and $\mathcal{O}(N^2)$ space

- 4 同 2 4 日 2 4 日 2

Calculating the covariance matrix efficiently

• previous work of [Paninski, 2010] showed how to calculate

$$\mu_t^f = E(V_t|Y_{1:t})$$

and

$$C_t^f = Cov(V_t|Y_{1:t})$$

in $\mathcal{O}(N)$ time and space

• [Paninski, 2010] used a low rank approximation to C_t^f :

$$C_t^f \approx C_0 + U_t D_t U_t^T$$

- C_0 is the covariance matrix if no observations are made
- similar techniques work for approximating smoothed covariance:

$$C_t^s \approx C_0 + P_t G_t P_t^T$$

伺い イラト イラト

Measuring sampling scheme quality

- can use C_t^s to evaluate the quality of a sampling scheme
- good news: C^s_t does not depend on the data
- two possible objective functions:
 - (weighted) mean squared error (MSE) = (weighted) sum of the variances

i.e.
$$v_w(\mathcal{O}) = \sum_{t=0}^{l} \sum_{i=1}^{N} w(i,t) [C_t^s]_{ii}$$

2 mutual information (MI) = $I(V_{1:T}, Y_{1:T}) = H(V) - H(V|Y)$

focus on using the weighted MSE

・ロト ・同ト ・ヨト ・ヨト

Table of Contents

Background and problem description

- 2 The Kalman filter-smoother
- Submodular optimization
- 4 Results
- 6 Concluding Thoughts

How to choose a sampling scheme?

 In general choosing the best k sample locations is an NP-hard problem

•
$$\binom{N}{k} = \frac{N!}{k!(N-k)!} = \mathcal{O}(N^k)$$
 possible combinations

- two solutions:
 - use a heuristic
 - 2 take advantage of some properties of the objective function

- If our objective function is submodular we are in luck
- Can get to at least (1 1/e) = 63% of the best solution, guaranteed [Nemhauser et al., 1978]
- how? with a greedy algorithm

- 4 同 2 4 日 2 4 日 2

Greedy algorithm

Possible locations = $\{1, 2, 3, 4, 5, 6\}$

obs. set	1	2	3	4	5	6
Ø	.2	.1	.15	.2	.25	.09
{5}	.15	.08	.1	.12	Х	.05
$\{5,1\}$	Х	.05	.09	.1	Х	.04

Observation set = $\{5, 1, 4\}$

bonus: we can use lazy evaluation

obs. set	1	2	3	4	5	6
Ø	.2	.1	.15	.2	.25	.09
{5}	.15	S	.1	.12	Х	S
$\{5,1\}$	Х	.05	.09	.1	Х	S

Observation set = $\{5, 1, 4\}$

(日) (同) (三) (三)

Efficiency of lazy evaluation

Number of evaluations required by the lazy vs. non-lazy greedy algorithm

Comparing run times

• Estimated relative time for each iteration of the lazy (blue) and non-lazy (green) greedy method (log scale)

What is submodularity?

- Submodularity is an intuitive diminishing returns property: the more observations added, the smaller the increase achieved by each additional observation.
- \bullet Let ${\mathcal S}$ be the set of observations from which to choose
- Formally, some real-valued function F(·) is submodular if for A ⊆ B ⊆ S and e ∈ S \ B, it holds that F(A ∪ {e}) − F(A) ≥ F(B ∪ {e}) − F(B)
- Said another way: including the element e in the argument set O ⊆ S increases F(O) less as |O| increases

・ロト ・同ト ・ヨト ・ヨト

Submodularity of objective functions

- MI submodular under very mild conditions
- MSE submodular under more onerous conditions (not fulfilled here)
- nevertheless, the greedy method worked well

Time dependent sampling

- greedy approach applies to this situation as well
- can start to eliminate possibilities once the per-time step quota k is reached

Jonathan Huggins Optimal sampling of voltage on dendritic trees

Table of Contents

Background and problem description

- 2 The Kalman filter-smoother
- 3 Submodular optimization

Greedy sampling scheme

 Sampling scheme generated by greedily selecting 100 observation locations (rabbit starburst amacrine cell)

Exponentially weighted MSE

•
$$v_w(\mathcal{O}) = \sum_{t=0}^T \sum_{i=1}^N w(i,t) [C_t^s]_{ii}$$

• in previous slide,
$$w(i,t) = 1 \; \forall i,t$$

- what if we care about activity near the soma, not the periphery?
- instead let w(i, t) decrease exponentially as the distance d(i) between the soma and the compartment i increases

Sampling scheme with weighted MSE

• First 65 observation locations selected when using an exponential weighting term (here $\alpha = 4$)

Sampling scheme with weighted MSE

α = 6

Sampling scheme with weighted MSE

α = 8

Sampling scheme with weighted MSE

α = 10

Non-constant observation noise

- voltage sensing generally has lower SNR along the periphery than near the soma
- model this by increasing the observation noise varied linearly with the distance of the compartment from the soma

Non-constant observation noise

• 50 observation locations selected with higher peripheral observation noise

(日) (同) (三) (三)

Non-constant observation noise

<ロ> <同> <同> < 回> < 回>

Non-constant observation noise

<ロ> <同> <同> < 回> < 回>

Non-constant observation noise

<ロ> <同> <同> < 回> < 回>

Evaluating the performance of the greedy algorithm

variance reduction vs. number of observations per time step

Example of a Spaced Sampling Scheme

• 100 observation locations selected using the spaced method

Jonathan Huggins Optimal sampling of voltage on dendritic trees

Performance of greedy algorithm with time-varying observations

• variance reduction vs. number of observations per time step

Table of Contents

- Background and problem description
- 2 The Kalman filter-smoother
- 3 Submodular optimization
- 4 Results

- state-space filter framework
- infer voltages from limited data
- efficient computation of metrics for optimal sampling design
- tractably design an optimal sampling scheme using a greedy algorithm with lazy evaluation

- generalize results to non-linear and spiking cases
- generalize to allow time-variant dynamics
- investigate other metrics such as MI

Acknowledgements

- L. Paninski
- K. Rahnama Rad
- Columbia College Rabi Scholars Program

- < 同 > < 三 > < 三 >

Greedy sampling scheme

Sampling scheme generated by greedily selecting 100
 observation locations (rat hippocampal byramidal cell)
 Jonathan Huggins
 Optimal sampling of voltage on dendritic trees

Evaluating the performance of the greedy algorithm

variance reduction vs. number of observations per time step

- G. Nemhauser, L. Wolsey, and J. Fisher. An analysis of the approximations for maximizing submodular set functions. *Mathematical Programming*, 14:265–294, 1978.
- L. Paninski. Fast Kalman filtering on dendritic trees. *Journal of Computational Neuroscience*, In press, 2010.

・ 同 ト ・ ヨ ト ・ ヨ ト