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Dendritic voltage sensing

underlying experimental task: voltage sensing

measure the potential difference across the membrane of the
dendritic tree

modified from Llinas and Sugimori 1980
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Voltage sensing methods

state-of-the-art techniques:

multi-electrode recording
laser-based scanning techniques

trade-off between spatial completeness and SNR

our focus: the low SNR setting
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What do we learn?

biophysical quantities of interest

e.g. passive cable parameters

e.g. spatial membrane density distribution of voltage-gated
channels
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The challenges

Two challenges to address:
1 infer voltages across the full dendrite when < 10% of the

dendrite is simultaneously observed
2 choose the best sampling scheme
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The Kalman filter

how to solve our difficulties? Statistics!

specifically, the statistical model known as a Kalman
filter-smoother

why the Kalman filter?

models the dynamics to a good first approximation (in
non-spiking situations)
incorporate noisy observations
provides“error bars”
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Notation

break dendrite into discrete compartments

break time into discrete steps

dt = time step length

T = number of time steps

N = number of dendritic compartments
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The cable equation

Vt+dt(x) = Vt(x) + dt(−gxVt+dt(x) +
∑

w∈N(x)

axw [Vt+dt(w) − Vt+dt(x)]). (1)

Vt(x) is the voltage in compartment x at time t

gx is the membrane conductance in compartment x

N(x) is the set of compartments adjoining x

axw is the intercompartmental conductance between
compartments x and w
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The Kalman equations

Vt+dt = AVt + ǫt , ǫt ∼ N (0, σ2dtI ) (2)

yt = BtVt + ηt , ηt ∼ N (µy
t ,Wt). (3)

A is a matrix that implements the backward-Euler implementation of the

cable equation

ǫt is Gaussian process noise

{yt} are the vectors of the observed voltages

ηt is Gaussian observation noise

Bt is a matrix that specifies how the observations are related

instantaneously to the voltage vector

Wt is the covariance matrix that defines the noisiness of the observations
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Calculating the covariance matrix

well known how to calculate mean of all voltages given
observations

µs
t = E (Vt |Y1:T )

and the covariances

C s
t = Cov(Vt |Y1:T )

Y1:t denotes all of the observed data up to time t

problem: standard methods to calculate mean and
covariances require O(N3) time and O(N2) space
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Calculating the covariance matrix efficiently

previous work of [Paninski, 2010] showed how to calculate

µf
t = E (Vt |Y1:t)

and
C f

t = Cov(Vt |Y1:t)

in O(N) time and space

[Paninski, 2010] used a low rank approximation to C f
t :

C f
t ≈ C0 + UtDtU

T
t

C0 is the covariance matrix if no observations are made

similar techniques work for approximating smoothed
covariance:

C s
t ≈ C0 + PtGtP

T
t

Jonathan Huggins Optimal sampling of voltage on dendritic trees



Background and problem description
The Kalman filter-smoother

Submodular optimization
Results

Concluding Thoughts
References

Measuring sampling scheme quality

can use C s
t to evaluate the quality of a sampling scheme

good news: C s
t does not depend on the data

two possible objective functions:
1 (weighted) mean squared error (MSE) = (weighted) sum of

the variances

i.e. υw (O) =
T
∑

t=0

N
∑

i=1

w(i , t)[C s
t ]ii

2 mutual information (MI) = I (V1:T , Y1:T ) = H(V ) − H(V |Y )

focus on using the weighted MSE
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How to choose a sampling scheme?

In general choosing the best k sample locations is an NP-hard
problem
(

N

k

)

= N!
k!(N−k)! = O(Nk) possible combinations

two solutions:
1 use a heuristic
2 take advantage of some properties of the objective function
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Submodularity

If our objective function is submodular we are in luck

Can get to at least (1 − 1/e) = 63% of the best solution,
guaranteed [Nemhauser et al., 1978]

how? with a greedy algorithm
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Greedy algorithm

Possible locations = {1, 2, 3, 4, 5, 6}

obs. set 1 2 3 4 5 6

∅ .2 .1 .15 .2 .25 .09

{5} .15 .08 .1 .12 X .05

{5, 1} X .05 .09 .1 X .04

Observation set = {5, 1, 4}
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Lazy evaluation

bonus: we can use lazy evaluation

obs. set 1 2 3 4 5 6

∅ .2 .1 .15 .2 .25 .09

{5} .15 s .1 .12 X s

{5, 1} X .05 .09 .1 X s

Observation set = {5, 1, 4}
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Efficiency of lazy evaluation

Number of evaluations required by the lazy vs. non-lazy
greedy algorithm
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Comparing run times

Estimated relative time for each iteration of the lazy (blue)
and non-lazy (green) greedy method (log scale)
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What is submodularity?

Submodularity is an intuitive diminishing returns property: the
more observations added, the smaller the increase achieved by
each additional observation.

Let S be the set of observations from which to choose

Formally, some real-valued function F (·) is submodular if for
A ⊆ B ⊆ S and e ∈ S \ B, it holds that
F (A ∪ {e}) − F (A) ≥ F (B ∪ {e}) − F (B)

Said another way: including the element e in the argument
set O ⊆ S increases F (O) less as |O| increases
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Submodularity of objective functions

MI submodular under very mild conditions

MSE submodular under more onerous conditions (not fulfilled
here)

nevertheless, the greedy method worked well
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Time dependent sampling

greedy approach applies to this situation as well

can start to eliminate possibilities once the per-time step
quota k is reached
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Greedy sampling scheme

Sampling scheme generated by greedily selecting 100
observation locations (rabbit starburst amacrine cell)
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Exponentially weighted MSE

υw (O) =
T
∑

t=0

N
∑

i=1
w(i , t)[C s

t ]ii

in previous slide, w(i , t) = 1 ∀i , t

what if we care about activity near the soma, not the
periphery?

instead let w(i , t) decrease exponentially as the distance d(i)
between the soma and the compartment i increases
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Sampling scheme with weighted MSE

First 65 observation locations selected when using an
exponential weighting term (here α = 4)
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Sampling scheme with weighted MSE

α = 6
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Sampling scheme with weighted MSE

α = 8
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Sampling scheme with weighted MSE

α = 10
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Non-constant observation noise

voltage sensing generally has lower SNR along the periphery
than near the soma

model this by increasing the observation noise varied linearly
with the distance of the compartment from the soma
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Non-constant observation noise

50 observation locations selected with higher peripheral observation noise

min:max noise ratio = 1:2

Jonathan Huggins Optimal sampling of voltage on dendritic trees



Background and problem description
The Kalman filter-smoother

Submodular optimization
Results

Concluding Thoughts
References

Non-constant observation noise

min:max noise ratio = 1:5
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Non-constant observation noise

min:max noise ratio = 1:25
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Non-constant observation noise

min:max noise ratio = 1:50
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Evaluating the performance of the greedy algorithm

variance reduction vs. number of observations per time step
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Example of a Spaced Sampling Scheme

100 observation locations selected using the spaced method

Jonathan Huggins Optimal sampling of voltage on dendritic trees



Background and problem description
The Kalman filter-smoother

Submodular optimization
Results

Concluding Thoughts
References

Performance of greedy algorithm with time-varying

observations

variance reduction vs. number of observations per time step
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Conclusion

state-space filter framework

infer voltages from limited data

efficient computation of metrics for optimal sampling design

tractably design an optimal sampling scheme using a greedy
algorithm with lazy evaluation
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Future Work

generalize results to non-linear and spiking cases

generalize to allow time-variant dynamics

investigate other metrics such as MI
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Greedy sampling scheme

Sampling scheme generated by greedily selecting 100
observation locations (rat hippocampal pyramidal cell)
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Evaluating the performance of the greedy algorithm

variance reduction vs. number of observations per time step
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