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Introduction

We use a Kalman filtering framework to develop optimal
experimental design methods for voltage sampling. Our
approach is to use a simple greedy algorithm with lazy
evaluation to minimize the expected square error of the
estimated spatiotemporal voltage signal. We take
advantage of some particular features of the dendritic
filtering problem to efficiently calculate the Kalman
estimator’s covariance.

Background: Voltage Sensing

◮ Underlying experimental task:
voltage sensing

◮ State-of-the-art, random
access, laser-based techniques
are low-SNR

◮ But measurements are sparse
◮ If we have the complete

spatiotemporal signal, can
calculate biophysical quantities
of interest

Figure: Modified from Llinas and
Sugimori 1980

◮ Need to infer voltage across the tree
◮ Would like to choose the best sampling sites on the tree

A linear-Gaussian model for voltage and
observation dynamics

To model the dendritic dynamics, we use the standard
cable equation:

Vt+dt(x) = Vt(x) + dt(−gxVt+dt(x)

+
∑

w∈N(x)

axw [Vt+dt(w) − Vt+dt(x)]), (1)

where Vt(x) denotes the voltage in compartment x at time
t , gx is the membrane conductance, N(x) is the set of
adjoining compartments, and axw is the intercompartmental
conductance. Eq. (1) can be written in matrix form as

Vd+dt = AVdt,

where A = (I − K )−1 and K is a matrix in “Hines” form
[Hines, 1984]. From here we can write out the the dynamics
and observation equations as

Vt+dt = AVt + ǫt, ǫt ∼ N (0, σ
2dtI) (2)

yt = BtVt + ηt, ηt ∼ N (0, Wt), (3)

where {yt} are the vectors of the observed voltages, Bt is a
matrix that specifies how the observations are related
instantaneously to the voltage vector, and Wt is the
covariance matrix that defines the noisiness of the
observations. The forward covariance matrix
C f

t = Cov(Vt|Y1:t) can be written using the Kalman
recursion as

C f
t =

[

(AC f
t−dtA

T + σ
2dtI)−1 + BT

t W−1
t Bt

]−1
. (4)

It follows from Eq. (4) that the steady state covariance
matrix C0 is

C0 = AC0AT + σ
2dtI = σ

2dt(I − A2)−1
. (5)

In the limit as dt → 0,

C0 → −
1
2

K−1
, (6)

where K−1 can be interpreted as the transfer impedance
matrix.

Measuring sampling scheme quality with covariance-based metrics

◮ Can use the smoothed covariances

Cs
t = Cov(Vt|Y1:T) (7)

to measure the quality of a sampling scheme
◮ Cs

t does not depend on the data
◮ Objective function: (weighted) mean squared error (MSE) = (weighted) summed

variance:
υw(O) =

∑T

t=0

∑N

i=1
w(i , t)[Cs

t ]ii (8)

The optimal MSE can be computed by a fast Kalman recursion in
O(NT ) time

◮ Standard methods to calculate mean and covariances require O(N3) time and O(N2)
space, which is not practical in the case of N ∼ 104

◮ [Paninski, 2010] showed how to calculate C f
t in O(N) time and space using a low rank

approximation to C f
t :

C f
t ≈ C0 + UtDtUT

t . (9)
◮ Similar techniques allow us to approximate the smoothed covariance by an expression of

the same form
◮ Intuitively, the low rank approximation (9) is justified as follows: if we make k observations

at t = 1 then, (9) holds exactly with U1 having rank k . If we make no further observations,
then C f

t follows the update rule

C f
t = C0 + AUt−1Dt−1Ut−1Ut−1AT (10)

Iterating the equation gives

C f
t = C0 + At−1U1D1UT

1 (At−1)T
. (11)

The second term will decay exponentially; for t sufficiently large, we can discard some
dimensions of the perturbation AUt−1Dt−1Ut−1Ut−1AT without experiencing much error in
C f

t .

Using a greedy algorithm with lazy evaluation to choose an optimal
sampling scheme

◮ In general choosing the best k sample locations is an NP-hard problem
◮ If the objective function is submodular, then it can be efficiently optimized via the greedy

algorithm [Nemhauser et al., 1978, Krause et al., 2008]
◮ Submodularity is an intuitive diminishing returns property: the more observations added,

the smaller the increase achieved by each additional observation.
◮ While υ(·) is not generally submodular, in many cases an equivalent function, the

variance reduction, is submodular [Das and Kempe, 2008]. Define the variance reduction
ρ(·) as

ρ(O) := υ(∅) − υ(O) = −
∑T

t=0
tr(PtGtPT

t ), (12)

◮ Intuitively, we would expect ρ(·) to be nearly submodular in this case because, as more
observations are added, additional observations will contribute smaller amounts of new
information. Thus, these new observations will result in smaller decreases in the
variance.

◮ Empirically ρ(·) proved to be almost submodular
◮ Lazy evaluation allows the algorithm to only re-evaluate the objective function at a few

compartments per iteration, which led to about a three orders of magnitude time savings

Computation time remains a issue for practical usage

◮ The magnitude of the computation time τ , the number of observations k proved to be
problematic for large k

◮ In the time-invariant case, for k = 10, τ ≈ 10 minutes, for k = 30, τ ≈ 1.5 hours, and for
k = 100, τ jumped to almost 2 days

◮ In time-varying case, for k = 10, τ ≈ 30 minutes, but jumped to 20 hours for k = 20
◮ The time variant implementation probably remains impractical without either an efficient

parallelized implementation or spatial downsampling

The optimal method samples from compartments near where the steady state covariance is largest
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◮ Above: Relative magnitudes of the
prior variances of a pyramidal cell
geometry

◮ The variance increases farther away
from the soma

◮ Observing at or near the tips,
therefore, has the potential to provide
the largest total reduction

◮ Right: A comparison
of the variances of
the compartments of
a subtree of the
pyramidal cell before
and after making
three three
observations  
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◮ The variance reduction effect is strongest around the observation close to a dendritic tip
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◮ Left: Sampling scheme generated by greedily
selecting 100 observation locations

◮ The colors indicate the order the locations were
selected by the greedy algorithm.

◮ As expected, the greedy algorithm heavily favors
sampling at locations near dendritic tips

The optimal method outperforms simpler heuristics in the
case of time-variant sampling
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Conclusions

◮ Low-rank perturbation methods allow for
efficient computation of the smoothed
covariance, which can be used to calculate a
number of measures of experimental optimality

◮ We have shown how to tractably design an
optimal sampling scheme using one possible
metric

◮ In the simplest case of spatially-constant noise
and variance weighting, the optimal greedy
algorithm can be well-approximated by simpler
heuristics

◮ For time varying sampling schemes, the
greedy algorithm outperformed the simpler
methods, however

◮ High computational requirements still remain a
problem

Future Work

◮ Generalize results to non-linear and spiking
cases

◮ Generalize to allow time-variant dynamics
◮ Investigate other metrics such as mutual

information
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