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Early investigations of efficient coding with the linear-Gaussian model showed striking similarities to
experimental data (Atick & Redlich, 1990; van Hateren, 1992). However, direct comparison with the retinal
receptive fields has been hampered by three limitations: (a) Retinal ganglion cells (RGCs) are
inhomogeneous, both within and between cell types (e.g., Gauthier et al, 2009), as are their cone inputs, and
the input-to-output cell ratio is not 1:1. Most theoretical studies assume homogeneity and a 1:1 cell ratio for
analytical tractability (although see Li & Atick (1994), Campa et al (1995), Doi & Lewicki (2007)); (b)
RGC receptive fields under photopic conditions should be written in terms of weights on the cone
photoreceptors, and these data were obtained only recently (Field et al, 2010); (c¢) Efficient coding depends
on neural resource constraints, and including a cost for synaptic weights significantly alters the solution (Doi
et al, 2010a). Together, these advances enable us to conduct a direct comparison, and here we present four
results: (1) Retinal receptive fields transmit 74-82% of the information in natural images, relative to the
optimal linear-Gaussian solution. By comparison, a weight matrix that produces the same average output
power, and has the same average squared weights, but is otherwise random (Wrnd) achieves only 35-38%;
(2) Optimal weights mimic retinal weights in generating highly redundant representations of natural images;
(3) The optimal weights are non-unique, but the inner-product of projective fields (ipPF) is uniquely
constrained (Doi et al, 2010b), and the optimal ipPF provides a good match to the data; (4) Although the
optimal weights are non-unique, a solution that achieves the optimum and best fits the data can be found
(Doi et al, 2010b). The error of this solution is 36.1%, significantly smaller than the best-fit error for Wrnd:
89.5+3.2%.

We solve for the receptive field weights that maximize information transmission subject to three neural resource
constraints measured from the retinal data: i) neural population size, ii) total bandwidth of neural population
(power cost), and iii) total squared weights (synaptic cost). We assume a Gaussian input model whose covariance
matches natural images, and additive white Gaussian noise in cone photoreceptors and RGCs.

Fig.A Variances (power spectrum) Fig.A: Variances of principal components of natural images are highly
‘ ‘ non-uniform ("Natural images”). The optimal solution modulates
”: Optimal neuralcodes | ("Optimal modulation”) these variances, but the result retains strong

Optimal non-uniformity ("Optimal neural codes”), and thus significant redun-
modulationl  dancy. Retinal codes are similarly redundant (data not shown here,
because the principal components differ). See (2) in Summary.

Natural!  Fig.B: The theory predicts an average ipPF as a function of cone sepa-
images |  ration thatis similar to that computed from the data. ipPF forarandom
weights matrix Wrnd (that satisfies the same constraints) is quite differ-
ent. See (3).

Fig.C: Optimal receptive fields (the best-fit solution) are derived simul-
0001 ‘ ‘ taneously for all four cell types with natural images. Contours indicate
1 10 100 level curves at 30% of the receptive field peak found in the data. Cone
Principal components of natural images ~ mosaic is shown in the background. We reported similar results in Doi
et al (2010b), but that didn't include the synaptic cost. This cost
changes the solution significantly, providing a better match to the
data. See (4).
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Fig.B Average and (5,95)-percentiles of ipPF

— Data Fig.C Comparison of an entire population of receptive fields
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