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Early investigations of efficient coding with the linear-Gaussian model showed striking similarities to 
experimental data (Atick & Redlich, 1990; van Hateren, 1992).  However, direct  comparison with the retinal 
receptive fields has been hampered by  three limitations: (a) Retinal ganglion cells (RGCs) are 
inhomogeneous, both within and between cell types (e.g., Gauthier et al, 2009), as are their cone inputs, and 
the input-to-output cell ratio is not 1:1.  Most theoretical studies assume homogeneity and a 1:1 cell ratio for 
analytical tractability (although see Li & Atick (1994), Campa et al (1995), Doi & Lewicki (2007));  (b) 
RGC receptive fields under photopic conditions should be written in terms of weights on the cone 
photoreceptors, and these data were obtained only recently (Field et al, 2010); (c) Efficient coding depends 
on neural resource constraints, and including a cost for synaptic weights significantly  alters the solution (Doi 
et al, 2010a).  Together, these advances enable us to conduct a direct comparison, and here we present four 
results: (1) Retinal receptive fields transmit  74-82% of the information in natural images, relative to the 
optimal linear-Gaussian solution.  By comparison, a weight matrix that produces the same average output 
power, and has the same average squared weights, but is otherwise random (Wrnd) achieves only 35-38%;  
(2) Optimal weights mimic retinal weights in generating highly  redundant  representations of natural images;  
(3) The optimal weights are non-unique, but the inner-product of projective fields (ipPF) is uniquely 
constrained (Doi et  al, 2010b), and the optimal ipPF provides a good match to the data;  (4) Although the 
optimal weights are non-unique, a solution that achieves the optimum and best fits the data can be found 
(Doi et  al, 2010b).  The error of this solution is 36.1%, significantly smaller than the best-fit  error for Wrnd: 
89.5±3.2%.
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Fig. A:  Variances of principal components of natural images are highly 
non-uniform (”Natural images”).  The optimal solution modulates 
(”Optimal modulation”) these variances, but the result retains strong 
non-uniformity (”Optimal neural codes”), and thus signi!cant redun-
dancy.  Retinal codes are similarly redundant (data not shown here, 
because the principal components di"er).  See (2) in Summary.

Fig. B:  The theory predicts an average ipPF as a function of cone sepa-
ration that is similar to that computed from the data.  ipPF for a random 
weights matrix Wrnd (that satis!es the same constraints) is quite di"er-
ent.  See (3).
Fig. C:  Optimal receptive !elds (the best-!t solution) are derived simul-
taneously for all four cell types with natural images.  Contours indicate 
level curves at 30% of the receptive !eld peak found in the data.  Cone 
mosaic is shown in the background.  We reported similar results in Doi 
et al (2010b), but that didn’t include the synaptic cost.  This cost 
changes the solution signi!cantly, providing a better match to the 
data.  See (4).

We solve for the receptive !eld weights that maximize information transmission subject to three neural resource 
constraints measured from the retinal data: i) neural population size, ii) total bandwidth of neural population 
(power cost), and iii) total squared weights (synaptic cost).  We assume a Gaussian input model whose covariance 
matches natural images, and additive white Gaussian noise in cone photoreceptors and RGCs.


