
This figure shows the average MSE over 25 full reconstructions using 40 neurons for
the three situations depicted to the left. As there is more overlap of characteristic spike
features, more information is lost.
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Reconstruction with spike-time jitter

BA

•Spikes are independently subjected to some jitter distribution.
•A HMM is constructed whose observations are jittered spikes.
•This involves an expansion of the state space.
•The variable matrices are banded so we preserve efficiency.
•The signal is reconstructed by Gibbs sampling between path Q

and stimulus X .

Reconstruction with neuron identity loss

•An array of electrodes, each hearing one ON and one OFF cell.
•Spikes are vectors in a feature space.
•The two cells’ feature distributions may overlap.
•We infer on the noisy data directly without prior sorting.
•Each pair of neurons forms its own state space.

0 0.2 0.4 0.6 0.8 10

0.005

0.01

0.015

0.02

0.025

0.03

M
SE

jitter amplitude
0 10 20 30 40 500

0.2

0.4

0.6

0.8

1
Reconstruction for s=1, 20 neurons

 

 

Jittered spikes
Actual stimulus
Reconstruction

Stimulus reconstruction

•The heart of this method is an optimal decoding algorithm that
scales linearly with time and with number of neurons.

•We use Gibbs sampling to reconstruct stimuli from noisy data, in
which samples are drawn from a joint distribution by sequentially
sampling from the corresponding marginals.

•For log-concave response function f , we can quickly compute
MAP estimate of stimulus.

• In our particular model, we can analytically compute the posterior
mean, so we can use Rao-Blackwellization, in which the posterior
mean is tallied instead of the sampled stimulus.

A simple model neuron

•Neurons follow some Markov dynamics
•The stimulus-dependence is in the transition probabilities
•We focus on three-state neuron, considered elsewhere8, simple but

reasonable
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Exactly computable, temporally correlated conjugate prior

•We found a class of smoothing priors on our reconstructions for
which inference is still in linear time.7
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Reconstruction

•Consider neurons with a common stimulus emitting spikes.
•Spike train data may be subjected to sources of noise.
•How can we decode in this context?1

•We describe computationally efficient decoding of noisy Marko-
vian neurons.

Case 1: Spike-time jitter

•Various sources of noise jitter spike times.
• In decoding, spike time jitter is often ignored or averaged over.
•We present a Bayesian treatment of decoding with jitter.
• It is both exact and computationally efficient.
•Decoder input: jittered discrete time binary signal.

Case 2: Identity loss

•Electrodes hear multiple cells with varying response properties.
•Spike sorting attributes each spike to some neuron based on wave-

form characteristics.
•Another framework5 infers directly on the waveforms.
•We present such a method for our model.
•Decoder input: spike times and waveform feature vectors.
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