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To analyze the roll calls in the US Senate in year 2003, we have employed the methods already
used throughout the science community for analysis of genes, surveys and text. With information-
theoretic measures we assess the association between pairs of senators based on the votes they
cast. Furthermore, we can evaluate the influence of a voter by postulating a Shannon information
channel between the outcome and a voter. The matrix of associations can be summarized using
hierarchical clustering, multi-dimensional scaling and link analysis. With a discrete latent variable
model we identify blocs of cohesive voters within the Senate, and contrast it with continuous ideal
point methods. Under the bloc-voting model, the Senate can be interpreted as a weighted vote
system, and we were able to estimate the empirical voting power of individual blocs through what-if
analysis.

I. INTRODUCTION

The Library of Congress in Washington maintains the
THOMAS database of legislative information. One type
of data are the senate roll calls [28]. For each roll call, the
database provides a list of votes cast by each of the 100
senators. There were 459 roll calls in the first session of
the 108th congress, comprising the year 2003. For each
of those, the vote of every senator is recorded in three
ways: ‘Yea’, ‘Nay’ and ‘Not Voting’. The outcome of
the roll call is treated in precisely the same way as the
vote of a senator, with positive outcomes (Bill Passed,
Amendment Germane, Motion Agreed to, Nomination
Confirmed, Guilty, etc.) corresponding to ‘Yea’, and neg-
ative outcomes (Resolution Rejected, Motion to Table
Failed, Veto Sustained, Joint Resolution Defeated, etc.).
Hence, the outcome can be interpreted as the 101st sen-
ator. Each senator and the outcome can be interpreted
as variables taking values in each roll call.

There are two ways of summarizing the roll call data.
The first way, spatial modelling, is to explain the similar-
ities between votes of different senators through the sim-
ilarity of their positions in some ideological space. These
spatial models are therefore not geographical, but refer to
an ideological space. Statistical methods for such models
are similar to factor analysis or dimension reduction. Al-
ternatively, we may focus purely on modelling the corre-
lations between individual senators through dependence
modelling. The correlations can arise from similar ideo-
logical positions and preferences of the electorate, from
personal acquaintances, or from vote trading. In the ab-
sence of the ability to distinguish between these reasons,
all we can model are dependencies. The resulting pre-
dictive models may resemble log-linear models, random
fields and Ising models, while analytical tools such as
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variable clustering may be used for data exploration.

Decision-modelling approaches dominate in contempo-
rary political science. Special-purpose models are nor-
mally used, and they often postulate a model of rational
decision making. Each senator is modelled as a posi-
tion or an ideal point in a spatial model of preferences
(e.g., [7]), where the first dimension often delineates the
liberal-conservative preference, and the second region or
social issues preference [19]. In the corresponding voting
model senators try to maximize their utility, and the vot-
ing process is interpreted as the attempt of each senator
to decide about the roll call based on his or her ideal
point. In this model, it is the similarity in ideal points
that accounts for the similarities between senators’ votes.
These models can be tested empirically by comparing the
true votes with the votes predicted by the model. Such
algorithms for fitting the spatial models of parliamentary
voting can be understood as constructive induction algo-
rithms that try to replace all the senators with one or two
continuous variables corresponding to the spatial dimen-
sions. This goal can be achieved either by optimization,
e.g., with the optimal classification algorithm [20], or by
Bayesian modelling [5]. Of course, not all analysis meth-
ods postulate a model of decision making, e.g. [9, 17].

We will follow both approaches, but we will use only
general purpose models. Our intention will be to describe
the methods used for inferring the structure of similari-
ties, and illustrate them on the 2003 proceedings of the
US Senate, but we will not try to interpret the results
thus obtained. The novelty of our approach is a confirma-
tion of applicability of information-theoretic devices for
studying similarity, and of discrete latent variable mod-
els for identifying blocs of senators. These blocs may be
used for performing what-if analysis, a purely empirical
approach to estimating the voting power of blocs and
parties in the US Senate. Similarly, we examine the vot-
ing power of individuals through Shannon’s theory of in-
formation, interpreting voting as an information channel
between the voter and the outcome.
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II. SIMILARITY-BASED METHODS

Similarity is usually defined in terms of mathematical
constructs, such as a squared difference, or a Euclidean
metric. This is fine for assessing similarities between
measurements, but not particularly suitable for compar-
ing variables. Similarity between variables can be seen
as a measure of their interdependence. We will resort
to C. Shannon’s measure of information and uncertainty,
named entropy due to its analogy with a concept from
statistical mechanics, and his measure of mutual infor-
mation to evaluate interdependence [25]. Such under-
standing of similarity is appropriate for diverse types of
data, and we will use it to compute a distance between
two senators, based on their votes.

Considering two senators and ignoring the cases when
at least one of them did not cast a vote, there can be
four joint outcomes: (1) yy - both voted ‘Yea’, (2) nn -
both voted ‘Nay’, (3) yn - the first senator voted ‘Yea’,
the second ‘Nay’, and (4) ny - just the opposite. We
will use the count #nn to indicate the number of roll
calls with outcome nn, while the sum of counts for all
four outcomes is N . We do not include the roll calls with
either senator not voting into consideration, as the degree
of dependence may only be analyzed in cases when both
of them have cast a vote. The resulting estimate assumes
that the roll calls with either senator not voting do not
differ from roll calls with both senators voting.

There are two basic probabilistic models that describe
the voting process of two senators. In the first we as-
sume that the senators are not voting independently, ei-
ther because of similar judgement, similar opinion or an
explicit agreement. As an example, the probability of
outcome nn in the dependence-assuming model is esti-
mated as pnn = #(nn)/N . The second model assumes
that the votes of both senators are independent. The
probability of a joint outcome nn, pnn is therewith a
product of the probability that the first senator voted n,
pn∗ = pnn +pny, and the probability that the second sen-
ator voted n, p∗n = pnn+pyn. The dependence-assuming
model predicts the probability of the joint outcome nn
as πnn = pnn, while the independence-assuming one as
φnn = pn∗p∗n.

The entropy of a set of outcomes X given its prob-
abilistic model π is H(X, Y ) = −∑

i πi log2 πi and
is measured in bits. The higher the entropy, the
less constrained is the phenomenon it describes. If
X and Y are the two senators, the entropy of the
dependence-assuming model π is H(X,Y ), while the en-
tropy of the independence-assuming model φ is H(X) +
H(Y ). Here, H(X) is based on only two outcomes
with probabilities pn∗· and py∗. Model φ cannot be
more constrained than model π, which can be noted
as H(X, Y ) ≤ H(X) + H(Y ). Mutual information is
the difference of the two models’ entropies I(X;Y ) =
H(X) + H(Y ) − H(X, Y ). Mutual information can
also be interpreted as the relative entropy or Kullback-
Leibler divergence between the dependence- and the

independence-assuming models I(X;Y ) = D(π||φ) =∑
a∈{n,y}

∑
b∈{n,y} πab log (πab/φab).

The greater the mutual information between their
votes, the greater the similarity between the two sena-
tors, in the sense that the more we know about the vote
of one if we know the vote of the other. Therefore, if
two senators always vote in an opposite way, they will
also appear similar, according to this distance. Mutual
information is always greater or equal to zero, and less
or equal to the joint entropy H(X,Y ). We can therefore
express it as a percentage of H(X,Y ), and the larger it
is, the more entangled the two models. Based on this
notion, Rajski’s distance [23] can be defined as follows:
d(X,Y ) = 1 − I(X;Y )/H(X, Y ). It is a metricized ver-
sion of mutual information which obeys the triangle in-
equality and other requirements for a metric.

A. Dissimilarity Matrices

Distances as plain numbers provide little insight. How-
ever, we can provide the distances between all pairs of
senators in the form of a graphical matrix (Fig. 1). The
color can be used to indicate the proximity: the darker
the closer. Dissimilarity matrices are clearer if similar
senators are adjacent to one another. For performing
the sorting, we have employed a hierarchical clustering
algorithm [16].

B. Clustering

Using a metric we can construct a dissimilarity ma-
trix, and summarize it in a compact way with clustering
algorithms. We employed the agglomerative hierarchical
clustering algorithm agnes [16] with the weighted aver-
age linkage method, following the approach of [15]. The
result in Fig. 2 clearly distinguishes between Democrats
and Republicans, with the only exception being Senator
Miller (D-GA). There are further subgroups within each
major cluster and it can be seen that there are several
pairs of senators from the same state that cast similar
votes.

C. Networks

Clustering does not illustrate the structure of strong
similarities in detail. We can achieve this by plotting a
graph with nodes corresponding to senators and edges
to their connections. We only select a certain number
of the strongest similarities to create a graph, using an
artificial threshold to discriminate between a connection
and the absence of it. Figs. 3-4 graphically illustrate
the 20 pairs of senators with highest Rajski’s distance
between their votes. The nodes are labelled with the
total number of votes cast, while the edges are marked
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FIG. 1: The symmetric dissimilarity matrix graphically illustrates Rajski’s distance between all pairs of senators, based on
their votes in 2003. Three large clusters can be identified visually from this graph, and one group of moderate senators in each
party. The major clusters correspond to the political parties even if the party information was not used in the computation of
distance. Of interest is also Senator Kerry (D-MA) who is in the center of the Democrats while also being more similar than
other Democrats to the Republicans: this can be achieved by selective voting.

with the percentage of roll calls in which both senators
cast the same vote, pyy + pnn.

The degree distribution in both graphs appears to be
power-law (Fig. 5). However, we also obtained a power-
law distribution applying the same analytical technique

to randomly generated data with biased coins (p = 1
3 )

instead of senators. The power-law seems to be a gen-
eral characteristic of graphs derived from similarities or
dependencies, and not a property of the underlying pro-
cess. The gradient in the log-log plot, however, indicates
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FIG. 2: In the hierarchical clustering of senators based on
their pair-wise Rajski’s distance, we can identify the two ma-
jor clusters: the Republican and the Democratic. Both the
cluster color and the cluster height indicate the compactness
of the cluster: green clusters are weakly connected, while red
clusters are strongly connected. The bars on the right hand
side depict the five blocs resulting from latent variable anal-
ysis (Sect. III B), the dark blocks indicating a high degree of
membership. The hierarchical clustering is based on similar-
ities as averaged over all roll calls, but blocs show that simi-
larity may depend on the bill, violating the strict hierarchical
structure.

the degree of dependence: the steeper the more depen-
dent. The coins were less dependent than the senators in
this case. It is important to note that the identification of
most correlated pairs is the process which yields ‘small
world’ graphs within each party. No additional expla-
nation such as preferential attachment, competition or
growth appears to be necessary [1]. Networks with such
properties appear consistently when pair-identification is
applied to multidimensional normally distributed data.
Of course, our graphs are too small to claim significance
of this result.

D. Multi-Dimensional Scaling

If each senator is denoted with a point in some k-
dimensional space, we can try to place these points so
that the Euclidean distances between the points would
match the distances as specified by the dissimilarity ma-
trix. Most algorithms for metric scaling are based on it-
erative procedures, we have employed Torgerson-Gower
scaling [3], and SMACOF [8]. While the scalar product
algorithm employs SVD, SMACOF is an iterative ma-
jorization algorithm which optimizes a simpler auxiliary
function that bounds the true criterion.

This problem appears similar to optimal classification
method for roll call analysis [20], but the criterion there
is to minimize the error in representing a ‘Yea’ vote with
a half-plane in the scaled space. In that sense, optimal
classification is effectively a scaling problem but with a
different optimality criterion.

E. Influence

We may define influence as the similarity between a
vote cast and the outcome. Because of our definition of
similarity through dependence, a senator that is able to
consistently oppose a bill will also be considered influ-
ential. A senator whose votes are statistically indepen-
dent of the outcome will be considered uninfluential. For
assessing the influence, we consider all votes, including
those when the senator did not cast a vote. The vari-
ables corresponding to each senator will therefore take
three values. Not voting will generally decrease the in-
fluence of the senator, unless it is consistent with respect
to the outcome.

Although Rajski’s distance could be employed, it is
more useful to interpret mutual information as the pro-
portion of outcome uncertainty explained. If outcome
is denoted by variable Y , and the senator by variable
X, the proportion of outcome uncertainty the variable
X explains is I(X; Y )/H(Y ), and can be expressed as a
percentage. It is always between 0 and 1, as the small-
est of individual entropies min{H(X),H(Y )} forms the
upper bound of mutual information.

Table I shows influence of individual parties and states
on the outcome of the roll call. For the states, the joint
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FIG. 3: Democrat. The group shows large variation in the number of votes cast, as those senators that later participated
as candidates in the presidential race cast fewer votes than others, with Senator Kerry casting only 165 votes out of 459. This
seemingly places him in the very center of the party.

variable, composed of two senators votes, is based on
the following vote situations: a) both voting ‘Yea’, b)
both voting ‘Nay’, c) one of them voting ‘Yea’, d) one
of them voting ‘Nay’, e) counter-voting (cancellation) or
neither voting. This reduced set of outcomes exploits the
fact that all votes are alike. Not making this symmetry
assumption could cause the model to be underspecified
on a limited amount of data and the influence measure
unreliable. The influence of this joint situation on the
outcome is then evaluated.

III. COMPONENT-BASED MODELS

While similarity is a local notion of dependence, com-
ponents are global variables that can be seen as being
the causes of the similarity between senators. Namely,
in the presence of a large number of correlations between
senators, it is difficult to try modelling each correlation
directly. Instead, the correlations can be captured by in-
ferring some kind of membership (opinion membership,
party membership, bloc membership), which is the cause
of the similarity. In this section, we will review several
methods that are based on this idea.

A. Principal Component Analysis

The task of the ubiquitous principal component analy-
sis (PCA) or Karhunen-Loeve transformation [21] is to
reduce the number of dimensions, while retaining the
variance of the data. The dimension reduction tries not
to crush different points together, but remove correla-
tions. The remaining subset of dimensions are a com-
pact summary of variation in the original data. The
reduction can be denoted as u = W(x − µ, ) where u
is a 2-dimensional ‘position’ of a senator in a synthetic
vote space obtained by a linear projection W from the
V -dimensional representation of a senator.

The roll call data can be is represented as a J × V
matrix P = {pj,v}. The J rows are senators, and the V
columns are roll calls. If pj,v is 1, the j-th senator voted
‘Yea’ in the v-th roll call, and if it is -1, the vote was
‘Nay’. If the senator did not vote, some value needs to
be imputed nevertheless, and this will be discussed later.
The transformation W by applying the SVD algorithm
to the centered matrix P: the centering is performed for
each vote, by columns. The SVD represents the centered
matrix P − µ as a product of three matrices: UDVT ,
where U is a column-orthogonal matrix, V a square and
orthogonal matrix, and D a diagonal matrix containing
the singular values. The dimensionality-reduced ‘loca-
tions’ of senators are those columns of U that correspond
to the two highest singular values, multiplied with them.
These two columns can be understood as uncorrelated
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FIG. 4: Republican. The closest pair among the Republican senators is formed by Senators Craig and Crapo, both from
Idaho, who cast identical votes in 98.8% of cases. We also see the separation between the two Republican blocs, with the minor
one above.
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FIG. 5: The graphs in Figs. 3-4 appear to be scale-free. But
so are graphs derived from coin tosses. The slight curvature
in the graphs is normally tolerated for log-log plots. Rank
conversion was used to handle multiple nodes having the same
connectivity.

latent votes that identify the ideological position of the
senator. The position ‘explains’ the votes cast by a sen-
ator in roll calls.

There are numerous assumptions inherent to PCA,
which have been presented in a probabilistic setting [26].
Although customized algorithms for binary data could
be applied, we employed the ordinary SVD algorithm.
Our intention is to show the results obtained with the
simplest dimension reduction technique. For example,
our results with SVD are quite similar to those obtained
with far more complex methods, such as [9, 20] as shown
in Fig. 7 [29].

‘Not Voting’ and Imputation

In component-based models, the issue of senators not
voting is more pertinent than in similarity-based models.
It is easy to understand similarity as something that can
only be studied in the presence of both values at once.
But most latent variable models’ mathematical form does
not allow for missing values as one possible representation
of ‘Not Voting’. One approach is to model ‘Not Voting’
as one of the variable values (as we have done in the
analysis of influence in Sect. II E), but our preliminary
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FIG. 6: Multi-dimensional scaling attempts to capture the given dissimilarity matrix with Euclidean distances between points.
The outcome depends highly on the algorithm used, e.g., Torgerson’s (left) and SMACOF (right). Regardless of that, the
results are comparable. The colors (green, yellow, purple, violet, blue) indicate the bloc membership of a senator, derived from
Sect. III B.

analysis revealed no particularly interesting inter-senator
patterns.

An alternative approach is to try to predict what would
a senator’s vote be, ‘Yea’ or ‘Nay’, even if he did not cast
the vote. This operation is usually referred to as impu-
tation. Unfortunately, there are three possible interpre-
tations of what the senator meant when not voting, and
it is not possible to infer the true intention only with the
given data:

• Absence: The senator did not vote because he or
she was not able to vote. However, knowing how
other senators voted, we can impute the vote the
senator was expected to make in such a context. We
predict the missing vote with the knowledge derived
from similarities in those roll calls when the senator
did vote. Most methods follow this approach, and
exercise the ‘missing at random’ assumption. Using
bootstrap or Bayesian methods allows an estimate
of uncertainty about the imputation, as can be seen
in [6].

• Submission: The senator did not vote because
he or she knew that he or she disagreed with the
outcome, but could not affect it. Here we impute
the opposite of what the outcome will be.

• Stratagem: The senator did not vote because he
or she agrees with the majority vote. This option is
taken either because he or she lacks the information

to properly decide, or because he or she would not
want to reveal the agreement with the majority.

Figure 8 illustrates the difference in results caused by
different interpretations of ‘Not Voting’.

B. Discrete Principal Component Analysis

Another basic approach for investigating multi-
dimensional data, such as a senator’s voting patterns, is
to use the probabilistic version of principal components
analysis [26] but to replace the continuous valued vari-
ables with fully discrete ones. The discrete, multinomial
version of these methods has emerged more recently (the
connection to PCA appears in [4]). In this version, we
model the full set of votes for each senator using several
voting patterns. A voting pattern gives the propensity
to vote in a particular way and assumes independence
between individual senators’ votes.

One simple model of this kind is to break up the Sen-
ate into two blocs, Republican and Democrat, say, and to
consider the probabilities for these separately with vot-
ing patterns. We are interested in more nuanced models
that might exist beyond this basic two-party model. Are
the blocs within the Republican party itself? Is there
an independently minded bloc across party lines? Since
most senators tend to vote with their party as a rule,
these nuances need to be additions to some basic party
modelling.
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FIG. 7: Ordinary principal component analysis (top) based on the assumption of absence in not voting is quite similar to the
results obtained by ideal point methods (bottom, [9]). It is possible to see all the clusters that appeared in earlier analysis here
as well. However, the ideal point methods do not retain proximity as much as does PCA.

A simple additive model for blocs [4] is as follows: each
senator has a proportional membership in K blocs, given
by a probability vector (f1, . . . , fK) that sums to one.
Each bloc k has its own voting pattern represented as a
vector (pk

i,y, pk
i,n) for i ∈ V otes. The probability for a

particular subset of votes V otes′ ⊆ V otes given by this
pattern is vi: i ∈ V otes′ is

∏
i∈V otes′ pi,vi. Thus a sena-

tor’s voting probabilities can be modelled as independent
probabilities: for the i-th vote this gives

∑
k=1,...,K fkpk

i,vi

and as before we multiply these values together for the

likelihood of the senator’s full set of votes given the
model: L =

∏
i∈Votes′

∑
k=1,...,K fkpk

i,vi.
This simple style of an additive model for blocs has a

rapidly growing history in applied statistical modelling
and appears under many names: grade of membership
[27] used for instance in the social sciences, demographics
and medical informatics, genotype inference using admix-
tures [22], probabilistic latent semantic indexing [14] and
multiple aspect modelling for document analysis, while
a Poisson variant is referred to as non-negative matrix
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TABLE I: The influence of individual senators (left) and
states (right) demonstrates that the Democrats were rela-
tively uninfluential in 2003. The numbers are all percentages:
MI - mutual information, normed by the outcome entropy
(I(X; Y )/H(Y )), AG - the agreement probability (pyy +pnn),
NV - probability of not voting.

Name State MI AG NV

Cochran (R-MS) 48.1 87.8 0.9
Stevens (R-AK) 47.5 87.8 0.7
Roberts (R-KS) 47.5 87.8 0.7
Frist (R-TN) 47.4 88.0 0.4
Burns (R-MT) 46.8 87.8 0.7
Alexander (R-TN) 46.8 86.5 2.2
DeWine (R-OH) 45.5 87.6 0.2
Grassley (R-IA) 45.4 87.8 0.0
Chambliss (R-GA) 44.8 87.4 0.2
Talent (R-MO) 44.4 86.5 1.3
Voinovich (R-OH) 44.2 85.8 2.0
Bond (R-MO) 44.2 85.8 2.0
Brownback (R-KS) 43.8 86.3 1.3
Lugar (R-IN) 43.8 86.3 0.9
Warner (R-VA) 43.6 86.3 1.1
McConnell (R-KY) 43.6 83.0 5.0
Bennett (R-UT) 43.4 85.8 1.7
Hagel (R-NE) 43.2 84.3 3.5
Murkowski (R-AK) 43.0 83.0 5.2
Coleman (R-MN) 42.5 86.5 0.2
Dole (R-NC) 42.4 86.3 0.4
Shelby (R-AL) 42.0 85.2 2.0
Hatch (R-UT) 41.3 85.4 0.9
Craig (R-ID) 40.9 85.2 0.9
Cornyn (R-TX) 40.7 85.4 0.7
Bunning (R-KY) 40.6 83.7 2.6
Crapo (R-ID) 40.6 84.3 1.5
Domenici (R-NM) 40.5 80.2 8.3
Graham (R-SC) 40.3 85.4 0.7
Smith (R-OR) 39.9 80.6 7.2
Lott (R-MS) 38.9 83.2 3.1
Sessions (R-AL) 38.5 84.7 0.4
Allen (R-VA) 38.3 84.7 0.7
Inhofe (R-OK) 37.9 83.0 2.8
Fitzgerald (R-IL) 37.8 83.7 2.0
Hutchison (R-TX) 37.8 83.4 2.0
Santorum (R-PA) 36.2 83.9 0.7
Thomas (R-WY) 35.7 82.1 1.7
Specter (R-PA) 35.6 83.0 1.5
Campbell (R-CO) 35.1 80.4 5.0
Enzi (R-WY) 34.8 83.4 0.2
Allard (R-CO) 34.3 83.0 0.7
Ensign (R-NV) 33.7 81.7 2.2
Gregg (R-NH) 32.4 81.3 1.7
Nickles (R-OK) 32.1 81.7 0.9
Kyl (R-AZ) 32.0 81.7 0.7
Sununu (R-NH) 31.7 79.7 3.5
Miller (D-GA) 31.4 66.4 22.9
Collins (R-ME) 27.8 80.6 0.0
Snowe (R-ME) 27.6 80.6 0.0
McCain (R-AZ) 26.8 79.3 1.1
Chafee (R-RI) 24.8 78.2 0.9
Breaux (D-LA) 5.4 64.7 1.3
Lautenberg (D-NJ) 5.2 41.6 2.2
Boxer (D-CA) 4.8 40.5 2.2
Nelson (D-NE) 4.3 61.7 3.9
Corzine (D-NJ) 4.1 42.5 2.2
Reed (D-RI) 4.0 42.5 1.1
Durbin (D-IL) 3.7 43.8 1.5
Graham (D-FL) 3.5 27.2 32.5
Kerry (D-MA) 3.4 13.1 64.1
Edwards (D-NC) 3.4 24.6 38.8
Sarbanes (D-MD) 3.3 42.5 2.2
Harkin (D-IA) 3.2 41.2 6.3
Schumer (D-NY) 3.1 44.4 0.9
Clinton (D-NY) 3.0 43.4 0.9
Leahy (D-VT) 3.0 43.8 1.1
Baucus (D-MT) 2.8 61.7 0.2
Kennedy (D-MA) 2.8 42.0 4.6
Akaka (D-HI) 2.7 44.7 0.0
Murray (D-WA) 2.7 44.7 1.5
Mikulski (D-MD) 2.6 44.2 2.8
Nelson (D-FL) 2.5 44.9 1.7
Hollings (D-SC) 2.4 44.0 6.8
Rockefeller (D-WV) 2.3 45.5 0.7
Biden (D-DE) 2.1 43.6 7.6
Levin (D-MI) 2.1 45.3 0.0
Wyden (D-OR) 2.0 47.3 1.1
Cantwell (D-WA) 2.0 45.5 0.7
Bingaman (D-NM) 1.8 47.5 1.3
Stabenow (D-MI) 1.7 46.4 0.2
Feingold (D-WI) 1.6 46.0 0.0
Lincoln (D-AR) 1.6 54.7 1.7
Inouye (D-HI) 1.6 41.2 12.4
Lieberman (D-CT) 1.5 19.6 54.5
Dayton (D-MN) 1.5 46.2 2.8
Byrd (D-WV) 1.4 44.2 3.9
Kohl (D-WI) 1.3 48.8 1.1
Daschle (D-SD) 1.3 47.3 1.3
Johnson (D-SD) 1.2 48.4 0.7
Feinstein (D-CA) 1.2 46.8 2.4
Reid (D-NV) 1.2 47.3 0.4
Dodd (D-CT) 1.2 46.4 2.0
Landrieu (D-LA) 1.2 57.1 2.8
Jeffords (I-VT) 1.0 46.4 3.3
Bayh (D-IN) 0.4 54.7 0.4
Carper (D-DE) 0.4 54.5 2.2
Dorgan (D-ND) 0.1 51.0 0.9
Conrad (D-ND) 0.1 54.0 1.1
Pryor (D-AR) 0.0 53.4 0.4

State Prtys. MI

OH R+R 51.2
TN R+R 50.7
KS R+R 48.9
AK R+R 48.8
MO R+R 48.0
MT D+R 47.4
GA D+R 47.4
MS R+R 46.7
AL R+R 44.8
KY R+R 44.7
VA R+R 44.5
UT R+R 44.1
TX R+R 43.8
PA R+R 42.7
CO R+R 41.9
ID R+R 41.6
IN D+R 38.7
OK R+R 38.2
WY R+R 36.6
NE D+R 35.8
AZ R+R 35.5
NH R+R 35.0
ME R+R 33.1
IA D+R 31.2
SC D+R 30.8
NM D+R 30.1
NC D+R 29.0
MN D+R 25.5
NV D+R 25.0
IL D+R 24.3
OR D+R 23.3
RI D+R 12.8
NJ D+D 6.5
LA D+D 4.7
MD D+D 4.6
MA D+D 4.6
FL D+D 4.5
VT D+I 4.0
NY D+D 3.5
CA D+D 3.4
DE D+D 3.2
WA D+D 3.0
HI D+D 2.5
MI D+D 2.2
WI D+D 2.1
WV D+D 1.9
CT D+D 1.9
SD D+D 1.7
AR D+D 1.0
ND D+D 0.9

factorization [18] has been suggested for image analysis.
These methods and models all correspond to a dis-

crete version of principal component analysis, but with
the least squares fitting procedure replaced by discrete
fitting algorithms. The voting patterns correspond to
the components. The methodological challenge in this
approach is to deal with the unknown bloc proportions
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Submission imputation
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Stratagem imputation

FIG. 8: Principal component analysis can be performed with
submission imputation (top) or with the stratagem imputa-
tion (bottom). If stratagem imputation is used, the distinct
quasi-unidimensional polarization is apparent. The outlying
both on the left-bottom of the top image and in the center of
the bottom one are Senators Kerry (D-MA), Lieberman (D-
CT), Edwards (D-NC) and Graham (D-FL). The first three
were Democratic presidential candidates. If stratagem impu-
tation of the expected vote is used, Senator Kerry is in the
center of the Democratic party. If the stratagem imputation is
used, Senator Kerry is the most moderate Democrats. If the
submission imputation is used, the Democratic presidential
candidates form their own cluster. The absence imputation
places the candidates in the midst of the Democratic cluster.
The ambiguity of the true position of Senator Kerry has been
previously recognized by political scientists [6] and media.

(f1,...fK) for each senator. These are called latent or
hidden variables and are distinct for each senator. Thus
they provide an additional (K − 1) ∗ 100 free variables,
one for each senator, that a naive fitting procedure could
potentially use in optimization to overfit the data and
thus produce poor models.

This technique uses methods from inferential statistics
to deal with this overfitting challenge; previous methods
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presented here have used descriptive statistics or non-
parametric methods. One can estimate the voting pat-
terns and the bloc membership proportions for each sen-
ator using a general statistical algorithm called Gibbs
sampling [12]: Because we do not actually know the true
values for either the bloc voting patterns or each senators’
bloc proportions, we simply resample each parameter in
turn from the senators’ actual voting records, conditional
to other parameters of the previous iteration. Pritchard
et al. [22] show that sampling and averaging all the vari-
ables during this process provides good estimates of the
quantities involved.

As yet, we have not mentioned the choice of K. For
a fixed K, the product of the voting probabilities across
senators,

∏
s∈Senators Ls can be used here. However, this

is sampled data, and thus needs to be pooled in a coher-
ent manner to create an unbiased estimate of the quality
of the model for the fixed K [4]. Doing this, we ob-
tain the following negative logarithms to the base 2 of
the model’s likelihood for K = 4, 5, 6, 7, 10: 9448.6406,
9245.8770, 9283.1475, 9277.0723, 9346.6973. We see that
K = 5 is overwhelmingly selected over all others, with
K = 4 being far worse. This means that with our model,
we best describe the roll call votes with the existence of
five blocs. Fewer blocs do not capture the nuances as
well, while more blocs would not yield reliable probabil-
ity estimates given such an amount of data. A bloc can
also be interpreted as a discrete ideological position, with
senators distributed in the around them.

The blocs uncovered by this procedure are summarized
in the bars in the columns to the right of Figure 1. We
see here three Republican blocs and two Democrat blocs.
Perhaps most significant is their relationship to the fi-
nal outcome of the votes. Bloc C has all the influence
here: 80% of the vote outcome is contributed from this
one bloc. Moreover, the small Democrat bloc D con-
tributed another 15%, three times its proportion in the
senate. The Republican bloc A with 16% of the Senate
contributes a mere 5% to the vote outcome.

Background on Gibbs Sampling

This section outlines the simple additive model in more
detail. The fitting and statistical estimation process itself
follows the basic algorithms from [4].

A simple additive model for blocs is as follows: each
senator has a proportional membership in K blocs, given
by a probability vector f1, ...fK that sums to one. Each
bloc k has its own voting pattern represented as a vector
pk

i,y, pk
i,n for i ∈ V otes. The probability for a particular

subset of votes V otes′ ⊆ V otes given by this pattern is
vi : i ∈ V otes′ is

∏
i∈V otes′ p

k
i,vi

. Thus a senator’s vot-
ing probabilities can be modelled as independent proba-
bilites: for the i-th vote this gives

∑
k=1,...K fkpk

i,vi
and

as before we multiply these values out for the senator’s
full set votes. The j-th senator’s likelihood under this

model is:

Lj =
∏

i∈V otes′j


 ∑

k=1,...K

fj,kpk
i,vj,i




Thus the model has the following dimensions: K the
number of components, V the number of votes, and J
the number of senators plus the outcome. The variables
are:

pk
i,y, pk

i,n i ∈ V otes, k = 1, . . . , K

fj,k j ∈ Senators, k = 1, . . . , K,
∑

k=1,...,K

fj,k = 1

where the pk
i,v are parameters for the model and pk

i,y +
pk

i,n = 1, and the fj,k are the latent variables for the j-th
“sample” of votes for the j-th senator. To make this a
complete probabilistic model requires extra distributions:

pk
i,y ∼ Beta(νi, 1− νi)

fj,1, . . . , fj,K ∼ Dirichlet(1/K, . . . , 1/K)

where νi is the population frequency of the i-th vote.
Here, Beta(·) denotes the probability density function
for the Beta distribution, and Dirichlet(·) the same for
the Dirichlet (itself a K-term Beta). These are so-called
non-informative priors whose means agree with those ob-
served in the population.

Gibbs sampling introduces an additional variable set
wj,i,k ∈ {0, 1} which specifies the bloc assigned to a sen-
ator’s vote. wj,i,k = 1 if the i-th vote for the j-th senator
is from bloc k. If it is 1, then wj,i,k′ = 0 for k′ 6= k. This
set is also a latent variable. Note that fj,k is intended to
be the mean value of wj,i,k. The full joint likelihood is
now a product of three terms:

∏

i,k

Beta
(
pk

i,y

∣∣ νi, 1− νi

)

∏

j

Dirichlet(fj,1, . . . , fj,K | 1/K, . . . , 1/K)

∏

j

∏

i∈V otes′j

∏

k

f
wj,i,k

j,k pk
i,vj,i

Note missing data (non-recorded votes for senators) can
just be dropped from the formula, which corresponds to
the absence imputation scheme of Sect. III A.

Gibbs sampling proceeds by working on the condi-
tional distributions in turn for pk

i,y, fj,k and wj,i,k. A
burn-in of 800 cycles is used and sampling is done
over the following 800 cycles. The harmonic mean of
the above joint likelihood is an unbiased estimate of
Pr{all votes v |K bloc model}, and thus a good proxy
for the quality of the K bloc model. The results reported
are from the best run of 10 according to this measure.
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C. Voting Power and Analysis of Blocs

There are numerous possible causes for formation of
blocs. One interpretation is that blocs arise from dif-
ferent ideologies. However, it would be expected that
ideology is normally distributed, forming a single cluster
of opinion that would have the highest peak in the center.
This is not the case, judging from the analysis in previ-
ous sections, as the distribution has been multimodal in
every case. Bloc formation can thus be understood as
a prisoner’s dilemma, where a subset of voters may gain
voting power over the others by forming a coalition [10].

We do not postulate blocs in advance. Instead, the
blocs have been identified using the discrete PCA. We
can now perform several kinds of analysis which would
otherwise not been possible without identification of dis-
crete blocs. The first type of analysis covers the cohesion
within a bloc and the dissimilarities between blocs. Some
blocs may be more cohesive in the sense that the voting
is more bloc-aligned. Furthermore, individual blocs can
be similar or dissimilar, like senators.

One senator cannot affect the situation very much
alone: rarely is one able to change the outcome of a
roll call by one vote. However, once the component
model identifies the blocs voting in a similar way across
a number of roll calls, we can investigate the influence of
changed behavior of a group. We will study two kinds
of altered behavior: bloc abstention and bloc elimina-
tion. Either approach yields a list of roll calls for which
it is deemed that the behavior of a bloc has affected the
outcome.

The blocs revealed by the latent variable model are
probabilistic. We cannot say that a particular senator be-
longs to a single bloc. Instead, we can only speak about a
probability of belonging to a particular bloc. This prob-
ability is assumed to be fixed across all the roll calls. If
there are K blocs, the membership is (fs,1, . . . , fs,K) for
senator s. To obtain the number of ‘Yea’ votes in bloc k
for roll call i, we use the following formula:

#yi,k =
∑

s∈Senators who voted ‘Yea’ in i

fs,k

The same approach is used to compute the number of
‘Nay’ and ‘Not Voting’ senators in each bloc.

Our treatment of blocs is empirical and descriptive in
the sense that we examine the roll call data, identify sim-
ilarities and postulate the existence of blocs under some
kind of a statistical model. In that sense, we can examine

1. Bloc Cohesion

Cohesion of a bloc is quantified by the similarity of
votes cast by individual members of the bloc in a par-
ticular roll call. Agreement index [13] captures the level
of agreement within a party, yi of whose members voted
‘Yea’, ni voted ‘Nay’ and ai did not vote in the roll call

TABLE II: The agreement index AI and the entropy dis-
agreement index H quantify the cohesion of blocs and parties
in the US Senate. The small pair of Democratic moderate
bloc D and Republican moderate bloc C have low agreement
and a small number of senators, while the Republican bloc B
has a higher agreement than the Republican majority A. The
ranking except for C and D is the same with either criterion,
AI or entropy.

Bloc
∑

i AIi

#i

∑
i H(X̂i)

(#i)log23
Votes

All 0.490 0.577 100

Rep 0.895 0.188 51

Dem 0.783 0.381 48

A 0.892 0.209 35.3

B 0.900 0.180 14.0

C 0.753 0.356 3.1

D 0.747 0.355 5.4

E 0.812 0.336 42.4

i:

AIi :=
max{yi, ni, ai} − yi+ni+ai−max{yi,ni,ai}

2

yi + ni + ai
.

The agreement index ranges from 0 (perfect disagree-
ment) to 1 (perfect agreement). It is not very different
in meaning from entropy of any senator in the bloc given
the probabilistic model with three outcomes based on
the bloc as a whole, however. Such entropy measures
how well we can predict an average senator of the bloc
given the number of votes in the bloc as a whole. En-
tropy is thus a disagreement index: H(X̂i) if X̂i is the
aggregate vote of the bloc in roll call i, with a possi-
ble probabilistic model being P (X̂i) = [pyi , pni , pai ] =[

yi

yi+ni+ai
, ni

yi+ni+ai
, ai

yi+ni+ai

]
. The uniform distribution

achieves the maximum value of log2 k where k is the num-
ber of outcomes (three in this case), and we can divide the
entropy disagreement index by it to scale it in the range
from 0 (perfect agreement) to 1 (perfect disagreement).
Table II illustrates the agreement of individual blocs and
both parties, along with the size of bloc k, which is sim-
ply the sum of membership probabilities

∑
s ff,k. The

Democrats had lower cohesion than the Republicans, but
both parties were internally considerably more cohesive
than the Senate as a whole. The high internal cohesion
of our blocs indicates that the bloc membership is not
arbitrary. The minor blocs C and D with lower cohesion
allow larger blocs A, B and E to have higher cohesion.

2. Bloc Dissimilarity

It is possible to identify roll calls where two blocs
were most dissimilar. Rice’s index of party dissimilar-
ity [24] is the absolute difference between the proportion
of Democrats voting ‘Yea’ and the proportion of Repub-
licans voting ‘Yea’ in a given roll call. Using Rice’s index
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TABLE III: For these issues the votes of Republican blocs A
and B differed most. The gray bars on the left indicate the
proportion of ‘Yea’ votes in a particular bloc (black - 100%
‘Yea’), the ‘o.’ signifies the outcome of the vote, while the
Rice index of party dissimilarity is shown on the right.

Rep. Dem. o. Identifier Issue Idx

A B C D E

80 19 73 95 70 68:28 Frist Amdt.

No. 850 As

Amended

To eliminate methyl tertiary butyl ether

from the United States fuel supply, to in-

crease production and use of renewable

fuel, and to increase the Nation’s energy

independence.

0.616

77 18 84 99 100 80:19 Rockefeller

Amdt. No.

275

To express the sense of the Senate con-

cerning State fiscal relief.

0.590

86 27 67 45 63 65:32 Specter

Amdt. No.

515

To increase funds for Protection and Pre-

paredness of high threat areas under the

Office for Domestic Preparedness.

0.587

24 79 44 7 30 34:62 Feinstein

Amdt. No.

844

To authorize the Governors of the States

to elect to participate in the renewable

fuel program.

0.547

21 74 44 5 37 35:60 Feinstein

Amdt. No.

843

To allow the ethanol mandate in the re-

newable fuel program to be suspended

temporarily if the mandate would harm

the economy or environment.

0.528

TABLE IV: The outcomes of roll calls in this list are shown
in column o. If, however, bloc D abstained from voting, the
column o’ would indicate the outcome, which may differ.

Rep. Dem. o o’ Identifier Issue

A B C D E

5 3 58 95 100 51:49 45.9:48.7 Byrd Amdt.
No. 387

To provide adequate funds for the Na-
tional Railroad Passenger Corporation
(Amtrak).

6 2 50 95 100 51:48 45.9:47.7 Breaux
Amdt. No.
420

To redirect $396 billion into a reserve
fund to strengthen the Social Security
trust funds over the long term.

6 3 74 95 97 51:48 45.9:47.7 Lautenebrg
Amdt. No.
722

To modify requirements applicable to
the limitation on designation of criti-
cal habitat of conservation of protected
species under the provision on military
readiness and conservation of protected
species.

4 2 66 95 100 51:48 45.9:47.7 Cantwell
Amdt. No.
382

To restore funding for programs under
the Workforce Investment Act of 1998.

99 99 89 36 8 57:39 55.1:35.6 Motion
To Invoke
Cloture

Thomas C. Dorr, of Iowa, to be a Mem-
ber of the Board of Directors of the Com-
modity Credit Corporation, vice Jill L.
Long, resigned.

99 99 89 36 8 57:39 55.1:35.6 Motion
To Invoke
Cloture

Thomas C. Dorr, of Iowa, to be Under
Secretary of Agriculture for Rural De-
velopment.

we can sort the roll calls by difference between a pair of
blocs, and an example for Republican blocs A and B is
shown in Table III.

We can employ the earlier methodology of using mu-
tual information also for this task. Let us consider each
senator connecting two variables, X indicates the vote
probabilities as in P (X̂i), while M indicates the bloc
membership. The mutual information between these two
variables measures the relevance of bloc membership to
predicting the vote probabilities. It is helpful to express
mutual information as a percentage of the outcome en-
tropy. However, Rice’s index appears to be more use-
ful for identifying votes of difference, as mutual infor-
mation gives a relatively high dissimilarity score to the
cases where one bloc voted unanimously while another
did not. The absolute difference in the proportions of
senators voting ‘Yea’ is more intuitive.

TABLE V: The outcomes of several roll calls would have
changed if the Democrat minority bloc D voted cohesively
with the Democrat majority bloc E. The D-E difference mat-
tered most for the following issues:

Rep. Dem. o o’ Identifier Issue

A B C D E

97 95 81 82 16 61:39 57.4:42.6 Motion To Waive

CBA RE: H. R. 1 -

Conference Report

An act to amend title XVIII of the

Social Security Act to provide for

a voluntary prescription drug ben-

efit under the medicare program

and to strengthen and improve the

medicare program, and for other

purposes.

84 90 16 69 8 50:48 46.7:51.1 Motion To Three

Feingold AMDT No.

1416

To protect the public and in-

vestors from abusive affiliate, as-

sociate company, and subsidiary

company transactions.

92 91 78 37 1 50:48 48.1:49.7 Motion To Table

Harkin Amdt. No.

991

To establish a demonstration

project under the Medicaid pro-

gram to encourage the provision of

community-based services to indi-

viduals with disabilities.

97 94 41 20 1 50:50 49.0:51.0 H.R. 2 Conference

Report

To provide for reconciliation pur-

suant to section 201 of the concur-

rent resolution on the budget for

fiscal year 2004.

97 94 41 20 1 50:50 49.0:51.0 Nickles Amdt. No.

664

To modify the dividend exclusion

provision, and for other purposes.

6 8 41 62 95 48:50 49.7:48.0 Cantwell Amdt. No.

1419

To prohibit market manipulation.

10 3 51 44 92 47:51 49.6:48.2 Rockefeller Amdt.

No. 975, As Modi-

fied

To make all Medicare beneficiaries

eligible for Medicare prescription

drug coverage.

10 31 78 35 85 48:50 50.6:47.3 Wyden Amdt. No.

875

To strike the provision relating to

deployment of new nuclear power

plants.

3. Bloc Abstention

We compare each outcome with the outcome that
would arise if no member of the bloc did vote. This usu-
ally pinpoints issues that did not get majority support,
but were nearly unanimously supported by a particular
bloc. The list of issues whose outcome would be affected
most by the abstention of Democrat bloc D is shown in
Table IV. Using the criterion of how many outcomes
would change with abstention, we can compute a partic-
ular kind of an empirical voting power index. Namely, if
the abstention affects the outcome, the bloc cast a deci-
sive vote.

A B C D E Rep Dem
votes affected 226 133 5 14 57 251 60
changes per member 6.4 9.5 1.6 2.6 1.3 4.9 1.25

For example, abstention in bloc D would change the out-
come in 14 issues. If these 14 issues are distributed over
the 5.4 members of the bloc, the index is 2.6. The most
influential bloc through abstention is not the largest, but
the second-largest bloc B. This agrees with the observa-
tion that larger blocs are not necessarily more influential
[11], in contrast to theories that assume random voting,
e.g., [2]. The bloc B with the highest power per vote
has 14.0 votes, which is the closest of all to the theoret-
ically optimal number of approximately 14 votes under
the prisoner’s dilemma with the random voting model
[11].
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At the same time, we see that each party as a whole
is less influential than its blocs, just as claimed in [10]:
the Republican blocs affected 4.9 issues per vote, while
the Democrat blocs affected 1.25 issues per vote. But
it is also clear that the Republican blocs together af-
fected 4.18 times as many issues as Democrat blocs, with
less than 10% more votes. In highly polarized situations
the winner takes almost all. Of course, our discussion is
preliminary, merely demonstrating that how the voting
power analysis can be done with a discrete PCA model.
Any detailed discussion of voting power should be per-
formed in a more extensive study.

4. Bloc Elimination

We compare the outcome with the outcome that would
arise if a minority bloc voted in the same way as the
majority bloc of the same party. We examined three such
cases: B voting as A would have affected 4 outcomes,
C voting as A would affect 8 outcomes, and D voting
as E would affect 9 outcomes. We can consider these
indices as objective measures of party dissimilarity, as
we only count those differences that would have affected
the outcome. In that sense, the difference between D and
E is more important than the difference between A and
C. The issues where the D-E difference has affected the
outcome are shown in Table V.

IV. CONCLUSION

We have investigated the 108th Senate from both a lo-
cal pair-wise perspective, viewing pairs of senators, and
a global perspective viewing voting blocs within the Sen-
ate. That senators from the same state tend to vote
similarly is perhaps one reassuring aspect of our anal-
ysis: state-level affects are influential. We found that
data analysis methods developed for natural and social
sciences were useful also in political science.

Our results show that highly dependent votes reflect
the presence of blocs in the US Senate, and we can use the
discrete PCA model to empirically identify them. This
way enable the modelling the US Senate as a weighted
electoral system. For empirical analysis of voting power
we employed the what-if approach, investigating the po-
tential changes in the outcome if the bloc as a whole ab-
stained from voting. We find agreement between our em-
pirical framework and the theoretical treatment in [10]:
blocs are generally more influential than parties, but a
member of a larger bloc is generally not necessarily more
influential than a member of a smaller one, if the vot-
ing power is distributed evenly to individual members. If
we only allow two blocs, the Democrat and the Repub-
lican, we find that the Republican bloc affected almost
4.2 times as many issues as the Democrat bloc, with less
than 10% more votes. Similar observations can be drawn
from the estimates of voting power derived for individual
senators and states, through the information-theoretic
analysis in Sect. II E.

Finally, we cannot avoid Woodrow Wilson’s ubiquitous
quote: “Congress in session is Congress on public exhibi-
tion, whilst Congress in its committee-rooms is Congress
at work.” Our analysis can only capture a small part of
what happens in the US Senate. We performed no selec-
tion of votes, using them all. Finally, we do not claim
originality: most of the ideas explored here appeared al-
most a century ago [24], and the only difference giving us
an advantage is computer power and facilitated access to
data.
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dencies. In N. Lavrač, D. Gamberger, H. Blockeel, and
L. Todorovski, editors, Proc. of Principles of Knowledge
Discovery in Data (PKDD), volume 2838 of LNAI, pages
229–240. Springer-Verlag, September 2003.

[16] L. Kaufman and P. J. Rousseeuw. Finding Groups in
Data: An Introduction to Cluster Analysis. Wiley, New
York, 1990.

[17] B. L. Lawson, M. E. Orrison, and D. T. Uminsky. Non-
commutative harmonic analysis of voting in commit-

tees, April 2003. http://homepages.uc.edu/~lawsonb/

research/noncommutative.pdf.
[18] D. Lee and H. Seung. Learning the parts of objects by

non-negative matrix factorization. Nature, 401:788–791,
1999.

[19] N. McCarty, K. T. Poole, and H. Rosenthal. The hunt
for party discipline in congress. American Political Sci-
ence Review, 95:673–687, 2001. http://voteview.uh.

edu/d011000merged.pdf.
[20] K. T. Poole. Non-parametric unfolding of binary choice

data. Political Analysis, 8(3):211–232, 2000. http://

voteview.uh.edu/apsa2.pdf.
[21] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P.

Flannery. Numerical Recipes in C. Cambridge University
Press, second edition, 1992.

[22] J. K. Pritchard, M. Stephens, and P. J. Donnelly. Infer-
ence of population structure using multilocus genotype
data. Genetics, 155:945–959, 2000.

[23] C. Rajski. A metric space of discrete probability distri-
butions. Information and Control, 4:373–377, 1961.

[24] Stuart A. Rice. Quantitative Methods in Politics. Knopf,
New York, 1928.

[25] C. E. Shannon. A mathematical theory of communica-
tion. The Bell System Technical Journal, 27:379–423,
623–656, 1948.

[26] M. E. Tipping and C. M. Bishop. Probabilistic princi-
pal component analysis. Journal of the Royal Statistical
Society, Series B, 61(3):611–622, 1999.

[27] M. A. Woodbury and K. G. Manton. A new procedure
for analysis of medical classification. Methods Inf. Med.,
21:210–220, 1982.

[28] Available online at http://thomas.loc.gov/home/

rollcallvotes.html

[29] The results of the Optimal Classification algorithm for
the roll call votes in the US Senate in 2003 are available
at http://voteview.uh.edu/sen108.htm.

http://preprints.stat.ucla.edu/download.php?paper=364�
http://preprints.stat.ucla.edu/download.php?paper=364�
http://www.stat.columbia.edu/~gelman/research/published/blocs.pdf�
http://www.stat.columbia.edu/~gelman/research/published/blocs.pdf�
http://www.stat.columbia.edu/~gelman/research/published/banzhaf_bjps_final.pdf�
http://www.stat.columbia.edu/~gelman/research/published/banzhaf_bjps_final.pdf�
http://homepages.uc.edu/~lawsonb/research/noncommutative.pdf�
http://homepages.uc.edu/~lawsonb/research/noncommutative.pdf�
http://voteview.uh.edu/d011000merged.pdf�
http://voteview.uh.edu/d011000merged.pdf�
http://voteview.uh.edu/apsa2.pdf�
http://voteview.uh.edu/apsa2.pdf�
 http://thomas.loc.gov/home/ rollcallvotes.html�
 http://thomas.loc.gov/home/ rollcallvotes.html�
http://voteview.uh.edu/sen108.htm�

