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Abstract. The missionary zeal of many Bayesians has been matched, in the
other direction, by a view among some theoreticians that Bayesian methods are
absurd—not merely misguided but obviously wrong in principle. We consider
several examples, beginning with Feller’s classic text on probability theory and
continuing with more recent cases such as the perceived Bayesian nature of the
so-called doomsday argument. We analyze in this note the intellectual background
behind various misconceptions about Bayesian statistics, without aiming at a com-
plete historical coverage of the reasons for this dismissal.
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1 A view from 1950

The missionary zeal of many Bayesians has been matched, in the other direction, by
a view among some theoreticians that Bayesian methods are absurd—not merely mis-
guided but obviously wrong in principle. By examining the historical background of
these beliefs, we may gain some insight into the statistical debates of today.

We begin with a Note on Bayes’ rule that appeared in William Feller’s classic prob-
ability text:

“Unfortunately Bayes’ rule has been somewhat discredited by metaphysical appli-
cations of the type described above. In routine practice, this kind of argument
can be dangerous. A quality control engineer is concerned with one particular
machine and not with an infinite population of machines from which one was cho-
sen at random. He has been advised to use Bayes’ rule on the grounds that it
is logically acceptable and corresponds to our way of thinking. Plato used this
type of argument to prove the existence of Atlantis, and philosophers used it to
prove the absurdity of Newton’s mechanics. In our case it overlooks the circum-
stance that the engineer desires success and that he will do better by estimating
and minimizing the sources of various types of errors in predicting and guessing.
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2 The perceived absurdity of Bayesian inference

The modern method of statistical tests and estimation is less intuitive but more
realistic. It may be not only defended but also applied.” — W. Feller, 1950 (pp.
124-125 of the 1970 edition).

One might argue that, whatever the merits of Feller’s statement today, it might have
been true back in 1950. Such a claim, however, would have to ignore, for example, the
success of Bayesian methods by Turing and others in codebreaking during the Second
World War, followed up by expositions such as Good (1950), as well as Jeffreys’s Theory
of Probability, which came out in 1939.1 It would be more accurate, we believe, to refer
to Bayesian inference as being an undeveloped subfield in statistics at that time, with
Feller being one of many academics who were aware of some of the weaker Bayesian
ideas but not the good stuff. This goes even without mentioning Wald’s complete class
results of the 1940s (Wald’s Statistical Decision Functions got published in 1950).

It is in that spirit that we consider Feller’s notorious dismissal of Bayesian statistics,
which is exceptional not in its recommendation—after all, as of 1950 (when the first
edition of his wonderful book came out) or even 1970 (the year of his death), Bayesian
methods were indeed out of the mainstream of American statistics, both in theory and
in application—but rather in its intensity. Feller combined a perhaps-understandable
skepticism of the wilder claims of Bayesians with a näıve (in retrospect) faith in the
classical Neyman-Pearson theory to solve practical problems in statistics.

To say this again: Feller’s real error was not his anti-Bayesianism (an excusable
position, given that many researchers at that time were apparently unaware of modern
applied Bayesian work) but rather his casual, implicit, unthinking belief that classi-
cal statistical methods were essentially complete. In short, he was defining Bayesian
statistics by its limitations while crediting the Neyman-Pearson theory with the 1950
equivalent of vaporware: the unstated conviction that, having solved problems such as
inference from the Gaussian, Poisson, binomial, etc., distributions, that it would be no
problem to solve all sorts of applied problems in the future. In retrospect, Feller was
wildly optimistic that the principle of “estimating and minimizing the sources of various
types of errors” would continue to be the best approach to solving engineering problems.
(Feller’s appreciation of what a statistical problem is seems rather moderate: the two

1Consider this recollection from E. T. Jaynes (1974):

“When, as a student in 1946, I decided that I ought to learn some probability theory, it was pure
chance which led me to take the book Theory of Probability by Jeffreys, from the library shelf. In
reading it, I was puzzled by something which, I am afraid, will also puzzle many who read the present
book. Why was he so much on the defensive? It seemed to me that Jeffreys’ viewpoint and—most of
his statements were the most obvious common sense—I could not imagine any sane person disputing
them. Why, then, did he feel it necessary to insert so many interludes of argumentation vigorously
defending his viewpoint? Wasn’t he belaboring a straw man? This suspicion disappeared quickly a
few years later when I consulted another well-known book on probability (Feller, 1950) and began to
realize what a fantastic situation exists in this field. The whole approach of Jeffreys was summarily
rejected as metaphysical nonsense [emphasis added], without even a description. The author assured us
that Jeffreys’ methods of estimation, which seemed to me so simple and satisfactory, were completely
erroneous, and wrote in glowing terms about the success of a ‘modern theory,’ which had abolished
all these mistakes. Naturally, I was eager to learn what was wrong with Jeffreys’ methods, why such
glaring errors had escaped me, and what the new, improved methods were. But when I tried to find
the new methods for handling estimation problems (which Jeffreys could formulate in two or three lines
of the most elementary mathematics), I found that the new book did not contain them.”
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examples Feller concedes to the Bayesian team are (b) finding the probability a family
has one child given that it has no girl and (d) urn models for stratification/spurious
contagion, problems that are purely probabilistic, no statistics being involved.)

Where was this coming from, historically? With Stephen Stigler out of the room,
we are reduced to speculation (or, maybe we should say, we are free to speculate). We
doubt that Feller came to his own considered judgment about the relevance of Bayesian
inference to the goals of quality control engineers. Rather, we suspect that it was from
discussions with one or more statistician colleague(s) that he drew his strong opinions
about the relative merits of different statistical philosophies. In that sense, Feller is
an interesting case in that he was a leading mathematician of his area, a person who
one might have expected would be well informed about statistics, and the quotation
reveals the unexamined assumptions of his colleagues. It is doubtful that even the most
rabid anti-Bayesian of 2010 would claim that Bayesian inference can be “defended” but
not “applied.” (We would further argue that the “modern methods of statistics” Feller
refers to have to be understood in an historical context as eliminating older approaches
by Bayes, Laplace and other 19th century authors, in a spirit akin to Keynes (1921).
Modernity starts with the great anti-Bayesian Ronald Fisher who, along with Richard
von Mises,2 is mentioned on page 6 by Feller as the originator of “the statistical attitude
towards probability.”)

2 The link between Bayes and bogosity

Non-Bayesians still occasionally dredge up Feller’s quotation as a pithy reminder of
the perils of philosophy unchained by empiricism (see, for example, Ryder, 1976, and
DiNardo, 2008). In a recent probability text, Stirzaker (1999) reviews some familiar
probability paradoxes (e.g., the Monty Hall problem) and draws the following lesson:

“In any experiment, the procedures and rules that define the sample space and all
the probabilities must be explicit and fixed before you begin. This predetermined
structure is called a protocol. Embarking on experiments without a complete
protocol has proved to be an extremely convenient method of faking results over
the years. And will no doubt continue to be so.”

Strirzaker follows up with a portion of the Feller quote and writes, “despite all this
experience, the popular press and even, sometimes, learned journals continue to print a
variety of these bogus arguments in one form or another.” We are not quite sure why
he attributes these problems to Bayes, rather than, say, to Kolmogorov—after all, these
error-ridden arguments can be viewed as misapplications of probability theory that
might never have been made if people were to work with absolute frequencies rather
than fractional probabilities (von Mises, 1957; Gigerenzer, 2002).

In any case, no serious scientist can be interested in bogus arguments (except, per-

2von Mises (1957) may have been strong in mathematics and other fields, but when it came to a
simple comparison of binomial variances, he didn’t know how to check for statistical significance; see
Gelman (2011). He rejected not only “persistent subjectivists” (p. 94) such as John Maynard Keynes
and Harold Jeffreys, but also Fisher’s likelihood theory (p. 158).
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haps, as a teaching tool or as a way to understand how intelligent and well-informed
people can make evident mistakes, as discussed in chapter 3 of Gelman et al. (2008)).
What is perhaps more interesting is the presumed association between Bayes and bogos-
ity. We suspect that it is Bayesians’ openness to making assumptions that makes their
work a particular target, along with (some) Bayesians’ intemperate rhetoric about opti-
mality. Somehow classical terms such as “uniformly most powerful test” do not seem so
upsetting. Perhaps what has bothered mathematicians such as Feller and Stirzaker is
that the Bayesians actually seem to believe their assumptions rather than merely treat-
ing them as counters in a mathematical game. In the first quote, the interpretation
of the prior distribution as a reasoning based on an “infinite population of machines”
certainly indicates that Feller takes the prior at face value! As shown by the recent
foray of Burdzy (2009) into the philosophy of Bayesian foundations and in particular of
deFinetti’s, this interpretation may be common among probabilists.

But in Bayesian data analysis (which is not the same thing as subjective Bayesian
inference!) we do not actually believe our assumptions. Rather, we make strong as-
sumptions in order to make strong inferences and predictions, which can then be tested
by comparing to observed and new data (comparable to the “severe testing” of Mayo,
1996; see Gelman and Shalizi, 2012). Unfortunately, we doubt Stirzaker was aware of
this perspective when writing his book—and certainly neither was Feller, working years
before either of the present authors were born.

Recall the following principle, to which we (admitted Bayesians) subscribe:

Everyone uses Bayesian inference when it is appropriate. A Bayesian is someone
who uses Bayesian inference even when it is inappropriate.

What does this mean? Mathematical modelers from R. A. Fisher on down have used
and will use probability to model processes that are clearly random, from the scattering
of atomic particles to mixing of genes in a cell to random-digit dialing. To be honest,
most statisticians are pretty comfortable with probability models even for processes
that are not so clearly probabilistic, for example fitting logistic regressions to purchasing
decisions or survey responses or connections in a social network. (As discussed in Robert,
2011, Keynes’ Treatise on Probability is an exception in that Keynes even questions the
sampling models.) Bayesians will go the next step and assign a probability distribution
to a parameter that one could not possibly imagine to have been generated by a random
process, parameters such such as the coefficient of party identification in a regression on
vote choice, or the overdispersion in a network model, or Hubble’s constant in cosmology.

As noted above, it is our impression that the assumptions of the likelihood are gen-
erally more crucial—and often less carefully examined—than the assumptions in the
prior. Still, we recognize that Bayesians take this extra step of mathematical modeling.
In some ways, the role of Bayesians compared to other statisticians is similar to the
position of economists compared to other social scientists, in both cases making addi-
tional assumptions that are clearly wrong (in the economists’ case, models of rational
behavior) in order to get stronger predictions. With great power comes great responsi-
bility, and Bayesians and economists alike have the corresponding duty to check their
predictions and abandon or extend their models as necessary.
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To return briefly to Stirzaker’s quote, we believe he is wrong—or, at least, does not
give any good evidence—in his claim that “in any experiment, the procedures and rules
that define the sample space and all the probabilities must be explicit and fixed before
you begin.” Setting a protocol is fine if it is practical, but as discussed by Rubin (1976),
what is really important from a statistical perspective is that all the information used in
the procedure be based on known and measured variables. This is similar to the idea in
survey sampling that clean inference can be obtained from probability sampling—that
is, rules under which all items have nonzero probabilities of being selected, with these
probabilities being known (or, realistically, modeled in a reasonable way).

It is unfortunate that certain Bayesians have published misleading and oversimplified
expositions of the Monty Hall problem; nonetheless, this should not be a reason for
statisticians to abandon decades of successful theory and practice on adaptive designs
of experiments and surveys, not to mention the use of probability models for non-
experimental data (for which there is no “protocol” at all).

3 The sun’ll come out tomorrow

The prequel to Feller’s quotation above is the notorious argument, attributed to Laplace,
that uses a flat prior distribution on a binomial probability to estimate the probability
the sun will rise tomorrow. The idea is that the sun has risen n out of n successive days
in the past, implying a the posterior mean of (n+ 1)/(n+ 2) of the probability p of the
sun rising on any future day.

To his credit, Feller immediately recognized the silliness of that argument. For one
thing, we don’t have direct information on the sun having risen on any particular day,
thousands of years ago. So the analysis is conditioning on data that don’t exist.

More than that, though, the big, big problem with the Pr(sunrise tomorrow | sunrise
in the past) argument is not in the prior but in the likelihood, which assumes a constant
probability and independent events. Why should anyone believe that? Why does it make
sense to model a series of astronomical events as though they were spins of a roulette
wheel in Vegas? That’s not frequentist, it isn’t Bayesian, it’s just dumb. Or, to put
it more charitably, it’s a plain vanilla default model that we should use only if we are
ready to abandon it on the slightest pretext.3

It is no surprise that when this model fails, it is the likelihood rather than the prior
that is causing the problem. After all, the prior comes into the posterior distribution
only once, and the likelihood comes in n times. It is perhaps merely an accident of
history that skeptics and subjectivists alike strain on the gnat of the prior distribution
while swallowing the camel that is the likelihood. In any case, it is instructive that
Feller saw this example as an indictment of Bayes (or at least of the uniform prior as a
prior for “no advance knowledge”) rather than of the binomial distribution.

3The Laplace law of succession has been discussed in relation to the Humean debate about inference
(see, e.g., Sober, 2008). Berger et al. (2009) discuss other prior distributions for the model. Here,
however, we are focusing on the likelihood function, which, despite its extreme inappropriateness for
this problem, is typically accepted without question.
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4 The “doomsday argument” and confusion between fre-
quentist and Bayesian ideas

Bayesian inference has such a hegemonic position in philosophical discussions that, at
this point, statistical arguments get interpreted as Bayesian even when they are not.

An example is the so-called doomsday argument (Carter, 1983), which holds that
there is a high probability that humanity will be extinct (or drastically reduce in popu-
lation) soon, because if this were not true—if, for example, humanity were to continue
with 10 billion people or so for the next few thousand years—then each of us would be
among the first people to exist, and that’s highly unlikely.

For our purposes here, the (sociologically) interesting thing about this argument
is that it’s been presented as Bayesian (see, for example, Dieks, 1992) but it isn’t a
Bayesian analysis at all! The ”doomsday argument” is actually a classical frequentist
confidence interval. Averaging over all members of the group under consideration, 95%
of these confidence intervals will contain the true value. Thus, if we go back and apply
the doomsday argument to thousands of past data sets, its 95% intervals should indeed
have 95% coverage. This is the essence of classical statistical theory, that it makes
claims about averages, not about particular cases.

However, this does not mean that there is a 95% chance that any particular interval
will contain the true value. Especially not in this situation, where we have additional
subject-matter knowledge. That’s where Bayesian statistics (or, short of that, some
humility about applying classical confidence statements to particular cases) comes in.
The doomsday argument is pretty silly and also, it’s fundamentally not Bayesian.4

The doomsday argument sounds Bayesian, though, having three familiar features of
traditional Bayesian reasoning:

• It sounds more like philosophy than science.

• It’s a probabilistic statement about a particular future event.

• It’s wacky, in an overconfident, “you gotta believe this counterintuitive finding,
it’s supported by airtight logical reasoning,” sort of way.

Really, though, it’s a classical confidence interval, tricked up with enough philosophical
mystery and invocation of Bayes that people think that the 95% interval applies to
every individual case. Or, to put it another way, the doomsday argument is the ultimate
triumph of the idea, beloved among Bayesian educators, that our students and clients
don’t really understand Neyman-Pearson confidence intervals and inevitably give them
the intuitive Bayesian interpretation.

4Bayesian versions of the doomsday argument have been constructed, but from our perspective
these are just unsuccessful attempts to take what is fundamentally a frequentist idea and adapt it to
make statements about particular cases. See Dieks (1992) and Neal (2008) for detailed critiques of the
assumptions underlying Bayesian formulations of the doomsday argument.
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Misunderstandings of the unconditional nature of frequentist probability statements
are hardly new. Consider Feller’s statement, “A quality control engineer is concerned
with one particular machine and not with an infinite population of machines from which
one was chosen at random.” It sounds as if Feller is objecting to the prior distribution
or “infinite population,” p(θ), and saying that he only wants inference for a particular
value of θ. This misunderstanding is rather surprising when issued by a probabilist but
it shows a confusion between data and parameter: as mentioned above, the engineer
wants to condition upon the data at hand (with obviously a specific if unknown value of
θ lurking in the background). It does not help that many Bayesians over the years have
muddied the waters by describing parameters as random rather than fixed. Actually,
for Bayesians as much as any other statistician, parameters are fixed but unknown.

In any case, we suspect that many quality control engineers do care about multiple
machines, maybe even populations of machines, but to us Feller’s sentence noted above
has the interesting feature that it is actually the opposite of the usual demarcation:
typically it is the Bayesian who makes the claim for inference in a particular instance
and the frequentist who restricts claims to infinite populations of replications.

5 Conclusions

Why write an article picking on sixty years of confusion? We are not seeking to malign
the reputation of Feller, a brilliant mathematician and author of arguably the most in-
novative and intellectually stimulating book ever written on probability theory. Rather,
it is Feller’s brilliance and eminence that makes the quotation that much more inter-
esting: that this centrally-located figure in probability theory could make a statement
that could seem so silly in retrospect (and even not so long in retrospect, as indicated
by the memoir of Jaynes quoted above).

Misunderstandings of Bayesian statistics can have practical consequences in the
present era as well. We could well imagine a reader of Stirzaker’s generally excel-
lent probability text and taking from it the message that all probabilities “must be
explicit and fixed before you begin,” thus missing out on some of the most exciting and
important work being done in statistics today.

Bayesians have the reputation (perhaps deserved) as philosophers who are all too
willing to make broad claims about rationality, with optimality theorems that are ulti-
mately built upon the house of cards that is subjective probability, in a denial of the
garbage-in-garbage-out principle that defies all common sense. In place of this, Feller
(and others of his time) placed the rigorous Neyman-Pearson theory, which “may be
not only defended but also applied.” And, indeed, if the classical theory of hypothe-
sis testing had lived up to the promise it seemed to have in 1950 (fresh after solving
important operations-research problems in the Second World War), then indeed maybe
we could have stopped right there.

But, as the recent history of statistics makes so clear, no single paradigm—Bayesian
or otherwise—comes close to solving all our statistical problems (see the recent re-
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flections of Senn (2011)) and there are huge limitations to the type-1, type-2 error
framework which seemed so definitive to Feller’s colleagues at the time. At the very
least, we hope Feller’s example will make us wary of relying on the advice of colleagues
to criticize ideas we do not fully understand. New ideas by their nature are often ex-
pressed awkwardly and with mistakes—but finding such mistakes can be an occasion
for modifying and improving these ideas rather than rejecting them,
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