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Abstract

Multilevel models are extremely useful in handling large hierarchical datasets. However,
computation can be a challenge, both in storage and CPU time per iteration of Gibbs sampler
or other Markov chain Monte Carlo algorithms. We propose a computational strategy based on
sampling the data, computing separate posterior distributions based on each sample, and then
combining these to get a consensus posterior inference. With hierarchical data structures, we
perform cluster sampling into subsets with the same structures as the original data. This reduces
the number of parameters as well as sample size for each separate model fit. We illustrate with
examples from climate modeling and newspaper marketing.

Keywords: Bayesian inference, cluster sampling, Gibbs sampler, hierarchical model, multi-
level model, MCMC, Metropolis algorithm, particle filtering

1 Introduction

Multilevel models (also called hierarchical linear models, random effects regressions, and mixed ef-

fects models; see, for example, Robinson, 1991, Longford, 1993, and Goldstein, 1995) are extremely

useful in handling hierarchical datasets. In applications with small to medium sized data sets,

Bayesian methods have found great success in statistical practice. In particular, applied statistical

work has seen a surge in the use of Bayesian hierarchical models for modeling multilevel or relational

data (Carlin and Louis, 2000) in a variety of fields including health, education, environment and

business (see, for example, Gelman et al., 1995, and Carlin and Louis, 2000). Modern Bayesian

inference generally entails computing simulation draws of the parameters from the posterior distri-

bution (see Besag et al., 1995, for an overview). For hierarchical linear models, this can be done

fairly easily using the Gibbs sampler (see Gelfand and Smith, 1990). For hierarchical generalized

linear models, essentially the same algorithm can be used by linearizing the likelihood and then

applying a Metropolis-Hastings accept/reject rule at each step (see Gilks, Richardson, and Spiegel-

halter, 1996). However, computation for fitting a Bayesian model with a massive dataset can be a

big challenge, both in storage and CPU time per iteration of Gibbs sampler or other Markov chain

Monte Carlo algorithms.
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In this paper, we propose a computational strategy of randomly partitioning the data into

disjoint subsets, computing posterior distributions separately for each subset, and then combining to

get a consensus posterior inference. With hierarchical data structures, we perform cluster sampling

into subsets with the same structures as the original data. This reduces the number of parameters

as well as the sample size for each separate model fit. Our method goes beyond previous approaches

to computation using data subsetting (see Chopin, 2002, and Ridgeway and Madigan, 2002), in our

use of cluster sampling and also in that we select subsets of the data using random sampling, which

should lead the inferences from the separate subsets to be more representative of the target inference

for the entire dataset. Section 2 of this paper lays out the basic idea on which our computation

strategy is based. In Section 3, we illustrate with two practical examples from our work in statistical

application with large datasets in newspaper marketing and climate modeling, and we conclude in

Section 4 with suggestions for further research.

2 Sampling for posterior inference

2.1 Basic examples

2.1.1 Dividing a dataset into K = 2 parts

We first use a simple example to discuss our basic idea. Let y1, . . . , yn be an independent, identically

distributed sample from N(θ, σ2), where θ and σ2 are parameters of interest which can estimated by

the sample mean ȳ and sample variance s2y, respectively. From the central limit theorem for sums

of random variables, these two estimates have good statistical properties such as consistency and

asymptotic normality (see Bickel and Doksum, 1976).

Now suppose we randomly divide (y1, . . . , yn) into K = 2 parts, (u1, . . . , uk) and (v1, . . . , vl),

with k+ l = n. From these two random subsets, we can compute ū,s2u and v̄,s2v, which may also be

used to estimate θ and σ2. If k and l are sufficiently large, all these estimates are consistent and

asymtotically normal. We can combine them using their estimated precisions (inverted variances)

as weights to obtain more accurate estimates. If we denote the precisions for ū, v̄, s2u, and s2v by

wu, wv, ws2u, and wsv , then we have the following combined estimates:

ȳc =
wuū+ wv v̄

wu + wv

s2c =
wsus

2
u + wsvs

2
v

wsu + wsv

(1)

which should be better than the estimates obtained from either subset. If the estimated precisions

are proportional to the sample size k or l, then equation (1) reduces to the simple form:

ȳc =
kū+ lv̄

n

s2c =
ks2u + ls2v

n
(2)
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which become simple means if the sample sizes k and l are equal. This computation strategy does

not reduce computation for this example. We are presenting it just to introduce our ideas.

2.1.2 Classical linear models

Now consider the following regression model with fixed prior distribution:

y|β ∼ N(Xβ,Σy) (3)

β ∼ N(β0,Σβ). (4)

In this model y is the full dataset and X is the design matrix and we assume Σy, β0, and Σβ are

known. We have posterior distribution β|y ∼ N(β̂, Vβ), where

β̂ =
(

XtΣ−1
y X + Σ−1

β

)−1 (

XtΣ−1
y y + Σ−1

β β0

)

,

V −1
β = XtΣ−1

y X + Σ−1
β .

Suppose we divide y into K disjoint subsets denoted by y(1), . . . , y(K), and the corresponding par-

tition of the design matrix X is X(1), . . . ,X(K). For k = 1, . . . ,K, we have β|y(k) ∼ N(β̂(k), V
(k)
β ),

where

β̂(k) =
(

X(k)tΣ−1
y X(k) + Σ−1

β β0

)−1 (

X(k)tΣ−1
y y(k) + Σ−1

β β0

)

,

(V
(k)
β )−1 = X(k)tΣ−1

y X(k) + Σ−1
β .

We can express β̂ and V −1
β in terms of β̂(1), . . . , β̂(K) and V

(1)
β , . . . , V

(K)
β as follows,

β̂ = V −1
β

K
∑

k=1

(

V
(k)
β )−1β̂(k) −

K − 1

K
Σ−1
β β0

)

,

V −1
β =

K
∑

k=1

(

(V
(k)
β )−1 −

K − 1

K
Σ−1
β

)

.

2.1.3 Simple linear hierarchical models

We consider a simple hierarchical model:

yi|β, αi ∼ N(xtiβ + αi, σ
2
i ), for i = 1, . . . , n (5)

β|β0,Σβ ∼ N(β0,Σβ) (6)

αi|τ ∼ N(0, τ2). (7)

For simplicity we assume σ’s, β0, Σβ, and τ are all known. Let y = (y1, . . . , yn)
t (full dataset) and

X = (x1, . . . , xn)
t (design matrix for β), then we have β|y ∼ N(β̂, Vβ), where

β̂ = Vβ

(

Xty

σ2 + τ2
+ Σ−1

β β0

)

,

V −1
β =

(

XtX

σ2 + τ2
+ Σβ

)

.
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Suppose we divide y into K disjoint subsets denoted by y(1), . . . , y(K) and the corresponding partition

of the design matrix X is X(1), . . . ,X(K). For k = 1, . . . ,K, we have β|y(k) ∼ N(β̂(k), V
(k)
β ), where

β̂(k) =

(

X(k)tX(k)

σ2 + τ2
+ Σ−1

β β0

)−1(

X(k)ty(k)

σ2 + τ2
+ Σ−1

β β0

)

,

(V
(k)
β )−1 =

X(k)tX(k)

σ2 + τ2
+ Σ−1

0 .

We can express β̂ and V −1
β in terms of β̂(1), . . . , β̂(K) and V

(1)
β , . . . , V

(K)
β as follows,

β̂ = V −1
β

K
∑

k=1

(

V
(k)
β )−1β̂(k) −

K − 1

K
Σ−1
β β0

)

V −1
β =

K
∑

k=1

(

(V
(k)
β )−1 −

K − 1

K
Σ−1
β

)

.

Therefore, we have a closed form to combine the subset inferences for this kind of linear hierarchical

model.

2.2 General approach for hierarchical models

Now we turn to consider two-level Bayesian hierarchical models, which we can write in a general

notation as,

yi|θ, ϕ ∼ p(yi|ϕ, θj(i)) for i = 1, . . . , n (8)

θj|φ ∼ p(θj|φ) for j = 1, . . . , J,

where i the individual index, j is the batch index, and j(i) is an indexing variable indicating the batch

j within which observation i falls. In this model, we assume that the data from different batches

are independent. The parameters ϕ and φ may be vectors: ϕ includes common parameters in the

likelihood (e.g., fixed effect coefficients and standard deviations of error terms in a regression), and

φ includes hyperparameters (e.g., the mean and standard deviation of random effect coefficients

and group-level regression coefficients). In addition, we assume ϕ and φ have a noninformative

prior distribution, p(ϕ, φ) ∝ 1. We denote the complete vector of parameters by ξ = (θ, ψ), where

θ = (θ1, . . . , θJ) and ψ = (ϕ, φ), and the posterior distribution is then p(ξ|y), implying the following

likelihood for the data in model (8):

p(y|θ, ϕ) =

J
∏

j=1

n
∏

i=1

p(yi|ϕ, θj(i)).

The posterior distribution for the model parameters is then,

p(ξ|y) ∝

J
∏

j=1

n
∏

i=1

p(yi|ϕ, θj(i))p(θj|φ).
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In order to keep the same hierarchical structure as the original dataset, we perform cluster sampling

to divide the original dataset into subsets. This is equivalent to simply sampling the index set for j

into subsets. Next, we will compute the separate posterior distributions for each subset sampled, and

then combine these to obtain a consensus posterior inference. This strategy reduces the number

of parameters as well as the sample size for each separate fit and thus saves storage and CPU

time for each iteration when implementing the Gibbs sampler or other Markov chain Monte Carlo

algorithms.

As with sampling in general, we subset the data at random so that the samples will be repre-

sentative of the population. In this case, we have K disjoint samples, and the quantity of interest is

the log-likelihood. As in classical sampling, we are estimating a population total (the log-likelihood

of all the data) from a sample total (log-likelihood of any subset K). We are using cluster sampling

to reduce our computation time, which is analogous to the usual motivation of cluster sampling to

reduce costs (see, e.g., Lohr, 1999).

2.3 Computation time per iteration and motivation for cluster sampling

We explore computational costs in the context of linear regression models:

yi|β ∼ N(yi|(Xβ)j(i), σ
2) for i = 1, . . . , n

βj |µβ ∼ N(βj |µβ, τ
2) for j = 1, . . . , J

p(β0, σ, µβ , τ) ∝ 1, (9)

where β = (β0, β1, . . . , βJ) are regression coefficients, among which β0 are common parameters

shared by each batch of observations, βj are only related to the jth batch of observations, σ is the

standard deviation of the error terms, and µβ and τ are hyperparameters. Let ψ = (β0, σ, µβ, τ),

the vector of common parameters. We assume that the length of ψ is negligible compared to m

and n, where n and m are the length of y = (y1, . . . , yJ) and β = (β1, . . . , βJ ), respectively, and

thus we can ignore the computation time per iteration for updating ψ. For the vector updating

algorithm in fitting the target model, the QR decomposition of the X matrix and backsolving the two

upper-triangular systems takes O(2nm2) floating-point operations (flops); see Golub and van Loan

(1983). If we divide the data into K parts of equal size by cluster sampling, i.e., simply sampling

the batch index set {1, 2, . . . , J}. In fitting each separate subset model, the QR decomposition of

the X matrix and backsolving the two upper-triangular systems takes O(2n
K

(m
K

)2) = O(2nm2/K3)

floating-point operations (flops). Thus sampling vector updating algorithms take O(2nm2/K) flops

in total, compared to non-sampling vector updating algorithms O(2nm2). For the non-sampling

scalar updating algorithm, updating all m components of β takes O(10nm), and for the sampling

scalar updating algorithm, updating all m components of β also takes O(10nm). In many of the

problems we work with, m is quite large—typically some fraction of n—and thus the vector and

scalar updating algorithms require O(n3) and O(n2) flops per iteration, respectively, compared to
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O(n3/K) and O(n2) for the sampling vector and scalar algorithms, respectively. Also if startup and

loading time included, the sampling computation strategy should save computation time for vector

updating and scalar updating algorithms.

2.4 Combining inferences from the subsets

Once we have the K separate inferences for the parameters shared by the K subsets, we need to

combine these. Several methods are possible:

1. Using a normal approximation (motivated by the central limit theorem applied to our random

sampling procedure). We can obtain the K separate inferences using normal approximation

and combine the K normal distributions. We discuss this approach in Section 2.4.1.

2. Updating from prior to posterior sequentially. Starting with one subset, we can fit the model

to this subset and obtain the posterior distribution by normal approximation or by some

nonparametric approach, and then fit the model to next subset using the posterior distribution

from last step as a prior and continue this procedure step by step until to the last one subset.

The inference from the last is conditional on all the data.

3. Starting with one subset, then adding other data using importance sampling (see Chopin,

2002, and Ridgeway and Madigan, 2002). We must generalize the method of Chopin (2002)

and Ridgeway and Madigan (2002) to apply to hierarchical models where not all parameters

are present in each subset. Consider model (8) and suppose K = 2. We sample L (say

L=10,000) points from the posterior p(φ,ϕ, θ1|y1). For each l, we can augment (φl, ϕl, θl1)

to (φl, ϕl, θl1, θ
l
2) by sampling θl2 from the prior p(θ2|φ

l). This means that (φl, ϕl, θl1, θ
l
2) is

sampled from the distribution

g = p(φ,ϕ, θ1|y1)p(θ2|φ)

= p(φ,ϕ)p(θ1|φ)p(y1|ϕ, θ1)p(θ2|φ).

The goal is to sample from the full posterior distribution,

p = p(φ,ϕ, θ1, θ2|y)

= p(φ,ϕ)p(θ1|φ)p(θ2|φ)p(y1|ϕ, θ1)p(y2|ϕ, θ2).

For each l, we can compute the importance ratio p/g = p(y2|θ
l
2).

4. Generalizing method 2 above, we can use a combination of importance resampling and birth-

death process (Gilks and Berzuini, 2001). This approach starts with one subset, fitting the

model to this subset and obtaining a sample set from the posterior distribution for this subset,

and then generates a new sample set for the model with the next subset by combining an

importance resampling step and a birth-death step. The processs continues until including all

subsets.
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2.4.1 Using the normal approximation

Here we discuss the first approach above by considering the normal model (8). We randomly divide

the data set y into K parts y(1), . . . , y(K) using cluster sampling to keep the same hierarchical

structure. If the sample size for each parts is very large, the marginal posterior distributions

p(ψ|y(1)), ... , p(ψ|y(K)) are each approximately normal and so is p(ψ|y) (see Le Cam and Yang,

1990, Gelman et al., 1995, and Shen and Wasserman, 2000). For k = 1, . . . ,K, we compute

p(ψ, θk|y
(k)) and obtain posterior simulations, and then use these simulations to obtain a normal

approximation p(ψ|y(k)) ≈ N(ψ̂k, Vψk
). Combining these approximation gives p(ψ|y) ≈ N(ψ̂, Vψ),

where

ψ̂ =

(

K
∑

k=1

V −1
ψk

)−1( K
∑

k=1

V −1
ψk
ψ̂k

)

and Vψ =

(

K
∑

k=1

V −1
ψk

)−1

.

Then, if desired, one can use N(ψ̂, Vψ) as a prior distribution and obtain posterior inferences for

the θk’s. In fact, this whole procedure could be used as a starting point for the Gibbs sampler.

We use this approximate approach to combine the separate simulations from the separate fit in the

examples in the next Section 3.

2.4.2 Importance sampling

It is possible to improve the above combined inference using importance sampling. We consider two

possible approaches. For each subset k, we have inferences from (ψ, θk). In the first approach, we

work with the marginal distribution of ψ. We may do this by sampling L (say 10,000) points from

N(ψ̂, Vψ) and then computing the importance ratio p(ψ|y)/N(ψ|ψ̂, Vψ). But we cannot in general do

that because we cannot in general compute p(ψ|y). In the second approach, we augment each draw

with draws θ1, ... ,θK constructed from the K fitted models and work with the joint distribution of

(ψ, θ1, . . . , θK). As before we will sample L points from p(ψ|y) and then for each of these simulations

ψl, we sample θ1, ..., θK from N(A1 +B1ψ
l, V1), ..., N(AK +BKψ

l, VK), respectively.

Now the problem is how to determine all these A’s, B’s, and V ’s. For each k, we can use

simulations of (ψ, θk) to obtain a normal approximation,

N

((

ψ̂

θ̂k

)

,

(

Vψ Vψθk

V T
ψθk

Vθk

))

,

and then use the multivariate normal distribution (e.g., formula (A.1) from Gelman et al., 1995) to

get

θk|ψ, y
(k) ≈ N(Ak +Bkψ, Vk).

This is a reexpression of the normal distribution of θk which gives us all the A’s, B’s, and V ’s.

For each simulation draw l, we can compute the joint posterior density p(ψl, θl1, . . . , θ
l
K |y) and the
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approximation

g(ψl, θl1, . . . , θ
l
K) ≈ N(ψl|ψ̂, Vψ)

K
∏

k=1

N(θlk|Ak +Bkψ
l, Vk),

and then compute the importance ratio p/g.

2.4.3 Numerical examples

We use two simple examples to show how importance sampling can improve inferences. Our first

example is a random effects model for effects of an educational testing experiment in 8 schools,

described by Rubin (1981) and Gelman et al. (1995). This is a small example but the nonnormality

of its posterior distribution makes it interesting. For each school j = 1, ..., 8, an experiment was

performed to estimate the treatment effect αj in that school; a regression analysis applied to the data

from that school alone yielded an estimate and stand error, which we label yj and σj. The sample

size within each school is large enough that it was reasonable to model yj|αj ∼ N(αj , σ
2
j ), with σj

known. The parameters from the 8 schools are modeled as normally distributed: αj ∼ iid N(µ, τ2),

with a noninformative uniform hyperprior density, p(µ, τ) ∝ 1. Interest lies in the individual school

parameters αj and also in the hyperparameters (µ, τ). Suppose we divide the dataset into K = 2

parts. In this example, the posterior distribution of τ is far from normal. Figure 1 shows the

comparison of the inferences from the full dataset and each subsets, the combined inferences by

normal approximation and their improvement by importance sampling.

Our second example is similar to the first one, but with more groups. In this example, we

randomly select 200 retail dealers of a newspaper company. For each dealer j = 1, . . . , 200, we

have enough historical data to estimate their daily sales levels (copies per day) and standard errors,

which we label yj and σj. This is a simpler version of the full model for this problem described in

Section 3.1. We set up the same random effects model for this example but in this example, the

normal approximation fits well,and so importance sampling improves the combined inference only

slightly. Figure 2 displays the separate and combined inferences.

3 Applied examples

3.1 Newspaper marketing

Data and model

In this example, we consider a simple two-level model with no covariates. A newspaper company has

a dispersed retail network to support its retail business and is interested in the demand distributions

for each retailer so that it can plan its future business. More specifically, the company is interested

in simultaneously addressing two objectives: (1) maximization of its profits and (2) maximization

of the sales volume. The demand distribution for each retailer plays critical role in addressing the

two objectives. We work with historical daily sales data for several months for each retailer. For

simplification, we only consider sales on Tuesdays. We introduce the following notation:
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Yjt copies sold for retailer j at time t

Djt copies allocated to retailer j at time t

Zjt copies demanded for retailer j at time t (unobservable if Zjt > Djt, that is, sellout).

For any j and t, we have

Zjt = min(Yjt,Djt)

In addition, we let yjt = log(Yjt), djt = log(Djt) and zjt = log(Zjt). Thus, we still have zjt =

min(yjt, djt). We set up a Bayesian hierarchical model for the logarithm of demand, zjt. We

consider the model,

zjt = θj + εjt for j = 1, . . . , J and t = 1, . . . , T (10)

In our general notation, i = (j, t) and n = JT .

The parameter in the model are defined as follows:

• θj is the normal sales of retailer j; we assign it a normal population distribution with mean θ

and standard deviation τ .

• εjt are are independent error terms assumed normally distributed with mean 0 and standard

deviation σ.

In this model, log sales are right-censored. In order to handle the censored observations, we introduce

censoring indicators Ijt:

Ijt =

{

1 if zjt > yjt

0 otherwise.

Thus, in this model, the data information we have are pairs, (yjt, Ijt).

Equation (10) implies the following likelihood for the sales data:

p(y, I|θ, µ, σ) =
∏

j,t:Ijt=0

N(yjt|θj, σ
2)

∏

j,t:Ijt=1

(1 − Φ(
yjt − θj

σ
)),

where Φ is the normal cumulative distribution function.

The prior distribution for the retailer effects is given by,

p(θ|µ) =
J
∏

j=1

N(θj|µ, τ
2),

and we assume µ, τ and σ have a noninformative prior distribution,

p(µ, τ, σ) ∝ 1.

Finally, the joint posterior density is proportional to the product of all the above pieces:

p(θ, µ, τ, σ|y, I) ∝
∏

j,t:Ijt=0

N(yjt|θj , σ
2)

∏

j,t:Ijt=1

(1 − Φ(
yjt − θj

σ
))

J
∏

j=1

N(θj|µ, τ
2). (11)
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Implementation

In order to simulate density (11), we consider zjt (for those j and t such that Ijt = 1) as augmented

parameters (see van Dyk and Meng, 2001). We indicate these augmented parameters by θ. In

this way, it is easy to set up a Gibbs sampler in two steps. First, given zjt, (10) is a normal

linear multilevel model, and all its parameters can be updated using a Gibbs sampler. The linear

parameters θ, µ have a joint normal conditional distribution, and the variance parameters τ2 and

σ2 have independent inverse-χ2 distributions. The Gibbs sampler thus alternates between these two

blocks of parameters. Second, given all the model parameters, for any j and t, zjt = yjt if Ijt = 0,

otherwise, zjt has independent normal conditional distribution with mean θj and standard deviation

σ and truncated at yjt, from which we can draw a sample until it is greater than yjt. We alternate

these two steps which can be improved including a covariance adjustment step (see, Liu, 2003).

Two chains reached approximate convergence in the sense that R̂ is less than 1.2 (see Gelman and

Rubin, 1992) after 400 iterations. All computations were performed in statistical language S-Plus,

using the apply, colSums, rowSums, etc., functions so that there was no internal looping in the

Gibbs sampler updating.

In performing our computation strategy, we randomly divide the J = 4787 retailers into 2, 4, 6,

and 8 subsets of equal size in this example, respectively.

Simulation results

Figure 3 shows the estimates of overall mean µ, the standard deviation of retailer’s effects τ on

Tuesdays for the newspaper company, and the standard deviation of residuals σ in the model of

single copy sales, respectively. F represents estimates from fitting the whole dataset model, Sk from

fitting the kth subset model and C from combining the estimates from the subset models. The dots,

thick lines, and thin lines display the median, 50%, and 95% posterior intervals. The first row shows

the posterior inferences from 2 random subsets of equal size, the second from 4 random subsets,

the third row from 6 random subsets and the last row from 8 random subsets. Because of sampling

error, the estimates from each subset model vary across the subsets. But the estimates from the full

data set model and the combined estimates are very close for all the partitions. Therefore we can

obtain an effective consensus posterior inference in this example using our computational strategy.

Figure 4 compares the combined simulation results from the posterior distributions of the hy-

perparameters µ, τ and σ in the model of single copy sales on Tuesdays for the newspaper company,

respectively. C1 represents the estimates from fitting model (10) with the whole dataset and Ck

represents the combined estimates from fitting model (10) with k random subsets.

Saving memory requirements and computation time

If the dataset is too large, the traditional computational methods might not be implemented in

small computers because small computers can not allocate the dynamic memory requested by the
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computation program. However, in our strategy, we just fit all the subset models once at a time,

and each subset model is much smaller than the whole model in the sense that the numbers of

parameters and observations in each subset model are only a small proportion of those in the whole

model. Thus we will never use up the computer memory if we randomly divide the whole data

into enough subsets. Another advantage of our computation strategy is the potential saving of

computation time. Figure 5 shows the total computation times per iteration of fitting the full

dataset model and all subset models with dividing the full dataset into different number of subsets.

If the number of subsets is not greater than 16 in this example, our computation strategy saves

computation time. Dividing the data set into 8 subsets has minimum computation time.

3.2 Climate modeling

Data and model

In the second example, we consider the forecast skill of global circulation models (GCM) based on

Africa precipitation data in the fall (October, November, December) season. The models divide the

globe into a grid, on which Africa covers 527 boxes, and we have 41 observed precipitation values

(between 1950 and 1990) for each box in a given season. Here we consider three GCM models, each

of which gives us 10 predicted precipitation values for each box in a given season (Mason et al.,

1999 and Rajagopalan et al., 2000). In this example, we use yjt and xm,kjt , represent observed and

kth predicted precipitation anomaly, respectively, for mth GCM ensemble in box j and at time t.

We use as predictors the average values,

x̄mjt =
1

10

10
∑

k=1

ym,kjt .

In this example, we set up the following multilevel model using yjt as response variable and x̄mjt as

predictors:

yjt = αj + δt +

M
∑

m=1

βmj x̄
m
jt + γjnt + ξjηt + εjt, (12)

The parameters in the model are defined as follows:

• δt is an offset for time t; we assign it a normal population distribution with mean 0 and

standard deviation σδ.

• αj is an offset for location j; we assign it a normal population distribution with mean µα and

standard deviation σα.

• βmj is the coefficient of ensemble forecast m in location j; we assign it a normal population

distribution with mean µm and standard deviation σm.

• γj is the effect of Nino3 (a predictor for the effect of El nino) in location j; we assign it a

normal population distribution with mean µγ and standard deviation σγ .

11



• ξj is the effect of time indicator η (1 for the first 20 observations, 0 for the last 21 observations)

in location j; we assign it a normal population distribution with mean µξ and standard

deviation σξ.

• εit’s are independent error terms assumed normally distributed with mean 0 and standard

deviation σ. We can model the error terms εjt’s as independent because any dependence that

would have occurred between them is captured by the variables αj , y
m
jt , nt, δt and ηt.

Likelihood

Model (12) has the following likelihood:

p(y|θ) =
527
∏

j=1

41
∏

t=1

N(yjt|γj + δt +
3
∑

m=1

βmj x̄
m
jt + γjnt + ξjηt, σ

2)

where θ indicates all the parameters in the model.

Prior distribution

The prior distributions for the location offsets, the time offsets, the forecast model effects, nino3

effects, and first-twenty-year effects are given by,

p(α|µα, σα) =

527
∏

j=1

N(αj |µα, σ
2
α)

p(δ|σδ) =
41
∏

t=1

N(δt|0, σ
2
δ )

p(β|~µβ , ~σβ) =

527
∏

j=1

3
∏

m=1

N(βmj |µβj
, σ2
βj

)

p(γ|µγ , σγ) =

527
∏

j=1

N(γj |µγ , σ
2
γ)

p(ξ|µξ, σξ) =

527
∏

j=1

N(ξj |µξ, σ
2
ξ )

where ~µβ = (µβ1
, µβ2

, µβ3
) and ~σβ = (σβ1

, σβ2
, σβ3

). We next assign noninformative prior distribu-

tions to the remaining parameters in the model:

p(µα, ~µβ, µγ , µξ, σα, σδ, ~σβ , σγ , σξ, σ) ∝ 1.

Posterior distribution

The joint posterior distribution for the model parameters is:

12



p(θ|y) ∝
527
∏

j=1

41
∏

t=1

N(yjt|αj + δt +
3
∑

m=1

βmj x̄
m
jt + γjnt + ξjηt, σ

2)
527
∏

j=1

N(αj |µα, σ
2
α)

×

41
∏

t=1

N(δt|0, σ
2
δ )

527
∏

j=1

3
∏

m=1

N(βmj |βm0 , σ
2
m) (13)

×

527
∏

j=1

N(γj |µγ , σ
2
γ)

527
∏

j=1

N(ξj |µξ, σ
2
ξ ).

Implementation

In this example, we randomly divide the J = 527 locations into 2, 3, 4, and 5 subsets of equal size,

respectively, and then obtain simulations for each separate model. The density (13) is a normal

linear mutilevel model and so it is easy to update all its parameters using the Gibbs sampler. In

order to make full use of zeros in the design matrix to increase computation speed, we use a scalar

updating algorithm rotating the vector of linear parameters to achieve approximate independence.

Simulation results

In this example, we have 55 hyperparameters to estimate: 8 variance components, 6 overall means,

and 41 δ’s. Figure 6 gives a summary of posterior inference for some of the hyperparameters from

model (12). F represents the results, estimated based on the whole dataset, Sk the results, estimated

based on the kth (k = 1, 2, 3) subset data (here we divide the whole dataset into three subsets.)

and C the combined inference results. Again, in this example the estimates from each subset model

vary across the subsets because of sampling error. But the estimates from the full data set model

and the combined estimates are very close. Thus our computation strategy can give same posterior

inference as the traditional computation methods.

Figure 7 gives a summary of posterior inference for some of the hyperparameters from model

(12). C1 represents the results, estimated based on the whole dataset, and Ck the combined results,

estimated based on k (k = 2, 3, 4, 5) random subsets. Again, the estimates from the full dataset

model and the combined estimates are very close for all the different partisans and thus our com-

putation strategy can give same posterior inference as the traditional computation methods for this

example. However, the differences between the estimates with the full dataset and the combined

estimates increase with the number of subsets.

Figure 8 shows the posterior inferences for the δ’s. Again, the estimates from the full dataset

model and the combined estimates are very close for all the different partitions and thus our compu-

tation strategy can give the almost same posterior inference as the traditional computation methods

for this example. However, the differences between the estimates with the full dataset and the com-

bined estimates increase with the number of subsets.
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4 Discussion

Problems involving computation time and storage space often arise for large models with large

datasets. We do not want to be forced to use unrealistically simple models or to restrict our data,

just because of computational problems. However, there is good news: with lots of data, there

is lots of replication, which implies that inferences from a random subset of the data should be

representative of the whole. Our solution is to divide data into subsets using random sampling

(cluster sampling) rather than simply taking the data sequentially. Our approach has potential for

parallel implementation (although we have not implemented it this way). A challenge is then to

combine the separate inferences. We have success with a normal approximation, with the potential

for correction using importance sampling or the Metropolis algorithm. Open problems include: (1)

rigorous theoretical justification (based on the Central Limit Theorem applied to the log-likelihood),

(2) choice of the number of subsets K, and (3) the best method for combining the subset inferences.

In addition, for huge problems, perhaps it would be effective to take a few subsets and stop if

inferences are good enough.
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Figure 1: Estimates of µ and τ (posterior medians, 50% intervals, and 95% intervals) in the eight
schools model. F represents estimates from fitting the model to the full dataset model, Sk estimates

from fitting the model to the kth subset (k = 1, 2), C estimates from combining the estimates from
the subset models by normal approximation, “IMP” from importance sampling.
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Figure 2: Estimates of µ and τ (posterior medians, 50% intervals, and 95% intervals) in the newspa-
per company sales model. F represents estimates from fitting the model to the full dataset model,

Sk estimates from fitting the model to the kth subset (k = 1, 2), C estimates from combining the
estimates from the subset models by normal approximation, “IMP” from importance sampling.
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Figure 3: Estimates of overall mean µ, standard deviation of retailers’ effects τ , and standard
deviation of residuals σ in the model of single copy sales on Tuesdays for the newspaper company,
respectively. F represents estimates from fitting the model to the full dataset, Sk from fitting to the

kth subset, and C from combining the estimates from the subset models. The dots and segments
show medians, 50% intervals, and 95% intervals. The first row are the posterior inferences estimated
from the data partitioned into 2 random subsets of equal size, the second row from 4 random subsets,
the third row from 6 random subsets and the last row from 8 random subsets.
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Figure 4: Estimates of µ, τ , and σ (posterior medians, 50% intervals, and 95% intervals) in the
model of single copy sales on Tuesdays for the newspaper company. C1 represents the estimates
from fitting model (10) with the full data set and Ck represents the combined estimates from fitting
model (10) with k random subsets (k = 2, 4, 8, 16, 32).
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Figure 5: Total computation time per iteration of fitting the model to the full dataset and all the
subset models with dividing the full dataset into different number of subsets. The curve drops at
first because of the efficiency in working with smaller datasets and then increases because of fixed
costs in the computation.
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Figure 6: Estimates (posterior medians, 50% intervals, and 95% intervals) of the hyperparameters
in the Africa climate model. F represents estimates from fitting the model to the full dataset model,

Sk estimates from fitting the model to the kth subset (k = 1, 2, 3) and C estimates from combining
the estimates from the subset models.
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Figure 7: Estimates (posterior medians, 50% intervals, and 95% intervals) of the hyperparameters
in the Africa climate model. C1 represents the estimates from fitting model (12) with the full
data set and Ck represents the combined estimates from fitting model (12) with k random subsets
(k = 2, 3, 4, 5).
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Figure 8: Estimates (posterior medians, 50% intervals, and 95% intervals) of δ’s in the Africa climate
model.
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