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Summary

Exploratory data analysis (EDA) and Bayesian inference (or, more generally, complex statistical
modeling) —which are generally considered as unrelated statistical paradigms—can be particularly ef-
fective in combination. In this paper, we present a Bayesian framework for EDA based on posterior
predictive checks. We explain how pesterior predictive simulations can be used to create reference dis-
tributions for EDA graphs, and how this approach resolves some theoretical problems in Bayesian data
analysis, We show how the generalization of Bayesian inference to include replicated data y*f and repli-
cated parameters °F follows a long tradition of generalizations in Bayesian theory.

On the theoretical Ievel, we present a predictive Bayesian formulation of goodness-of-fit testing, dis-
tinguishing between p-values (posterfor probabilities that specified antisymmetric discrepancy measures
will exceed 0) and x-values (data summaries with uniform sampling distributions). We explain that -
values, unlike u-values, aré Bayesian probability staterments in that they conditien on observed data.

Having reviewed the general theoretical framework, we discuss the implications for statistical graphics
and exploratory data analysis, with the goal being to unify exploratory data analysis with more formal
statistical methods based on probability models. We interpret various graphical displays as posterior
predictive checks and discuss how Bayesian inference can be used to determine reference distributions.

The goal of this work is not to downgrade descriptive statistics, or to suggest they be replaced by
Bayesian modeling, but rather to suggest how exploratory data analysis fits into the probability-modeling
paradigm.

We conclude with a discussion of the implications for practical Bayesian inference. In particular, we an-
ticipate that Bayesian software can be generalized to draw simulations of replicated data and parameters
from their posterior predictive distribution, and these can in turn be used te calibrate EDA graphs.

Key words: Bootstrap; Fisher’s exact test; Graphics; Mixture: model; Model checking; Multiple imputation;
Prior predictive check; Posterior predictive check; p-value; u-value.

1 EDA and Bayesian Inference can Cooperate
1.1 Background

Two areas in which statistics has made great advances in the last few decades are exploratory data
analysis and complex probability modeling. On one side, exploratory methods have broadened the
scope of statistics to include data visualization, going beyond the standard paradigms of estimation
and testing to look for patterns in data beyond the expected (see Tukey, 1972, 1977; Chambers e? al.,
1983; Cleveland, 1985, 1993; Tufte, 1983, 1990; Buja, Cook & Swayne, 1996; Wainer, 1997, among
others). At the same time, Bayesian methods have been developed to fit data much more realistically

*Based on a paper presented at the Seventh Valencia Meeting on Bayesian Statistics.
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using hierarchical models with large numbers of parameters to mode] heterogeneity, interactions,
and nonlinearity; see, for example, Gelman ef al. (1995), Carlin & Louis (1996), and Denison et al.
(2002) for recent reviews.

Interestingly, both these approaches have been fueled by computational improvements: for ex-
ploratory data analysis and data visualization, higher-resolution graphics and more sophisticated
interactive user interfaces; for modeling, faster computers that allow routine use of iterative methods
such as Markov chain simulation algorithms for fitting models with no closed-form expressions for
estimates, uncertainties, and posterior distributions.

Unfortunately, there has not been much connection made between research in the two areas of ex-
ploratory data analysis and complex modeling. On one hand, exploratory analysis is often presented
as model-free. From the other direction, in Bayesian inference, exploratory data analysis is typically
used only in the early stages of modei formulation but seems to have no place once a model has
actually been fit. '

We argue in this paper that (a) exploratory and graphical methods can be especially effective when
used in conjunction with models, and (b) model-based inference can be especially effective when
checked graphically. Our key step is to set up a theoretical formulation in which graphical displays
can be viewed as model checks, so that new models and new graphical methods go hand in band.

. On a practical level, we suggest to modelers that they check fit by comparing to replications of
potential future data from the estimated model. Conversely, we suggest to exploratory data analysts
that they proceed iteratively, using graphs at the initial phases of an analysis and also later on, to find
patterns that represent deviations from the current state-of-the-art model.

1.2 EDA is Based on Models

Exploratory data analysis is typically presented as model-free. However, models are there as a
baseline. For example, Tukey {1972) presents two-way fit plotting, in which an additive model is
explicit; and hanging rootograms, which can be interpreted in terms of a Poisson rate for counts
(although this model is not ever stated in the paper). In Tukey’s words, exploratory plots are “graphs
intended to let us see what may be happening over and above what we have already described”.

- Our proposal is to use complex models and Bayesian inference to advance “what we have already
described” so that exploratory analysis becomes more powerful. Or, conversely, we seek to use the
methods of exploratory analysis to check complex models and lead to ideas for their improvement.

1.3 - Statistical Graphics as Model Checking

We view model checking as the comparison of data to replicated data under the model. This
includes “exploratory data analysis” and “confirmatory data analysis™ as special cases: EDA is the
graphical comparison and CDA is the p-value, but they are based on the same hypothesis test.

The goal is not the classical goal of identifying whether the model fits or not (and certainly not the
goal of classifying models into correct or incorrect, which is the focus of the Neyman—Pearson theory
of Type 1 and Type 2 errors), but rather to understand in what ways the fitted model departs from
the data. In a Bayesian model-building framework, EDA and CDA can both be applied at various
stages in the analysis, including at a final stage— after any model selection or model averaglng has
been performed, posterior simulations can be computed from the final model.
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2 Mathematical Formulation
2.1 Bayesian Inference; a History of Generalizations

It is an important tradition in Bayesian statistics to formalize potentially vague ideas, starting
with the axiomatic treatment of prior information and decision making from the 1920s through the
1950s. For a more recent example, consider hierarchical modeling. In the 1960s and 1970s, it was
recognized that Bayesian inference for a sequence of parameters could have better statistical prop-
erties if data-dependent prior distributions were allowed. This developed into the “empirical Bayes”
approach. But then, through the work of Hill (1965), Tiac & Tan (1965), Lindley & Smith (1972),
Rubin (1981), and others, the hierarchical Bayes approach was developed, obtaining the benefits
of data-based prior distributions in a fully Bayesian mathematical framework. Other places where
vague statistical ideas have been formalized are in modeling missing data (Rubin, 1976) and model
averaging (Draper, 1995; Raftery, 1993).

- All of these ideas have the form of mathematical generalizations. Start with the likelihood, p(y[0).
Bayesian inference generalizes to include a prior distribution, p(6). Over the years, many statisti-
cians have objected to the claim that they need a prior distribution—but the success of Bayesian
methods suggests that the gains (in ability to flexibly restrict inferences and to perform exact deci-
sion analyses) outweigh the costs that arise from having to defend “subjective” inferences. In fact,
classical inferences can often be interpreted as Bayesian under particular prior specifications and
loss functions, and so the Bayesian approach can be a tool to understand other statistical methods.

Similarly, hierarchical modeling elicited a lot of resistance in its time (see, for example, the dis-
cussion of Lindley & Smith, 1972), with a key point of contention being the legitimacy of combinin g
information from different sources in a single model, as in a meta-analysis. There was also some
free-floating skepticism about the additional assumptions inherent in an empirical Bayes analysis
or hyperprior distribution*, Eventually, however, the intermediate formalism of “empirical Bayes”,
with its awkward data-dependent prior distributions, was replaced by the richer full-Bayes hierarchi-
cal structure. It became clear that the hierarchical analysis is a generalization that includes simpler
models as special cases, and this allows us to answer various objections at a mathematical level. For
example, if a hierarchical model combines highly dissimilar data sources—and these dissimilarities
are not corrected for in the model —then the hierarchical variance parameter will be estimated to be
a very large value, and the inferences will display essentially no shrinkage.

* The next generalization, modeling missing data or, more generally, the process of data collection,
generalizes the likelihood from p(y|#) to p(y, I10, ¢), where I represents the information of which
data points are actually observed, and ¢ are parameters describing the design of the data-collection
and recording process (Rubin, 1976). Including the data-structure I in the model allows us to easily
model rounded, censored, and truncated data and, as with the previous generalizations, gives insights
into the previously-standard methods. In the more general framework, a model is “ignorable” if
p(0ly) = p(81, y); that s, if the data structure can be ignored. Understanding ignorability helps us
in setting up non-ignorable models (as with dropouts in clinical trials) and in adding covariates to a
model so that ignorability can be a reasonable assumption. Also as with the previous generalizations,
these concepts predated the mathematical formalism, but the formalism made it easier to apply them
in new and more complicated settings.

'The expansion of the Bayesian formalism into p(y, 1|6, ¢) to include the data-generation process
using p(y, I) also resolves some theoretical and practical connections to classical methods (see

Il recall seeing a graduate student presentation a few years ago of a hierarchical regression model that had random effects
for the 50 U.S. states. A statistician objected that the 50 states are fixed, and so it does not make sense for them to be random
effects, in the sense of there being a larger population from which they are a sample. This is an interesting point but not
relevant to the hierarchical model per se. One could similarfy object to a non-hierarchical regression model of data from 50
states, since once again there is an error distribution. In either case, the model maust be interpreted with care—but that there
are only 50 states is not a good reason 1o set the state-level variance parameter to zero or infinity, as would be implied by
classical nonhierarchical models.




372 : A. GELMAN

Gelman et al., 1995, chapter 7). For example, randomized data collection is hard to justify under the
usual Bayesian framework, but, in the context of defining a data-collection scheme, randomization
is in fact the only way to select a sample without reference to covariates. Similarly, the idea of
ignorability corresponds to the classical principle of including in the analysis all information used in
the design, which in turn suggests particular Bayesian models. And the traditional Bayesian claim
about the irrelevance of data-based stopping rules (see, for example, Berger, 1985) is modified by an
understanding that a time variable must be included to have an ignorable model in this scenario,

A very active area of current statistical research is model averaging, generalizing the space of
parameters one step further to allow for different choices of models or (in our preferred version) a
continuous space spanned by models which had previously been fitted individually. Much progress
seems to have been sparked by various formalizations of model combination, which take us beyond
the previous vague ideas that no model is perfect and that it should be desirable to combine infer-
ences from several models. Mathematical gaps typically correspond to areas of potential statistical
improvement, and one area for improvement here can be seen from the difficulties of computing
Bayes factors for models of different dimensionality (see, for example, Raftery, 1995; Spiegelhalter
et al., 2002, and Denison er @l., 2002). The problem here is not with the model combination but
rather with the use of flat, or nearly-flat, prior distributions on the component models. We suspect
that model averaging would be much more effective if the models being averaged were hierarchical.

A classic gambit of Bayesians is to claim that other statistical methods are Bayesian too, merely
with unstated (and probably incoherent and unrealistic) prior distributions. This line of argument
is not just rhetorical —it has motivated interesting research (e.g.,‘B(')x & Tiao, 1973; Wahba, 1978;
Clyde & George, 2000)—and we use it in developing Bayesian analogues to classical goodness-of-fit
tests.

2.2 Model Checking

Gelman, Meng & Stern (1996) made a case that model checking warranis a further generalization
of the Bayesian paradigm, and we continue that argument here. The basic idea is to expand from
p(¥10) p(0) to p(y19) p(8) p(¥™P1), where y™ is a replicated data set of the same size and shape
as the observed data y. All model checking (both “exploratory” and “confirmatory”) can then be
interpreted as comparisons between y and y'™

As with other generalizations of Bayesian forrnahsm, the y™F notatlon makes an existing proce-
dure explicit. The need (o precisely define a replication distribution, p(y *®|0)—like the earlier necd
to define a prior distribution—implies additional effort which is intended to pay off in the form of
more precise inferences.

More generally, we consider replications of the parameters too, hence the full Bayesian model,
as we see it, is p(y, y*?, 8, 5°P), and all posterior calculations (including model checks) use the
distribution, p(y™®, @, 8°P|y). Of course, the complexities of notation described in the previous
section (for hierarchical parameter structures, missing data, and model averaging) can be folded in
here as appropriate (see Gelman et al., 2002},

Our most general form of test involves antisymmetric “discrepancy” functions of data and repli-
cations of the form D(y, y™F, &, 9*P). These are antisymmetric in the sense that if (y, @) are ex-
changed with (y™P, §*P), then D must change sign. The most common special case arises from
test variables of the form T(y, #), in which case the antisymmetric discrepancy can be defined as
D(y, y*°F, 0, 0%P) = T(y™P, §P) — T'(y, #). The advantage of working with antisymmetric discrep-
ancies rather than test statistics is that the discrepancies are always compared to zero, which should
allow visual model checks to be clearer (Berkhof, Van Mechelen & Gelman, 2002).
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2.3 U-Values and P-Values

Inlightof the recent confusion in the statistical literature about Bayesian p-values, some definitions
may be in order. We define a Bayesian p-value as a posterior probability under a particular modeling
assumption. We move from a classical definition,

p-value(y|t) = Pr(T (3"") > T ()| y,6),
to the Bayesian version, averaging over the posterior distribution of 8:
p-value(y) = Pr(T (3"%) > T(») 1 y).

More generally, we can consider any antisymmetric discrepancy function of the form D (v, y P, 0, 6™Pp),
and then,
p-value(y) = Pr(D(y, ", 6,8"") > 0| y).

This can be generalized further by considering missing and latent data (and thus mvolving the data-
collection indicator T) or model averaging, but the basic idea still holds: a p-value is a Bayesian
posterior probability that a certain antisymmetric function exceeds zero.

In the special cases in which pivotal test statistics exist, the classical p-value also has the property
of having a Uniform[0, 1] distribution, considering y as a random variable under the model. We
can generalize this to define the u-value as any function of the data y that has a uniform sampling
distribution. Although the u-value can be defined Bayesianly, by averaging over the distribution of @,
it 1s fundamentally not a Bayesian quantity, in that it cannot be interpreted as a posterior probability
statement about an underlying truth. (In contrast, the p-value is a statement, conditional on the
model, about what might be expected in future replications.)

The p-value is to the 1-value as the posterior interval is to the confidence interval, Just as posterior
intervals are not, in general, classical confidence intervals, Bayesian p-values are not generally »-
values. We prefer to work with posterior intervals and p-values (rather than confidence intervals and
u-values) because of their direct interpretations in terms of posterior probabilities.

2.4  Prior Predictive Checks are Posterior Predictive Checks too

Prior predictive checks (Box, 1980) are sometimes taken as a “purer” alternative to posterior
predictive model checking. In a prior predictive check, the replicated data ¥ 'P are drawn from their
prior distribution, p{y™P) = f p(y™P18) p(8)d6. On a practical level, prior predictive checks have
the problem that they are attempting to test the entire model—including those parameter values
€ that are essentially ruled out by the data, In contrast, posterior predictive checks are a natural
generalization of the standard classical approach of plugging a point estimate for 6 into a model
check.

If we are careful in how we define replications, however, we can think of prior predictive checks
as a subset of posterior predictive checks, In a posterior predictive check, we are generalizing to
future data generated from the same parameter &, whereas ini a prior predictive check, 8 ™P is redrawn
from the model. And this is simply posterior inference about a different scenario. In a setting where
the prior check “rejects™ the model but the posterior check does not, this Jjust means that the data are
consistent with some of the immediate implications of the model but not some of its more distant
implications. We discuss this point further in the next section.

3 Theoretical Examples

We are used to thinking of exploratory data analysis as an approach to finding unexpected aspects
of the data; that is, aspects not captured by an existing model. In addition, exploratory data analysis
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can reveal modeling problems that could have been anticipated theoretically but were not. As aresult,
routine use of predictive model comparison can reduce the need for statistical theory. This is related
to the idea from the bootstrap literature that simulation can replace mathematical analysis (Efron &
Tibshirani, 1993).

Sections 3.1 and 3.2 illustrate with two examples where the inherent difficulties of a model are
revealed by comparing data to predictive simulations. In both these cases, the problems of the models
are well known in the statistical literature while at the same time subtle enough to frequently trap
practitioners into mistakes. Then, in Section 3.3 we consider how clear definitions of replication
distributions allow us to resolve seeming ambiguities in the classical problem of model checking
‘with contingency tables.

3.1 Finite Mixture Models

Our first example is the fitting of a mixture model with unconstrained variances to continuous
univariate data. A relatively simple form of this model has two equal components, with mixture
density '

1 *'5 (yi—u))? 1 o e (g p2®
(vilptr, po, 01, 02) = 0.5 1 0.5 e . (1
PUYiiH 1. 02 o | . ,—23_[02 _
When fit to data y;, i = 1, .. , n, using maximum likelihood, a problem arises: the likelihood can

be made to approach mﬁmty by setting 4t equal to y;—Tfor any of the data points y; —and letting o
approach 0. At this limit, the likelihood for y; approaches infinity, and the likelihoods for the other
data points remain finite (because of the second mixture component), so the complete likelihood
blows up. This will happen even if the model is true!

Unfortunately, this problem is not immediately solved throu gh Bayesian inference. For example,
if we assign (improper) Uniform{—o¢, oo} prior densities for 1, p2, and Uniform(0, co) prior
densities for o1, 02, then the posterior modes will still be at the points where one or another of the
o’s approach 0, and these modes in fact contain infinite posterior mass—the Bayesian averaging
over uncertainty does not save us.

But now consider attacking this problem using the Bayesian approach that includes inference about
¥ as well as #. In practice, this means summarizing the posterior distribution of & {possibly using
iterative simulation) and then, for each simulation of 8, simulating a new vector y *F of independent
draws from the mixture distribution. There are two likely possibilities:

1. At least one of the modes (with their infinite posterior mass) is found, in which case each
‘simulated y™ will look like a mixture of a spike at one peint and a broad distribution for
the other half of the data. The misfit of model to data will then be apparent, either from a
visual comparison of the histogram of the data y to the histogram of the y™#’s, or using an
antisymmetric discrepancy function such as the difference between the histograms of y™ and
y. The discrepancy could be summarized by the p-value from a numerical discrepancy such
as the Kolmogorov—Smirnoff distance between the empirical distributions of y *F and y.

2. Or, the estimation procedure could behave well and fail to find the degenerate modes. In this
case, simulated replicated data could look quite similar to the actual data, and no problem
will be found. And this would be fine, since the computational procedure is in effect fitting a
truncated model that fits the data well.

In either case, posterior predictive checking has worked in the sense of “limiting the liability”
caused by fitting an inappropriate model. In contrast, a key problem with Bayesian inference —if
model checking is not allowed—is that if an inappropriate model is fit to data, it is possible to end
up with highly precise, but wrong, inferences. -
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3.2 Random Effects Models and Overfitting

Can we tell that a model is “overfitting” a dataset? Sometimes, and it depends on the context.
We explore with the simple hierarchical normal model for the one-way data structure. Rubin (1981)
and Gelman et al. (1995, chapter 5) describe data from randomized experiments on test-coaching
programs in 8 schools: for each school j = 1,...,8, there is an unbiased estimate y ; of the
effectiveness of the program in the school, along w1th an (essentially) known standard error, o ;. The
goal is to estimate the true treatment effects, 9 ; ;» in the 8 schools,

We all know that the simplest analysis of these data— analyzing each of the schools independently
and coming up with estimates 0 ; = y;j—is inappropriate. Shrinkage is better (see, for example,
Efron & Morris, 1975). But what if you had never heard of Stein (1955) or the rest of the literature,
and you just naively fit the simple model? Could posterior predictive checking tell you about your
mistake—in this case, a mistake of overfitting, using 8 independent parameters when more structure
is needed? :

In a word, yes. The problem with the unshrunk estimator, as with overfitting in general, is that
the parameters capture too much of the variability in the data. This can be simply captured using the
sample variance of the data as a test statistic.

3.3 . Contingency Tables and “Exact” Tests

What should be conditioned on when testing hypotheses in a contingency table? Is “Fisher’s exact
test” actually exact? To answer this seemingly unanswerable question, we must think carefully about
the replication distribution.

“So-calied exact permutation tests are appropriate if considering experiments with fixed margins,
This is unusual in practice. It is far more common to have one or zero margins fixed:

1. For example, consider an experiment with 4 treatment groups and 3 outcomes. You might do
the experiment with a fixed number of persons in each group, but the outcomes are random
variables. In the replicated data, too, the outcomes should be random.

2. For a case-control study, the outcome margins might be fixed but the treatment margins are
random.

3. In observational studies, it is common for both margins to be random: data are collected on
n persons, and then the treatment and outcome states of each are recorded. Once again, a
replicated data set should follow this design. '

4. Fisher’s tea-tasting experiment is one of the very few in which both margins are fixed by design
(the lady is given 4 cups of each kind of tea, and she is told ahead of time that there are 4 of
each, so that her guesses will be balanced also).

What is the dlfﬁculty, then? For the appropriate test, conditioning on only one of the margins
means that the other is random, and so the reference distribution, and thus the test itself, depends
on the unknown parameter ¢ representing those marginal frequencies. But this is not a problem in a
Bayesian context— we just average over the posterior distribution of @, and then over the replication
distribution of y™P. People have wasted a lot of time trying to figure out how to sample from
the distribution of the discrete counts conditional 6n both margins, but that’s just an inappropriate
calculation in almost all cases.

* To put it another way, Fisher’s exact test gives a u-value that is not in general a p-value (except in
the highly unusual scenario of an experiment with both margins fixed by design). From a Bayesian
perspective, the permutation test can be justified as a convenient approximate inference, by analogy
to the way in which maximum likelihood estimation is often more convenient than working with a
full posterior distribution. But in problems where calculating the permutation distribution is difficult,
the convenience is lost, and then we strongly recommend going back to first principles, defining
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a replication distribution based on the actual data collection process, and computing an actual p-
value. Once again, this follows the analogy of Bayesian inference: when likelihood analysis becomes
complicated (for example, multimodal or constrained likelihoods), it is ultimately simpler to set up
a prior distribution and do the full Bayesian analysis.

- Interestingly, by including the distribution for y P in our Bayesian inference, we are following the
classical statistical principle of accounting for the data collection in the analysis. At the same time,
this analysis does follow the likelihood principle. The likelihood, p(y|@), and the prior distribution,
p (@), do not depend on the data-collection process —but the predictive distribution for the replicated
data, p(y™P|0), is affected by the design. The likelihood principle (see, e.g., Berger, 1985) does not
apply to y™P, which is important since these are the future data that we would like our model to
predict.

4 Towards a Theory of Exploratory Data Analysis
4.1 Theories of Statistical Graphics

One of the frustrating aspects of teaching and practicing statistics is the difficulty of formalizing
the rules, if any, for good statistical graphics. As with written language, it takes time to develop a
good eye for which graphical displays are appropriate to which data structures, and it is a challenge to
identify the “universal grammar” underlying our graphical intuitions. At the other extreme, students
and researchers untrained in graphical methods often seem to have a horrible tendency toward
graphical displays that seem perversely wasteful of data (see Gelman, Pasarica & Dodhia, 2002).
For an embarrassing example from our own work, Table 7.5 of Gelman ef al. (1995) displays tiny
numbers with far too many significant figures. The reader can see little but the widths of the columns
of numbers; the implicit comparison here is thus to columns of equal width, Wthh is not particularly
interesting from a substantive perspective in that example.

Some of the most useful and interesting systematic research on statistical graphics (for example,
Ehrenberg, 1975; Tukey, 1977, Tufte, 1983, and Cleveland, 1985) has paralleled the research methods
of psychology, in particular:

1. Assessing the information content in a table or graph—this is similar to work in mathematical
psychological models of information and perception;
2. Comparing the understandability of the same data graphed different ways, following the
principles and methods of experimental psychology; and
3. Introspection, which as in psychological research is still an extremely powerful (and conve-
.. nient) tool in working out examples and trying to figure out why some graphical displays tell
the story better than others.

In parallel with the attempts at synthesis have come developments of new graphical methods (for
example, Chambers ef al., 1983; Tufte, 1990, and Cleveland, 1993, just to restrict ourselves to static
graphical displays).

We seek here to formalize statistical graphics in a slightly different way—related to the idea
of quantifying information context, but focused on the idea of a graph as an explicit or implicit
comparison. Once we systematically think of graphs as model checking, we can think of ways that
a graphical display can take advantages of symmetries in the reference distribution of T'(y ™%, #).
Or, conversely, how certain graphical displays can be misleading because they implicitly assume
symmetries that are inappropriate to the model being considered. '
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4.2 Adapting Graphical Forms to the Structures of Test Statistics

1. The most basic exploratory graphic is simply a display of an entire data set {or as much of
it as can be conveyed in two dimensions). I we think of this display as a test variable T (y),
then alongside it we need, as comparisons, displays of T (y™P) corresponding to several draws
from the reference distribution.

Figure ] shows the perils of attempting to interpret data without comparing to a reference
distribution—tHe apparent patterns in this and similar maps can be explained by sampling
variation. The counties in the center-west of the country have relatively small populations,
hence more variable cancer rates and a greater proportion of the highest values (see Gelman
& Price, 1999, for more on the cancer rate example and Louis, 1984, for discussion of the
general issue of summarizing the uncertainty in an ensemble of parameters).

Our point here is not that this problem is solved by any simple Bayesian method —but rather
that the act of looking at a map for patterns is itself implicitly a comparison to a patternless
reference model. Because of the spatial variation of populations of counties, the comparison
to a patternless map is essentially meaningless.

Figure 1. The 10% of counties of the United States with the highest age-standardized death rates for cancer of kidney/ureter
Jor U.S. white males, 1980-1989. The most notable pattern in this map (that most of the shaded counties are in the center-west
of the country) can in fact be explained as an artifact caused by varying sample sizes. From Gelman & Nolan (2002).

2. If the dataset is large enough, it may have enough internal replication so that the display of
a single replicated dataset may be enough to make a clear comparison. Ripley (1988, p. 6)
discusses why internal replication is crucial in time series and spatial statistics (where one
is often called upon to make inferences from a single sample), and Ripley (1988, chap. 6)
presents a striking example. in many applications involving structured data, we have found
that a single replicated dataset would almost be enough to give a convincing picture of how
the model is not fitting the data.

3. At the opposite extreme, if we have a scalar test summary, we can overlay it on a histogram
of its simulated reference distribution. A two-dimensional summary can similarly be shown

. in comparison to a scatterplot.

4. A multidimensional summary, T(y} = (T1(¥), ..., Te(y)), can be shown as a scatterplot of

T (y) vs. &, in comparison with several scatterplots of T;(y"™F) vs. k. But this comparison can

be displayed much more compactly using line plots: a single graph can show the line of T¢(y) e

vs. k in bold, overlaying several lines of T, (v*P) vs. k, each corresponding to a different draw
from the reference distribution.
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5. The above plots can be usefully simplified if the reference distribution has certain invariance

properties. For example, consider a binned residual plot of ry vs. i1y, forbins k = 1,... | K,

~ as in Figure 2. We also removed the lines connecting the dots for the data residuals, since

" there is no longer a background of replication lines. Instead, comparison is to the implicit
independence distribution.
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Figure 2. Average residuals vs. expected values, with discrete responses divided imo 20 equally-sized bins defined by ranges
of expected values, for a nonlinear model of an ordered categorical data set. The prediction errors are relatively small but
with a consistent pattern that low predictions are too low and high predictions are roo high. Dotted lines show 95% bounds
under the model. Adapted from Gelman & Bois (1997).

Under the reference distribution, the residuals are independent and, if enough are in each
bin, the mean residuals 7, are approximately normally distributed. We can then display the
reference distribution as 95% error bounds, as in Figure 2. More discussion of Bayesian binned
residual plots appears in Gelman et al. (2000).
6. Hierarchical structure in a model can allow us to compare batches of parameters to their
reference distribution. In this scenario, the replications correspond to new draws of a batch
of parameters. Figure 3 shows an example of poor fit (clearly revealed by a single simulation
draw of the parameter vectors). The model was altered, and the new check appears in Figure 4. *
" This could be considered a “manual Gibbs sampler,” in which aspects of the model are altered
to bring them in line with the data.
7. In other cases, a reference distribution is implied, not from symmetries in the model or test
statistic, but from prior information that has not been included in the model. Gelman et al.
(2002) show examples in which simulated completed data— from fitted models —are displayed.
Unexpected patterns can be attributed to misfit of the model or to unexpected features in reality 4
revealed by the model fit. It can be difficult to visually judge the statistical significance of
some of the fluctuations, which is where simulations from the posterlor predictive distribution :

can be used as comparisons. _ e et et e e s et
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Figure 3. Histograms of {a} 90 patient parameters and (b) 69 symptom parameters, from a single draw from the posterior
distribution of a psychometric model. These hisiograms of posterior estimates comtradict the assumed Beta(012,2) prior
densities (plotted on top of the histograms) for each batch of parameters, and motivated us to switch to mixture prior
distributions. This implicit comparison to the values of 6; under the prior distribution can be viewed as a posterior predictive
check in which the replicated data include 30 new patients and 23 new symptoms. From Meulders et al. (1998).
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Figure 4. Histograms of (a) 90 patient parameters and (b) 69 symptom parameiers, as estimated from the expanded
psychometric model. The mixture prior densities (plotted on top of the histograms) are not perfect, but they approximate the
corresponding histograms much better than the Beta(9|2, 2) densities in Figure 3. From Meulders et al. (1998).
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5 Conclusions, or, Isn’t This All Obvious?

Further research is needed to connect the principles of graphical design (as in Tufte, 1983, 1990;
Chambers ef al., 1983, and Cleveland, 1985, 1993) to the formal ideas of comparing data and
antisymmetric discrepancies to reference distributions. Already we have reinterpreted some well-
known ideas, such as binned residual plots (now justified because they can be implicitly compared to
their symmetric and independent reference distributions) and come up with new ideas appropriate to
complex models (for example, the idea of plotting 4 single simulation draw of a batch of hierarchical
parameters, rather than displaying the marginal posterior distribution of each). The former allows
direct comparison to a replication distribution, as in Figures 3 and 4.

We expect there is room for improvement and for future statistical packages to have antomatic
features for simulating replication distributions and performing model checks. We can anticipate
three challenges:

1. The replication distribution. This is analogous to the problem of specifying the prior distribution
in a Bayesian analysis. It can never be automatic, but standard options will be possible. For
example, in a language such as BUGS (Spiegelhalter ef al., 1994, 2002), replications will have
to be defined for all data and parameters in the model, and a simple start would be to choose,
for each, the option of resampling it or keeping it the same as with the corrent inference.
Resampling might require more effort in setting up the model, which is as it should be. For
example, if a sample size parameter n is to be resampled, it will need to have a distribution
specified, and this distribution could depend on the data, as would be appropriate if analyzing
data from a sequential design.

2. The test variables. Presumably, one can start by picking a bunch of these. It would be natural
to choose various summaries of any batches of random effects, for example.

3. Graphical display. These would have to be adapted to the dimensionality and structure of the
test variables and their replication distributions, as discussed in Section 4.2.

In the Bayesian analyses we have seen, exploratory data analysis is often performed at the
beginning, and there is sporadic model checking later. We hope that through the explicit inclusion
of the replications as part of the model, more sophisticated model checks will become standard
procedure. These will range from automatic quantitative comparisons (for example, checks for
skewness and autocorrelation) to graphical explorations of the data, to discover subtle patterns of the
data using complex Bayesian model fits as a guide,

We conclude with two examples from the very recent Bayesian literature that illustrate the graphical
exploratory analysis in the context of complex models. Carlin & Banerjee (2003) developed a new
multivariate spatio-temporal correlation model and fit it to data. They report a model-checking
display: “Year-by-year boxplots of the posterior median frailties (not shown) indicate a slightly
decreasing trend . . . though this might be mostly an artifact of the paucity of observed survival times
for these most recent cohorts”. We suspect that displayed draws of the vectors of the posterior time
series would allow direct comparison to the replication distribution. In another example, Newton
(2002) fitted a complex model to genetic data. He uses this model not just to make inferences about
parameters but to graphically reexpress the data to which the model was fit (in his Figure 6). The next
logical step would be to simulate replicated data under the model and compare these to the observed
data, using this visual display.

In both these cases, the key steps are the scientific model that was already fit to the data, and the
Bayesian inference used to draw inferences in the highly structured parameter spaces. Given this
scientific, statistical, and computational effort, it is a small step to graph the data and parameter
inferences and compare them, explicitly or implicitly, to replicated data. This step is important if
there is interest in applying these models to new data.

kAl
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Résumé

Analyse de données exploratrices et inférence {(EDA) Bayésienne (ou, en large, modélisation de statistiques complexes)—
qui sont généralement considérées comme Stant des paradigmes statistiques non relies. Dans cet article, nous pesentons un
cadre pour ’EDA, base sur des vérifications prédictives a posteriori. Nous expliquons comment les simulations pedictives
a posterioti peuvent &tre utilises pour créer des distributions de €férence pour des graphiques d"EDA, et la fagon dont cette
approche recoud quelques problémes de I’analyse de données Bayésienne, Nous démontrons comment la généralisation de
Pinférence Bayésienne qui inclut des données répliquées et des paramétres répliques suit une longue tradition de généralisation
dans la théorie Bayésienne.

. D'un point de vue théorique, nous présentons une formule Bayésienne prédictive de test d’ajustement, en distinguant entre
les *“ p-values” (probabilités postérieures que la mesure de la difffrence de I'antisymetrie spécifiée n’excede pas la valeur 0) et

* les “#-values” {résumes de données avec une distribution d’échantillonnage uniforme). Nous expliquons que les *p-vaiues”,

non comme les “u-values” sont des formules de probabilit Bayesienne car les conditions de donnies observées sont les
mémes.

Ayant revu le cadre général de la théorie, nous discutons des implications pour des graphiques statistiques et des analyses
de données exploratrices, en ayant pour but d*unifier les anatyses de donnfes exploratrices avec des méthodes de statistiques
plus officiels bases sur des modéles de probabilités. Nous interprétons des graphiques wrification prédictive a posteriori, et
nous-discutons de la fagon dont les inférences Bayésiennes peuvent &tre utifisées ou déterminer des distributions de Eférences.

Le but de ce travail n’est pas de renier les statistiques descriptives, ou de suggrer qu’elles soient replacies par des modéles
Bayésiens, mais plutdt de suggérer la fagon dont les analyses de donrées exploratrices se rangent dans le modéle probabilité-
modelisation.

Nous concluons avec une discussion des implications des pratiques des infrences Bayésiennes. En 1’occurrence, nous
anticipons que les logiciels Bayésiens peuvent tre generalises pour tirer des simulations et £pliquer des données et des
parametres de leur distribution prédictive a posteriori, qui peuvent étre a leur tour utilistes pour calibrer des graphiques
d’EDA.

- Mot clés: Bootstrap; Fisher’s exact test; Grapiu’ques Modles de meélange; Vérification. de modéle; Vérification prédictive

.,

antérieur; Vérification prédictive a posteriori; “p-value”™; “u-value™.
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