Chapfer 11
Bayesian Inference in Political Science, Finance,
and Marketing Research

Many current research challenges in Bayesian analysis arise in applications. A
beauty of the Bayesian approach is that it facilitates principled inference in essen-
tially any well-specified probability model or decision problem. In principle one
could consider arbitrarily complicated priors, probability models and decision prob-
lems. However, not even the most creatively convoluted mind could dream up the
complexities, wrinkles and complications that arise in actual applications. In this
chapter we discuss typical examples of such challenges, ranging from prior con-
structions in political science applications, to model based data transformation for
the display of multivariate marketing data, to challenging posterior simulation for
state space models in finance and to expected utility maximization for portfolio se-
lection.

11.1 Prior Distributions for Bayesian Data Analysis in Political
Science

Andrew Gelman

Jim Berger has made important contributions in many areas of Bayesian statistics,
most notably on the topics of statistical decision theory and prior distributions. It is
the latter subject which I shall discuss here. T will focus on the applied work of my
collaborators and myself, not out of any claim for its special importance but because
these are the examples with which I am most familiar. A discussion of the role of the
prior distribution in several applied examples will perhaps be mote interesting than
the alternative of surveying the gradual progress of Bayesian inference in political
science (or any other specific applied field).

I will go through four examples that illustrate different sorts of prior distribu-
tions as well as my own progress—in parallel with the rest of the statistical research
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community—in developing tools for including prior information in statistical anal-
yses:

* In 1990, we fit a hierarchical model for election outcomes in congressional dig-
tricts, using a mixture distribution with an informative prior distribution to mode]
districts held by Democrats and Republicans.

* In 1994, we returned to this example, replacing the mixture model with a re-
gression using incumbency as a predictor, with a flat prior distribution on the
regression coefficient.

¢ In 1997, we used a hierarchical model with poststratification to estimate state-
level public opinion from nationaj polls, Formally, the model nsed noninforma-

tive prior distributions, but our poststratification actually used lots of external

information from the Census.

In 2008, we used a varying-intercept, varying slope model to explore the relation

between income and voting in U.S. states. An atiempt to extend this modef o

include additional predictors revealed the limitations of our default approach of
marginal maximum likelihood. :

11.1.1 Statistics in Political Science

Is there anything about the study of public opinion and politics (as compared to
economics, psychology, sociology, or history, for example) that would show up in
the statistical modeling, in particular in prior distributions? I don’t think so.
Important statistical issues do arise in particular examples, however. For exam-
ple, there have not been many natiocral elections, but the fifty states are a natural
setting for hierarchical modeling—the states are hardly exchangeabie but it can be
. reasonable to model them with exchangeable errors after controlling for regional
indicators and other state-level predictors’. Much work in political science goes
into increasing the sample size, for example studying other countries (or, within the
United States, by studying state and local elections) or replacing binary data with
continuous variables, For example, students of the so-called “democratic peace” use
continuous measures for democracy and peace, allowing quantitative researchers 1o
examine more sophisticated hypotheses (see Garktze, 2007).
I now return to the statistical specifics of the examples listed above. As we shall
see, our models do not show any linear or even monotonic development. Rather,

' I used to say that Alabama and Mississippi were exchangeable, along with North and South
Dakota, until Brad Carlin—a resident of the neighboring state of Minnesota—explained to me the
differences between these two sparsely populated northern states, thus also educated me in the

general principle, emphasized by Bayesians from De Finett to Berger and beyond, that exchange-

mentioned above, Noi so many years ago many would’ve considered New Hampshire and Vermont

to be exchangeable as well, but the expanding Boston suburbs on one side and Ben & Jerry's on
the other have made such a model untenable,
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we have used more informative prior distributions where needed because of data
limitations.

11.1.2 Mixture Models and Different Ways of Encoding Prior
Information

Gelman and King (1990) present a model for estimating the so-called seats-votes
curve: the expected percentage of seats won by a political party in a legislative elec-
tion, as a function of the party’s share of the national vote. For example, in 2008 the
Democrats won 59% of the seats in the U.S. House of Representatives based on an
average of 55% of the vote in House elections (after adjusting for uncontested seats;
see Kastellec, Gelman, and Chandler, 2009). In 2006 they garnered 53% of the seats
based on 52% of the vote. More generally, we can estimate a stochastic seats-votes
relation-and thus compute its expectation, the seats-votes curve-—by setting up a
probability model for the vector of 435 congressional election outcomes.

For a Bayesian such as Jim Berger (or myself), inference under a probability
mode) is conceptually straightforward (even though it might require computational
effort and even research). The real challenge is setting up the model.

To use statistical notation, we have districts i = 1,2,...,435, and in each there
is y;, the proportion of votes received in that district by the Democrats in the most
recent election (as noted above, our mode! corrects for uncontested races, a detail
which we ignore in our treatment here). We model

yi ~ N(8;,62),

where 8; represents the expected level of support for the Democrats in that district
and year, with G, representing variation specific to that election. We estimated 0Oy
by looking at the residual variance predicting an election from the election six years
ago, four years ago, and two years ago, and extrapolating this down to predict a
hypothetical variance at lag zero.

With one data point y; for each parameter 8, we certainly needed a prior distri-
bution, and what we used was a mixture model with three components: two major
modes roughly corresponding to Democratic and Republican-leaning districts, and
a third component with a higher variance to capture districts that did not fit in either
of the two main modes. This mixture of three normal distributions had eight hyper-
parameters, which we gave pretty strong prior distributions in order to separately
identify the modes from a single election’s worth of data.

Much has been written about the difficulty of estimating mixture models and the
failure of maximum likelihood or noninformative Bayesian inference in this setting;
here, we had to go even further because our mixture components had particular
interpretations that we did not want to lose. To be specific, we assigned following
informative prior distribution:
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* Mixture component 1: mean had a N(—0.4, 0.4) prior distribution, standard de.
viation had an inverse-x2(4,0.4%) prior distribution:

¢ Mixture component 2: mean had a N(+0.4,0.4%) prior distribution, standard de-
viation had an inverse-y2(4,0.4%) prior distribution:

* Mixture component 3: mean had a N(0, 32) prior distribution, standard deviation
had an inverse-32(4,0.82) prior distribution; and

¢ The three mixture parameters had a Dirichlet(19, 19,4) prior distribution.

(The model was on the logit scale, which was why the priors for the modes were
centered at —0.4, -1-0.4 rather than at 0.4, 0.6 as they would have been had the data
been untransformed.)

Finally, having performed inference for the meodel vsing the Gibbs sampler (or,
as we called it in those pre-1990 days, “the data augmentation method of Tanner
and Wong (1987)”), we can simulate hypothetical replications of the election un-
der different conditions and then map out a seais-votes curve by allowing different
nationwide vote swings.

We followed up this study a few years later (Gelman and King, 1994) with a
very similar model differing in only two particulars: First, we set up our model as a
regression in which for each data point y; there could be district-level predictors x;,
and as a predictor we took incumbency status: a variable that equaled 1 for Demo-
cratic congress members running for reelection, —1 for Republican incumbents,
and O for “open seats”—those districts with no incumbents running. The model was
essentially the same as before, except that the district-level variance represented
unexplained variation after accounting for this (and any other) predictors.

The other way in our 1994 model differed from that published four years earlier
was that we got rid of the mixture model and its associated informative prior dis-
tribution! It turned out that all the information captured therein—and more—was
contained in the incumbency predictor. This illustrates the general point that what

is important is the information, not whether it is in the form of a “prior distribution”
or a “likelihood?

11.1.3 Incorporating Extra Information Using Poststratification

In the wake of the successes of hicrarchical Bayes for agricultural, social, and edu-
cational research (see, for exarple, Lindley and Smith (1972), and the accompany-
ing references and discussion), Survey researchers began using these methods for
small-area estimation (Fay and Herriot, 1979).

Gelman and Little (1997) applied these models to the problem of estimating
state-level opinions from national surveys, using hierarchical logistic regression to
obtain estimates of the average survey response within population subgroups defined
by sex, ethnicity (2 categories), age (4 categories), education (4 categories), and

2 Contrary to what Bayesians sometimes say, however, neither a loss function nor any formal
decision analytic framework was needed to set up the model and use it to perform useful inferences.
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state (51, including the District of Columbia)}—3264 cells in all, and thus certainly
a case of small-area estimation—and then summing those estimates over the 64 cells
within each state to estimate state-level averages.

fooked at in the traditional Bayesian way, the regression model was innocuous,
with predictors including sex x ethnicity, age xeducation, and state indicators, fitted
pormal prior distributions for the 16 agexeducation, and a group-level regression
with normal errors for the 51 state predictors. The unmodeled coefficients and hy-
perparameters were given noninformative uniform prior distributions, and it was
easy enough to program a Metropolis algorithm that converged well and yielded
simulation-based inference for all the regression parameters, simulations that we
directly propagated to obtain inference for the 3264 population cells-—a nice trick,
given that the procedure performs well even when fit to samples of 1500 or less.

A key place where external information enters into this example, though, is in
the next step, in which we construct inferences for the 51 states. The key step is
poststratification: summing over the cells in proportion to their population sizes
within each state. This step is not particularly Bayesian—given the computations
already done, it’s nothing more than the computation of 51 weighted averages for
each of our posterior simulations—but it does use prior information, in this case
the population counts from the Census. The poststratification framework allows us
to include external information structurally, as it were, in a way more natural than
would be the formal elicitation of a prior distribution.

This multilevel regression and poststratification approach has been useful in other
studies of public opinion. For example, Lax and Phillips (2009a) estimate state-level
opinion on several gay-rights issues and compare to state policies in this area. Lax
and Phillips (2009b) demonstrate that this approach outperforms classical methods
while using far smaller samples. The formal prior distribution is not important here,
but what is crucial is the use of prior information in the form of state-level predictors
(along with the external information from the Census, which is also implicitly used
in survey weighting).

11.1.4 Prior Distributions for Varying-Intercept, Varying-Slope
Multilevel Regressions

A striking feature of the American political map in the twenty-first century is that
the Democratic Party does best in the richer states of the northeast and west coast,
while the Republicans’ strength is in the poorer states in the south and middle of
the couniry—even while the parties retain their traditional economic bases, with
Democrats and Republicans continuing to win the votes of poorer and richer voters,
respectively. Gelman et al. (2008b) use Bayesian multilevel modeling to explore this
juxtaposition, using both individual-level and state-level incomes to predict vote
choice in a logistic regression model that includes unexplained variation at both
levels. The coefficients for state and individual incomes go in opposile directions,

Dyasaicbn
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corresponding to rich Democratic states with rich Republican voters within each
state.

Qur central model included varying intercepts and slopes—that is, the relation
between income and voting was allowed to be different in each state—and we
blithely fit it using noninformative uniform prior distributions for the hyperparame.
ters, which for this model included the unmodeled regression coefficients, the group-
level standard deviation parameters, and the correlation between the errors in the
state-level intercepts and slopes. All worked well, and we had the agreeable choice
of fitting the full Bayesian model in Bugs (Spiegelhalter et al., 1994, 2002) or run-
ning a quick approximate fit using a program in R that computed marginal maximum
likelihood estimates (Bates, 2005).

But we ran into trouble when we tried to extend the model by adding religious
attendance as a predictor (Gelman et al., 2008a, Chapter 6), thus requiring four
varying coefficients per state (income, religious attendance, their interaction, and a
constant term). A group-level covariance of dimension 4 x 4 was just too much for a
noninformative prior distribution to handle. Bugs simply choked—the program ran
extremely slowly and failed to move well through the posterior distribution—and the
marginal maximum likelihood estimate moved straight to the boundary of parameter
space, yielding an estimated covariance matrix that was not positive definite. These
problems arose even with sample sizes in the tens of thousands; apparently, the hy-
perparameters of even moderately-dimenstonal hierarchical regression models are
not well identified from data. '

In our particular example of modeling vote choice given income and religious
attendance, we managed to work around the problem by accepting this flawed
estimate—our focus here was on the four coefficients for each siate rather than on
the hyperparameters themselves—but we are convinced that a good general solu-
tion to this problem requires an informative prior distribution for the group-level
covariance matrix, possibly using the scaled-inverse-Wishart family (O’Malley and
Zaslavsky, 2005), whose redundant parameterization allows the user to supply dif-
ferent prior precisions for scale and correlation parameters.

11.1.5 Summary

In conclusion, prior information is often what makes Bayesian inference work.
I won’t say it's always necessary—noniformative machine learning methods seem
to work pretty well in classification problems with huge sample sizes and simple
questions—but in the political science examples of which I'm aware, information
needs to come in, whether as regression predictors or regularization (that is, prior
distributions) on parameters. An important challenge for Jim Berger and his suc-
cessors in the theory of Bayesian statistics is to study the mapping from prior to
posterior in indirect-data settings such as hierarchical models, and thus to figure out
which aspects of the prior distribution we need to be particularly careful to spec-
ify well. Such theory may indirectly inform our understanding of public opinion,
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elections, and international relations, by enabling us to study social and political
phenomena with ever more realistic (and thus complicated and parameter-laden)
models.
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11.2 Bayesian Computation in Finance

Satadru Hore, Michael Johannes, Hedibert Lopes, Robert E.
McCulloch, and Nicholas G. Polson

Modermn-day finance uses arbitrage and equilibrium arguments io derive asset prices
as a function of state variables and parameters of the underlying dynamics of the
economy. Many applications require extracting information from asset returns and
derivative prices such as options or to understand macro-finance models such as
consumption-based asset pricing models. To do this the researcher needs to combine
information from different sources, asset returns on the one hand and derivative
prices on the other. A natural approach to provide inference is Bayesian (Berger,
1985; Bernardo and Smith, 1994; Gamerman and Lopes, 2007). :

Our computational challenges arise from the inherent nonlinearities that arise in
the pricing equation, in particular through the dependence on parameters. Duffie
(1996) and Johannes and Polson (2009) show that empirical asset pricing problems
can be viewed as a nonlinear state space models. These so-called affine models pro-
vide a natural framework for addressing the problem as well. Whilst affine pricing
models in continuons time go a long way to describe the evolution of derivative
prices, empirically extracting the latent state variables and parameters that drive
prices has up until now received less attention due (o computational challenges. In
this paper, we address these challenges by using simulation-based methods, such as
Markov chain Monte Carlo (MCMC), Forward filtering backward sampling (FFBS)
and particle filter (PF). Hence we solve the inverse problem of filtering state vari-
ables and estimating parameters given empirical realizations on returns and deriva-
tive prices.

‘The statistical tools that we describe include MCMC methods, with particu-
lar emphasis on the FFBS algorithm of Carter and Kohn {1994) and Frithwirth-
Schnatter (1994). For sequential methods we describe PF algorithms, with particu-
lar emphasis on the sequential importance sampling with resampling (SISR) filter
of Gordon, Salmond, and Smith (1993) and the particle Iearning' (PL) algorithm of
Lopes et al. (2010). This current research shows how to also estimate parameters
such as agents’ preferences from empirical data. In many cases the agents will be
given the underlying parameters and the problem becomes one of filtering the hid-
den states as conditioning information arrives.




