BAYESIAN DATA ANALYSIS USING R

Bayesian data analysis using R

Jouni Kerman and Andrew Gelman

Introduction

Bayesian data analysis includes but is not limited
to Bayesian inference (Gelman et al [2003} Kerman),
2006a). Here, we take Bayesian inference to refer to
posterior inference (typically, the simulation of ran-
dom draws from the posterior distribution) given a
fixed model and data. Bayesian data analysis takes
Bayesian inference as a starting point but also in-
cludes fitting a model to different datasets, alter-
ing a model, performing inferential and predictive
summaries (including prior or posterior predictive
checks), and validation of the software used to fit the
model.

The most general programs currently available
for Bayesian inference are WinBUGS (BUGS Project)
2004) and OpenBugs, which can be accessed from R
using the packages RZWinBUGS (Sturtz et al., 2005)
and BRugs. In addition, various R packages ex-
ist that directly fit particular Bayesian models (e.g.
MCMCPack, Martin and Quinn| (2005)). In this note,
we describe our own entry in the “inference en-
gine” sweepstakes but, perhaps more importantly,
describe the ongoing development of some R pack-
ages that perform other aspects of Bayesian data
analysis.

Umacs

Umacs (Universal Markov chain sampler) is an R
package (to be released in Spring 2006) that facilitates
the construction of the Gibbs sampler and Metropo-
lis algorithm for Bayesian inference (Kerman), 2006b).
The user supplies data, parameter names, updating
functions (which can be some mix of Gibbs sam-
plers and Metropolis jumps, with the latter deter-
mined by specifying a log-posterior density func-
tion), and a procedure for generating starting points.
Using these inputs, Umacs writes a customized R
sampler function that automatically updates, keeps
track of Metropolis acceptances (and uses acceptance
probabilities to tune the jumping kernels, following
Gelman et al|(1995)), monitors convergence (follow-
ing |Gelman and Rubin| (1992)), summarizes results
graphically, and returns the inferences as random
variable objects (see rv, below).

Umacs is modular and can be expanded to in-
clude more efficient Gibbs/Metropolis steps. Cur-
rent features include adaptive Metropolis jumps for
vectors and matrices of random variables (which
arise, for example, in hierarchical regression models,
with a different vector of regression parameters for
each group).

Figure [I| illustrates how a simple Bayesian hier-
archical model (Gelman et al), 2003, page 451) can

be fit using Umacs: y; ~ N(Bj, (7]2), j=1..]
(J = 8), where o; are fixed and the means 0; are
given the prior t,(p, 7). In our implementation of
the Gibbs sampler, 0; is drawn from a Gaussian dis-
tribution with a random variance component V;. The
conditional distributions of 8, i, V, and 7 can be cal-
culated analytically, so we update them each by a
direct (Gibbs) update. The updating functions are
to be specified as R functions (here, theta.update,
V.update, mu.update, etc.). The degrees-of-freedom
parameter v is also unknown, and updated using
a Metropolis algorithm. To implement this, we
only need to supply a function calculating the log-
arithm of the posterior function, Umacs supplies
the code. We have several Metropolis classes for
efficiency; SMetropolis implements the Metropo-
lis update for a scalar parameter. These “updater-
generating functions" (Gibbs and SMetropolis) also
require an argument specifying a function return-
ing an initial starting point for the unknown param-
eter (here, theta.init, mu.init, tau.init, etc.).

s <- Sampler(

J =8,

sigma.y = c(15, 10, 16, 11, 9, 11, 10, 18),
y = c(28, 8, -3, 7, -1, 1, 18, 12),
theta = Gibbs(theta.update,theta.init),

v = Gibbs(V.update, V.init),

mu = Gibbs(mu.update,mu.init),

tau = Gibbs(tau.update, tau.init),

nu = SMetropolis(log.post.nu, nu.init),
Trace("thetal[1]")

)

Figure 1: Invoking the Umacs Sampler function to gen-
erate an R Markov chain sampler function s(...). Up-
dating algorithms are associated with the unknown pa-
rameters (6, V, u, T, v). Optionally, the non-modeled con-
stants and data (here |, o, y) can be localized to the sam-
pler function by defining them as parameters; the func-
tion s then encapsulates a complete sampling environment
that can be even moved over and run on another computer
without worrying about the availability of the data vari-
ables. The “virtual updating function” Trace displays a
real-time trace plot for the specified scalar variable.

The program is customizable and modular so that
users can define custom updating classes and more
refined Metropolis implementations.

The function produced by Sampler runs a given
number of iterations and a given number of chains; if
we are not satisfied with the convergence, we may re-
sume iteration without having to restart the chains. It
is also possible to add chains. The length of the burn-
in period that is discarded is user-definable and we
may also specify the desired number of simulations
to collect, automatically performing thinning as the
sampler runs.



BAYESIAN DATA ANALYSIS USING R

Once the pre-specified number of iterations are
done, the sampler function returns the simulations
wrapped in an object which can be coerced into a
plain matrix of simulations or to a list of random
variable objects (see v below), which can be then at-
tached to the search path.

rv

rv is an R package that defines a new simulation-
based random variable class in R along with various
mathematical and statistical manipulations (Kerman
and Gelman, 2005). The program creates an object
class whose instances can be manipulated like nu-
meric vectors and arrays. However, each element
in a vector contains a hidden dimension of simula-
tions: the rv objects can thus be thought of being ap-
proximations of random variables. That is, a random
scalar is stored internally as a vector, a random vector
as a matrix, a random matrix as a three-dimensional
array, and so forth. The random variable objects are
useful when manipulating and summarizing simu-
lations from a Markov chain simulation (for example
those generated by Umacs, see below). They can also
be used in simulation studies (Kerman, 2005). The
number of simulations stored in a random variable
object is user-definable.

The rv objects are a natural extension of numeric
objects in R, which are conceptually just “random
variables with zero variance”—that is, constants.
Arithmetic operations such as + and ~ and elemen-
tary functions such as exp and log work with rv ob-
jects, producing new rv objects.

These random variable objects work seamlessly
with regular numeric vectors: for example, we can
impute random variable z into a regular numeric
vector y with a statement like y[is.na(y)] <- z.
This converts y automatically into a random vector
(rv object) which can be manipulated much like any
numeric object; for example we can write mean (y) to
find the distribution of the arithmetic mean function
of the (random) vector y or sd(y) to find the distri-
bution of the sample standard deviation statistic.

The default print method of a random variable
object outputs a summary of the distribution repre-
sented by the simulations for each component of the
argument vector or array. Figure[2Jshows an example
of a summary of a random vector z with five random
components.

>z

name mean sd Min 2.5% 25% 50% 75% 97.5% Max
[1] Alice 59.0 27.3 ( -28.66 1.66 42.9 59.1 75.6 114 163 )
[2] Bob 57.0 29.2 ( -74.14 -1.98 38.3 58.2 75.9 110 202 )
[3] Cecil 62.6 24.1 ( -27.10 13.25 48.0 63.4 76.3 112 190 )
[4] Dave 71.7 18.7 ( 2.88 34.32 60.6 71.1 82.9 108 182 )
[5] Ellen 75.0 17.5 ( 4.12 38.42 64.1 75.3 86.2 108 162 )

Figure 2: The print method of an v (random variable)
object returns a summary of the mean, standard deviation,
and quantiles of the simulations embedded in the vector.

Standard functions to plot graphical summaries
of random variable objects are being developed. Fig-
ure 3| shows the result of a statement plot(x,y)
where x are constants and y is a random vector with
10 constant components (shown as dots) and five
random components (shown as intervals).

Intervals for predicted examination scores

100
I

80
I

60
I

final

40

20
I

midterm

Figure 3: A scatterplot of fifteen points (x,y) where five
of the components of y are random, that is, represented by
simulations and thus are drawn as intervals. Black verti-
cal intervals represent the 50% uncertainty intervals and
the gray ones the 95% intervals. (The light grey line is a
regression line computed from the ten fixed points).

Many methods on rv objects have been written,
for example E(y) returns the individual means (ex-
pectations) of the components of a random vector y.
A statement Pr(z[1]1>z[2]) would give an estimate
of the probability of the event {z; > z,}.

Random-variable generating functions generate new
rv objects by sampling from standard distributions,
for example rvnorm(n=10, mean=0, sd=1) would
return a random vector representing 10 draws from
the standard normal distribution. What makes these
functions interesting is that we can give them param-
eters that are also random, that is, represented by
simulations. If y is modeled as N (i, 02) and the ran-
dom variable objects mu and sigma represent draws
from the joint posterior distribution of (u, o)—we
can obtain these if we fit the model with Umacs (see
below) or BUGS for example—then a simple state-
ment like rvnorm(mean=mu, sd=sigma) would gen-
erate a random variable representing draws from
the posterior predictive distribution of y. A single
line of code thus will in fact perform Monte Carlo
integration of the joint density of (y*P, u, o), and
draw from the resulting distribution p(y™P|y) =
J [N(y*P|u, 0)p(u, oly) dudo. (We distinguish the
observations y and the unobserved random variable
y*¢P, which has the same conditional distribution as

Y).



BIBLIOGRAPHY

BIBLIOGRAPHY

R&B

The culmination of this research project is an R en-
vironment for Bayesian data analysis which would
allow inference, model expansion and comparison,
model checking, and software validation to be per-
formed easily, using a high-level Bayesian graphical
modeling language “B” adapted to R, with functions
that operate on R objects that include graphical mod-
els, parameters (nodes), and random variables. B exists
now only in conceptual level (Kerman, 2006a), and
we plan for its first incarnation in R (called R & B) to
be a simple version to demonstrate its possibilities.
B is not designed to be tied to any particular infer-
ence engine but rather a general interface for doing
Bayesian data analysis. Figure {4 illustrates a hypo-
thetical interactive session using R & B.

## Model 1: A trivial model:

NewModel(1, "J", "theta", "mu", "sigma", "y")
Model(y) <- Normal(J, theta, sigma)
Observation(y) <- c(28,8,-3,7,-1,1,18,12)
Hypothesis(sigma) <- c(15,10,16,11,9,11,10,18)
Observation(J) <- 8

Fit(1)

# Look at the inferences:

print (theta)

## Model 2: A hierarchical t model

NewModel (2, based.on.model=1, "V", "mu", "tau")
Model (theta) <- Normal(J, mu, V)

Model (V) <- InvChisq(nu, tau)
Fit(2)

# Look at the new inferences:
plot(theta)

# Draw from posterior predictive distribution:
y.repl <- Replicate(y, model=1)

y.rep2 <- Replicate(y, model=2)

## Use the same models but

## a new set of observations and hypotheses:
NewSituation()

Hypothesis(sigma) <- NULL # Sigma is now unknown.
Fit()

Figure 4: A hypothetical interactive session using the
high-level Bayesian language “B” in R (in development).
Several models can be kept in memory. Independently of
models, several “inferential situations” featuring new sets
of observations and hypotheses (hypothesized values for
parameters with assumed point-mass distributions) can
be defined. Fitting a model launches an inference engine
(usually, a sampler such as Umacs or BUGS) and stores
the inferences as random variable objects. By default, pa-
rameters are given noninformative prior distributions.

Conclusion

R is a powerful language for statistical modeling
and graphics; however it is currently limited when
it comes to Bayesian data analysis. Some packages
are available for fitting models, but it remains awk-
ward to work with the resulting inferences, alter

or compare the models, check fit to data, or vali-
date the software used for fitting. This article de-
scribes several of our research efforts, which we have
made into R packages or plan to do so. We hope
these packages will be useful in their own right and
also will motivate future work by others integrating
Bayesian modeling and graphical data analysis, so
that Bayesian inference can be performed in the iter-
ative data-analytic spirit of R.

Acknowledgements

We thank Tian Zheng, Shouhao Zhao, Yuejing Ding,
and Donald Rubin for help with the various pro-
grams and the National Science Foundation for fi-
nancial support.

Bibliography

BUGS  Project. BUGS: Bayesian  In-
ference Using Gibbs Sampling.
http://www.mrc-bsu.cam.ac.uk/bugs/, 2004.

A. Gelman and D. Rubin. Inference from iterative
simulation using multiple sequences (with discus-
sion). Statistical Science, 7:457-511, 1992.

A. Gelman, G. Roberts, and W. Gilks. Efficient
metropolis jumping rules. In J. M. Bernardo, J. O.
Berger, A. P. Dawid, and A. F. M. Smith, editors,
Bayesian Statistics 5. Oxford University Press, 1995.

A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin.
Bayesian Data Analysis. Chapman & Hall/CRC,
London, 2nd edition, 2003.

J. Kerman. Using random variable objects to com-
pute probability simulations. Technical report, De-
partment of Statistics, Columbia University, 2005.

J. Kerman. An integrated framework for Bayesian
graphic modeling, inference, and prediction. Tech-
nical report, Department of Statistics, Columbia
University, 2006a.

J. Kerman. Umacs: A Universal Markov Chain Sam-
pler. Technical report, Department of Statistics,
Columbia University, 2006b.

J. Kerman and A. Gelman. Manipulating and sum-
marizing posterior simulations using random vari-
able objects. Technical report, Department of
Statistics, Columbia University, 2005.

A. D. Martin and K. M. Quinn. MCMCpack 0.6-6.
http://mcmcpack.wustl.edu/, 2005.

S. Sturtz, U. Ligges, and A. Gelman. R2WinBUGS:
A package for running WinBUGS from R. Journal
of Statistical Software, 12(3):1-16, 2005. ISSN 1548-
7660.



	Bayesian data analysis using R

