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What does this have to do with MCMC?

I I’m speaking at Jun Liu’s MCMC conference

I We don’t have to be trapped by decades-old models

I The folk theorem about computation and modeling

I The example of BUGS
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Information in prior distributions

I Informative prior dist
I A full generative model for the data

I Noninformative prior dist
I Let the data speak
I Goal: valid inference for any θ

I Weakly informative prior dist
I Purposely include less information than we actually have
I Goal: regularlization, stabilization
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Weakly informative priors: some examples

I Variance parameters

I Covariance matrices

I Logistic regression coefficients

I Population variation in a physiological model

I Mixture models

I Intentional underpooling in hierarchical models

Andrew Gelman and Aleks Jakulin Weakly informative priors



Weakly informative priors
Static sensitivity analysis

Conservatism of Bayesian inference
A hierarchical framework

Conclusion
References

Variance parameters
Covariance matrices
Logistic regression coefficients
Population variation in a physiological model
Mixture models
Intentional underpooling in hierarchical models

Weakly informative priors: some examples

I Variance parameters

I Covariance matrices

I Logistic regression coefficients

I Population variation in a physiological model

I Mixture models

I Intentional underpooling in hierarchical models

Andrew Gelman and Aleks Jakulin Weakly informative priors



Weakly informative priors
Static sensitivity analysis

Conservatism of Bayesian inference
A hierarchical framework

Conclusion
References

Variance parameters
Covariance matrices
Logistic regression coefficients
Population variation in a physiological model
Mixture models
Intentional underpooling in hierarchical models

Weakly informative priors: some examples

I Variance parameters

I Covariance matrices

I Logistic regression coefficients

I Population variation in a physiological model

I Mixture models

I Intentional underpooling in hierarchical models

Andrew Gelman and Aleks Jakulin Weakly informative priors



Weakly informative priors
Static sensitivity analysis

Conservatism of Bayesian inference
A hierarchical framework

Conclusion
References

Variance parameters
Covariance matrices
Logistic regression coefficients
Population variation in a physiological model
Mixture models
Intentional underpooling in hierarchical models

Weakly informative priors: some examples

I Variance parameters

I Covariance matrices

I Logistic regression coefficients

I Population variation in a physiological model

I Mixture models

I Intentional underpooling in hierarchical models

Andrew Gelman and Aleks Jakulin Weakly informative priors



Weakly informative priors
Static sensitivity analysis

Conservatism of Bayesian inference
A hierarchical framework

Conclusion
References

Variance parameters
Covariance matrices
Logistic regression coefficients
Population variation in a physiological model
Mixture models
Intentional underpooling in hierarchical models

Weakly informative priors: some examples

I Variance parameters

I Covariance matrices

I Logistic regression coefficients

I Population variation in a physiological model

I Mixture models

I Intentional underpooling in hierarchical models

Andrew Gelman and Aleks Jakulin Weakly informative priors



Weakly informative priors
Static sensitivity analysis

Conservatism of Bayesian inference
A hierarchical framework

Conclusion
References

Variance parameters
Covariance matrices
Logistic regression coefficients
Population variation in a physiological model
Mixture models
Intentional underpooling in hierarchical models

Weakly informative priors: some examples

I Variance parameters

I Covariance matrices

I Logistic regression coefficients

I Population variation in a physiological model

I Mixture models

I Intentional underpooling in hierarchical models

Andrew Gelman and Aleks Jakulin Weakly informative priors



Weakly informative priors
Static sensitivity analysis

Conservatism of Bayesian inference
A hierarchical framework

Conclusion
References

Variance parameters
Covariance matrices
Logistic regression coefficients
Population variation in a physiological model
Mixture models
Intentional underpooling in hierarchical models

Weakly informative priors: some examples

I Variance parameters

I Covariance matrices

I Logistic regression coefficients

I Population variation in a physiological model

I Mixture models

I Intentional underpooling in hierarchical models

Andrew Gelman and Aleks Jakulin Weakly informative priors



Weakly informative priors
Static sensitivity analysis

Conservatism of Bayesian inference
A hierarchical framework

Conclusion
References

Variance parameters
Covariance matrices
Logistic regression coefficients
Population variation in a physiological model
Mixture models
Intentional underpooling in hierarchical models

Weakly informative priors for
variance parameter

I Basic hierarchical model

I Traditional inverse-gamma(0.001, 0.001) prior can be highly
informative (in a bad way)!

I Noninformative uniform prior works better

I But if #groups is small (J = 2, 3, even 5), a weakly
informative prior helps by shutting down huge values of τ
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Priors for variance parameter: J = 8 goups

σα
0 5 10 15 20 25 30

8 schools:  posterior on σα  given
uniform prior on σα

σα
0 5 10 15 20 25 30

8 schools:  posterior on σα  given
inv−gamma (1, 1) prior on σα

2

σα
0 5 10 15 20 25 30

8 schools:  posterior on σα  given
inv−gamma (.001, .001) prior on σα

2
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Priors for variance parameter: J = 3 groups

σα
0 50 100 150 200

3 schools:  posterior on σα  given
uniform prior on σα

σα
0 50 100 150 200

3 schools:  posterior on σα  given
half−Cauchy (25) prior on σα
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Weakly informative priors for
covariance matrices

I Inverse-Wishart has problems

I Correlations can be between 0 and 1

I Set up models so prior expectation of correlations is 0

I Goal: to be weakly informative about correlations and
variances

I Scaled inverse-Wishart model uses redundant parameterization
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Separation in logistic regression

glm (vote ~ female + black + income, family=binomial(link="logit"))

1960 1968

coef.est coef.se coef.est coef.se

(Intercept) -0.14 0.23 (Intercept) 0.47 0.24

female 0.24 0.14 female -0.01 0.15

black -1.03 0.36 black -3.64 0.59

income 0.03 0.06 income -0.03 0.07

1964 1972

coef.est coef.se coef.est coef.se

(Intercept) -1.15 0.22 (Intercept) 0.67 0.18

female -0.09 0.14 female -0.25 0.12

black -16.83 420.40 black -2.63 0.27

income 0.19 0.06 income 0.09 0.05
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Weakly informative priors for
logistic regression coefficients

I Separation in logistic regression
I Some prior info: logistic regression coefs are almost always

between −5 and 5:
I 5 on the logit scale takes you from 0.01 to 0.50

or from 0.50 to 0.99
I Smoking and lung cancer

I Independent Cauchy prior dists with center 0 and scale 2.5

I Rescale each predictor to have mean 0 and sd 1
2

I Fast implementation using EM; easy adaptation of glm
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Weakly informative priors for
mixture models

I Well-known problem of fitting the mixture model likelihood

I The maximum likelihood fits are weird, with a single point
taking half the mixture

I Bayes with flat prior is just as bad

I These solutions don’t “look” like mixtures

I There must be additional prior information—or, to put it
another way, regularization

I Simple constraints, for example, a prior dist on the variance
ratio

I Weakly informative
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Intentional underpooling in hierarchical models

I Basic hierarchical model:
I Data yj on parameters θj

I Group-level model θj ∼ N(µ, τ 2)
I No-pooling estimate θ̂j = yj

I Bayesian partial-pooling estimate E(θj |y)

I Weak Bayes estimate: same as Bayes, but replacing τ with 2τ

I An example of the “inconsistent Gibbs” algorithm

I Why would we do this??
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Static sensitivity analysis: what happens if we add prior
information?
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Conservatism of Bayesian inference

I Consider the logistic regression example
I Problems with maximum likelihood when data show

separation:
I Coefficient estimate of −∞
I Estimated predictive probability of 0 for new cases

I Is this conservative?

I Not if evaluated by log score or predictive log-likelihood
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Another example

Dose #deaths/#animals
−0.86 0/5
−0.30 1/5
−0.05 3/5

0.73 5/5

I Slope of a logistic regression of Pr(death) on dose:
I Maximum likelihood est is 7.8± 4.9
I With weakly-informative prior: Bayes est is 4.4± 1.9

I Which is truly conservative?

I The sociology of shrinkage
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A hierarchical framework

I Consider many possible datasets

I The “true prior” is the distribution of β’s across these datasets

I Fit one dataset at a time

I A “weakly informative prior” has less information (wider
variance) than the true prior

I Open question: How to formalize the tradeoffs from using
different priors?
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Evaluation using a corpus of datasets

I Compare classical glm to Bayesian estimates using various
prior distributions

I Evaluate using cross-validation and average predictive error

I The optimal prior distribution for β’s is (approx) Cauchy (0, 1)

I Our Cauchy (0, 2.5) prior distribution is weakly informative!
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Prior as population distribution
Evaluation using a corpus of datasets

Expected predictive loss, avg over a corpus of datasets
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I “Noninformative priors” are really weakly informative

I “Weakly informative” is a more general and useful concept
I Regularization

I Better inferences
I Stability of computation
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