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SUMMARY

Primate motor cortex projects to spinal interneurons
and motoneurons, suggesting that motor cortex ac-
tivity may be dominated by muscle-like commands.
Observations during reaching lend support to this
view, but evidence remains ambiguous and much
debated. To provide a different perspective, we em-
ployed a novel behavioral paradigm that facilitates
comparison between time-evolving neural and mus-
cle activity. We found that single motor cortex neu-
rons displayed many muscle-like properties, but the
structure of population activity was not muscle-like.
Unlike muscle activity, neural activity was structured
to avoid ‘‘tangling’’: moments where similar activity
patterns led to dissimilar future patterns. Avoidance
of tangling was present across tasks and species.
Network models revealed a potential reason for this
consistent feature: low tangling confers noise robust-
ness. Finally, we were able to predict motor cortex
activity from muscle activity by leveraging the hy-
pothesis that muscle-like commands are embedded
in additional structure that yields low tangling.

INTRODUCTION

For 50 years, a central question in motor physiology has been

whether motor cortex activity resembles muscle activity, and,

if not, why not (Evarts, 1968)? Primate motor cortex is as close

as one synapse to the motoneurons (Rathelot and Strick,

2009), and single action potentials in corticospinal neurons
can measurably impact muscle activity (Cheney and Fetz,

1980; Schieber and Rivlis, 2007), suggesting that motor cortex

may encodemuscle-like commands (Ajemian et al., 2008; Herter

et al., 2009; Morrow et al., 2009; Sergio et al., 2005; Todorov,

2000). Yet motor cortical responses often differ from patterns

of muscle force, motivating the hypothesis that motor cortex

might primarily encode movement velocity or direction (Georgo-

poulos et al., 1986; Moran and Schwartz, 1999b; Schwartz,

1994, 2007). Alternatively, it has been proposed that non-mus-

cle-like response features reflect network or feedback dynamics

(Churchland and Cunningham, 2014; Churchland et al., 2012;

Kaufman et al., 2016; Lillicrap and Scott, 2013; Maier et al.,

2005; Michaels et al., 2016; Rokni and Sompolinsky, 2012; Seely

et al., 2016; Shenoy et al., 2013; Sussillo et al., 2015).

Many studies, largely focused on reaching, have produced little

consensus (Aflalo and Graziano, 2007; Fetz, 1992; Georgopou-

los et al., 2007; Moran and Schwartz, 2000; Mussa-Ivaldi,

1988; Reimer and Hatsopoulos, 2009; Scott, 2008).

The ubiquity of reaching tasks has naturally promoted analysis

of directional tuning (e.g., Ajemian et al., 2008; Georgopoulos

et al., 1982; Kakei et al., 1999; Lillicrap and Scott, 2013; Scott

and Kalaska, 1997), the interpretation of which remains debated

(Georgopoulos et al., 2007; Moran and Schwartz, 2000; Mussa-

Ivaldi, 1988; Sanger, 1994). More generally, reaching tasks tend

to inspire hypotheses where neurons encode parameters rele-

vant to reaching (Burnod et al., 1992; Georgopoulos et al.,

1982, 1986; Moran and Schwartz, 1999b) or reflect reach-appro-

priate dynamics (Churchland and Cunningham, 2014; Church-

land et al., 2012). A few studies (Hatsopoulos et al., 2007; Moran

and Schwartz, 1999a; Schwartz et al., 2004) examined primate

motor cortex during extended drawing or tracing movements

but also focused largely on directional properties (although see

Fitzsimmons et al., 2009; Foster et al., 2014). Given that the
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Figure 1. Behavioral and Physiological Re-

sponses during Cycling

(A) Schematic of the task during forward cycling.

A green landscape indicated that virtual progress

required cycling forward.

(B) An orange landscape indicated that progress

required cycling backward.

(C) Behavioral data and spikes from one neuron

during an example session. Data are for a single

condition: forward/seven-cycle/bottom-start (mon-

key C). Trials are aligned to movement onset and

ordered from fastest to slowest.

(D) Behavioral data and raw trapezius EMG

for one condition: backward/seven-cycle/bottom-

start (monkey D).

(E) Data from (C) after temporal scaling to align

trials.

(F) Data from (D) after temporal scaling.

(G) Trial-averaged and filtered neural activity for

the example neuron in (C) and (E). Envelopes show

the standard error of the mean (SEM), which was

often within the trace width. Shading tracks

vertical hand position: lightest at top and darkest

at bottom. Small tick marks indicate each cycle’s

completion.

(H) Rectified, filtered, and trial-averaged EMG for

the example in (D) and (F).
defining feature of movement is change with time, progress may

benefit from more detailed comparisons of time-evolving pat-

terns of neural and muscle activity. To afford such comparisons,

an ideal task would achieve the traditional goal of dissociating

kinematics from muscle activity (Kakei et al., 1999; Scott and

Kalaska, 1997), but in the temporal rather than spatial domain.

This has been achieved during reaches (Churchland and

Shenoy, 2007; Sergio et al., 2005), but more extended move-

ments could improve the power of such comparisons.

Unlike in sensory systems where responses strongly reflect

incoming stimuli, time-evolving responses in the motor system

may reflect computations performed by internal and feedback

dynamics. A growing body of work seeks to understand neural

responses in terms of signals that a recurrent or feedback-driven

neural network would need to perform the relevant task (Henne-

quin et al., 2014; Li et al., 2016; Lillicrap and Scott, 2013; Mante

et al., 2013; Michaels et al., 2016; Sussillo and Barak, 2013).

Althoughmultiple network solutions are typically possible, broad

principles can still apply. For example, the simple constraint of

a smooth dynamical flow-field explains aspects of neural dy-

namics during reaching (Sussillo et al., 2015).

Here,we leveragea ‘‘cycling’’ task that evokedextendedmove-

ments with simple kinematics driven by temporally complex pat-

ternsofmuscleactivity.We found that singleneuronsandmuscles

shared many temporal response properties. Yet the neural popu-

lation as a whole was dominated by signals that were not muscle-

like and were not explained by velocity/direction coding. Seeking

an alternative explanation, we focused on a basic principle of

recurrent and feedback-driven networks: the present network

state strongly influences the future state. Thus, two similar pat-

terns of activity, observed at different moments, should not lead
954 Neuron 97, 953–966, February 21, 2018
tohighlydissimilarpatterns in thenear future.Werefer toviolations

of this principle as ‘‘trajectory tangling.’’ Moments of high tangling

imply either a potential instability in network dynamics or a

moment when the system must rely on external commands.

Tangling was often high for muscle population trajectories. This

was expected: muscles reflect descending commands and need

not avoid tangling. In contrast, tangling was very low for motor

cortex population trajectories. This was found not only during

cycling, but also during a reaching task, and in rodent during

reach-to-grasp and locomotion. However, low tangling was

anatomically specific and was not observed for primary visual or

somatosensory cortex.We found that the dominant signals inmo-

tor cortex were those that naturally reduced tangling. Using an

optimization approach, we could quantitatively predict the neural

population response based on only two principles: the need to

encode muscle-like commands and the need to ensure low

tangling. Network simulations confirm that low trajectory tangling

is computationally beneficial. Networks with lower tangling are

more noise robust. In summary, our data reveal a potentially gen-

eral property of motor cortex: muscle-like signals are present but

are relatively modest ‘‘ripples’’ riding on top of larger signals that

confer minimal tangling. Thus, the dominant signals in motor cor-

tex may serve not a representational function—encoding specific

variables—but rather a computational function: ensuring that out-

going commands can be generated reliably.

RESULTS

Task and Behavior
We trained two rhesus macaque monkeys to grasp a hand-

pedal and cycle for juice reward. Cycling produced movement
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Figure 2. Kinematics and Muscle Activity

(A) Vertical hand velocity, averaged across trials

from a typical session (monkey C). Format as in

Figure 1G. Left and right columns show data for

forward and backward seven-cycle movements.

Data for top- and bottom-start movements are

shifted to align hand position (light shading

indicates cycle apex).

(B) Corresponding horizontal hand velocity traces.

(C) Brachialis EMG (monkey C). Envelopes

show SEM.

(D) Medial triceps EMG (monkey C).

(E) Trapezius EMG (monkey D).
through a virtual landscape. Landscape color indicated whether

forward virtual motion required ‘‘forward’’ cycling (Figure 1A) or

‘‘backward’’ cycling (Figure 1B). During each trial, the monkey

progressed from one stationary target to another. Target acqui-

sition required a stationary pedal with the target ‘‘under’’ the first

person perspective (Figures 1A and 1B). The first target was

acquired with a pedal orientation either straight up (‘‘top-start’’)

or straight down (‘‘bottom-start’’). Inter-target distance deter-

mined the required number of revolutions: 0.5, 1, 2, 4, or 7 cy-

cles. Monkeys performed all combinations of two cycling

directions, two starting orientations, and five distances. Cycling

required overcoming simulated inertia and viscosity while coun-

tering the weight of an arm extended in front of the body. These

requirements differ from those during locomotion and had to be

learned.

Behaviorwashighly stereotyped; notesimilarityof virtual-world-

position traces across trials in Figures 1C and 1D. Nevertheless,

small trial-to-trial variations in cycling speed caused accumulating

misalignment of kinematics with time. We thus temporally scaled

trials so that virtual-world-position traces were closely matched.

Doing so revealed considerable temporal structure in neural and

electromyographic (EMG) responses (Figures 1E and 1F). To sum-

marizesuchstructure,wecomputedaveragefiring rate (Figure1G)

or muscle activation (Figure 1H) across trials. We used a narrow

filter (25-ms Gaussian kernel) relative to the timescale of behavior

(�500-ms cycling period) to preserve fine temporal features.

We similarly computed trial-averaged responses for key kinematic
N

parameters such as hand velocity. Consis-

tent with the circular motion, vertical and

horizontal hand velocity exhibited appro-

ximately sinusoidal profiles (Figures 2A

and2B) that repeatedacrossmiddle cycles

andwereslightly slowerduring initial/termi-

nal cycles as angular velocity ramped up

and down. Top- and bottom-start move-

ments differed in phase butwere otherwise

similar during middle cycles.

Intramuscular EMG recordings (35 and

29 sites in monkey D and C) concentrated

on muscles that moved the shoulder and

elbow and to a lesser degree the wrist

(which had limitedmobility given the pedal

design). Muscle activity (Figures 2C–2E)

generally followed intuitions from biome-
chanics. For example, the triceps muscle extends the elbow,

moving the hand away from the body. Accordingly, triceps activ-

ity (Figure 2D) peaked near each cycle’s apex (white shading)

when cycling forward and near its bottom (dark shading)

when cycling backward. Some muscle responses were roughly

sinusoidal and resembled kinematics, yet deviations from sinu-

soidal were common (e.g., Figure 2E).

Single-Neuron Responses
Well-isolated single neurons (103 and 109, monkeys D and C)

were sequentially recorded from motor cortex, including sulcal

and surface primary motor cortex and the immediately adjacent

aspect of dorsal premotor cortex (potential differences within

this population are explored later). Recordings were localized

to the region where microstimulation activated muscles from

which we recorded. Cycling evoked strong responses; nearly

all neurons that could be isolated were task modulated.

Peak firing rates ranged from 16 to 184 spikes/s (monkey D,

mean: 69 spikes/s) and 16 to 185 spikes/s (monkey C, mean:

76 spikes/s). Neurons displayed a variety of intricate response

patterns (Figure 3). These patterns were statistically reliable:

SEMswere small and the same pattern could be seen repeatedly

across middle cycles for both top- and bottom-start conditions.

Inspection revealed three features shared between muscles

and neurons. First, responses often deviated from the sinusoidal

profile of kinematics (e.g., Figure 2E, backward; Figure 3A, for-

ward). Second, responses during initial/terminal cycles often
euron 97, 953–966, February 21, 2018 955
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Cortex Neurons

Format as for Figure 2.

(A–F) Average firing rate was computed across

a median of 15 trials/condition per neuron.

Neuron names indicate primary motor cortex (M1)

versus dorsal premotor cortex (PMd) and monkey

(D versus C). Calibrations are 40 spikes/s.
displayed differences in amplitude or temporal profile compared

to middle cycles (e.g., Figure 2D, forward; Figure 3D, forward;

Figure 3E, backward). This effect presumably relates to the

unique force patterns required to start and stop. Third, re-

sponses could differ between forward and backward cycling in

both amplitude (e.g., Figures 2C and 3C) and structure (e.g., Fig-

ures 2E, 3A, and 3F).

Consistent with these shared features, muscle responses

could be successfully decoded from the neural population using

a linear model (leave-one-out-cross-validated R2 = 0.80 and

0.78) consistent with prior studies (Griffin et al., 2008; Morrow

et al., 2009; Schieber and Rivlis, 2007). This is potentially impres-

sive, given that a linear model is almost certainly too simplistic.

This finding might suggest that motor cortex activity primarily re-

flectsmuscle-like commands. However, decoding neural activity

from muscle activity was less successful (leave-one-out-cross-

validated R2 = 0.54 and 0.50). This discrepancy in fit quality

was not simply due to neural recordings having higher

sampling error than muscle recordings. The same discrepancy
956 Neuron 97, 953–966, February 21, 2018
was observed when neural responses

were de-noised using dimensionality

reduction techniques (STAR Methods).

Thus, while muscle-like signals can be

found in the neural data, there exist addi-

tional, non-muscle-like neural response

patterns.

Non-muscle-like Signals Dominate
the Neural Population Response
To characterize population responses,

we applied principal component analysis

(PCA), a standard unsupervised algo-

rithm that identifies the dominant signals

in multi-dimensional data (Figure 4).

Each such signal is a weighted combina-

tion of individual-neuron responses, with

those weights (the PCs) optimized such

that a small number of signals faithfully

summarizes the full population response.

We first examine the signals captured by

the top two PCs. Plotting these signals

versus one another yields a state-space

trajectory (Figure 4C). Each point on the

trajectory (e.g., the orange dot in Fig-

ure 4C) corresponds to the neural state

at one moment (dashed line in Figures

4A and 4B). A two-dimensional trajectory

provides only a partial summary of the
neural state, but the resulting visualization can still be informative

and inspire hypotheses.

Neural trajectories for monkey D are shown during both

forward and backward cycling (Figure 4E, top and bottom

subpanels). Top-start and bottom-start trajectories are superim-

posed. For monkey C, trajectories during forward and backward

cycling are also superimposed (Figure 4H). For illustrative pur-

poses, data are shown only for seven-cycle conditions (as in Fig-

ures 1, 2, and 3). Middle cycles (3–5) are highlighted in color.

Neural trajectories followed repeating orbits throughout the

middle cycles. Rotating orbits are expected during cycling, in

contrast to reaching (Churchland et al., 2012), and simply reflect

what can be observed in single neurons:middle-cycle responses

tend to repeat. Muscle trajectories also followed repeating orbits

(Figures 4D and 4G). Despite this basic similarity, neural and

muscle trajectories behaved differently. Muscle trajectories

counter-rotated: they orbited in opposing directions for forward

and backward cycling. Counter-rotation is expected given the

reversal of required force patterns. For example, forward cycling
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Figure 4. Visualization of Population Struc-

ture via PCA

(A) PCA operates on a population of responses

(6 of 103 neurons are shown). Green traces

highlight themiddle cycles used to find the PCs for

this visualization (subsequent analyses consider

all times). PCs were computed based on cycling in

both directions and both starting positions. Data

are plotted only for the forward, bottom-start

condition.

(B) Projections onto the PCs. The neural state at a

given time (orange line) can be summarized by the

values of the projections at that time.

(C) Corresponding neural trajectory. The projec-

tion onto the second PC is plotted against that

onto the first (�35% of variance is captured in

these dimensions). Orange dot shows the neural

state at the same time as in (A) and (B).

(D) Muscle trajectories captured by projecting

the muscle population response onto its first two

PCs (monkey D). Trajectories are shown for for-

ward and backward cycling, using the same PCs.

Trajectories for top- and bottom-start conditions

(lighter and darker colored traces, respectively)

are overlaid.

(E) Corresponding neural trajectories.

(F) Corresponding hand-velocity trajectories, pro-

duced by applying PCA to horizontal and vertical

velocity across multiple sessions. This is similar

(but for a change of axes) to plotting average

vertical versus horizontal velocity.

(G–I) PCA-based muscle, neural, and velocity

trajectories for monkey C. Same format as (D)–(F),

but trajectories for forward and backward cycling

are overlaid.
requires lifting before pushing and backward cycling requires

pushing before lifting. In contrast, neural trajectories co-rotated:

they orbited in the same direction for forward and backward

cycling. Furthermore, muscle trajectories tended to depart

from circular: the orbit often possessed a kidney- or saddle-

like shape. In contrast, neural trajectories were more circular or

elliptical. Thus, the dominant signals in the neural population

differ from those in the muscle population.

Potential Explanations and Caveats
A potential explanation for non-muscle-like patterns in motor

cortex is that they encode directional signals such as hand

velocity (e.g., Moran and Schwartz, 1999b). This explanation

initially seems appealing given the present data. For example,

the neural trajectory during backward cycling for monkey D (Fig-

ure 4E, bottom) visually resembles the corresponding velocity

trajectory (Figure 4F, bottom). However, velocity trajectories

necessarily counter-rotate between forward and backward

cycling (the same would be true of hand direction or position).

The dominant signals in the neural data do just the opposite.

Combined with the fact that single-neuron response profiles

typically do not resemble hand velocity or position traces, it

seems unlikely that a simple representation of kinematic param-

eters can explain the dominant neural signals.
An alternative explanation is that the dominant neural signals

may constitute descending commands to the muscles, yet may

look non-muscle-like because theywill be heavilymodified by spi-

nal circuitry. Cortical commands are likely integrated/low-pass

filtered by the spinal cord (Shalit et al., 2012) and may encode

muscle synergies rather than individual-muscle activations (Hart

and Giszter, 2010). However, any commands related to force are

almost certain to reverse between forward and backward cycling

due to the reversal of required force patterns. Thus, the dominant

signals in theneural dataare not readily explained in termsof either

muscle-command encoding or kinematic encoding. Of course,

this does not rule out the possibility that muscle-like commands

(or kinematic commands) are encoded in dimensions beyond

the top two PCs. Indeed, we will suggest below that muscle-like

commands likely are encoded. Yet, one is tempted to question

the assumption that the dominant signals encode commands of

any sort. Might there exist an alternative explanation?

Smooth Dynamics Predict Low Trajectory Tangling
Recent physiological and theoretical investigations suggest

that the neural state in motor cortex obeys smooth dynamics

(Churchland et al., 2012; Hall et al., 2014; Michaels et al., 2016;

Seely et al., 2016; Sussillo et al., 2015). Smooth dynamics imply

that neural trajectories should not be tangled: similar neural
Neuron 97, 953–966, February 21, 2018 957
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Figure 5. Illustration of the Trajectory Tangling Metric

(A) Muscle trajectories during the middle five cycles (of seven) for forward and

backward cycling (bottom-start). Arrows illustrate a pair of states and their

derivative (the trajectory direction). Time t resulted in a largeQEMGðtÞ. Time t0 is
the ‘‘associated time’’ that resulted in that tangling value—i.e., that maximizes

k _xt � _xt0 k 2=kxt � xt0 k 2 + ε. In this example, t and t0 occur during different

conditions (forward versus backward). Tangling was computed in eight di-

mensions.

(B) Corresponding neural trajectories. Time t is the same as in A, and time t00 is
the associated time that resulted in QNeuralðtÞ.
(C) Corresponding trajectories from an artificial recurrent network, trained to

produce the middle-cycle activity of all muscles.

(D) Scatterplot of network- versus muscle-trajectory tangling. One point per

time/condition.

(E) Summary of tangling across 463 networks, each trained to produce the

pattern of muscle activity from monkey D (red) or C (blue). For each network,

we computed the 90th percentile tangling value across times/conditions. This

distribution (across networks) can be compared to 90th percentile tangling for

the empirical muscle populations (vertical lines).
states, either during different movements or at different times for

the samemovement, should not be associated with different de-

rivatives. We quantified trajectory tangling using

QðtÞ= max
t0

k _xt � _xt0 k 2

kxt � xt0 k 2 + ε

; (Equation 1)

where xt is the neural state at time t (i.e., a vector containing

the neural responses at that time), _xt is the temporal derivative

of the neural state, k, k is the Euclidean norm, and ε is a small

constant that prevents division by zero (STAR Methods). QðtÞ
becomes high if there exists a state at a different time, t0, that
is similar but associated with a dissimilar derivative. We take

the maximum to ask whether the state at time t ever becomes

tangledwith any other state. Thismaximum is takenwith t0 index-
ing across time during all conditions. QðtÞ can be analogously

assessed for muscle trajectories.

We chose tangling as a straightforward measure of whether a

given trajectory could have been produced by a smooth dynam-

ical flow-field. Given limits on hownon-smooth dynamics can be,
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moments of very high tangling are incompatible with a fixed

flow-field. Furthermore, even moderately high tangling implies

potential instabilities in the underlying flow-field (STARMethods;

Figure S1). High tangling thus implies either that the system

must rely on external commands rather than internal dynamics,

or that the system is flirting with instability. Although other

metrics are possible, tangling has the practical benefit that it

can be computed directly from the empirical trajectories without

needing to know (or fit) a flow-field.

For the reasons above, a network that relies heavily on intrinsic

dynamics should avoid tangling. In contrast, when population ac-

tivity primarily reflects external commands (as for the muscles or

a population of sensory neurons) high tangling is both benign and

potentially necessary. For example, co-contraction of the biceps

and triceps at one moment might need to be quickly followed by

biceps activation and triceps relaxation. At a later moment or

during a different movement, co-contraction might instead

need to be followed by biceps relaxation and triceps activation.

This would constitute an instance of tangling because the same

state (co-contraction) is followed by different subsequent states.

Do suchmoments of high tangling indeed occur for themuscles?

If so, are they mirrored or avoided in the neural responses?

The state at a given time is a location on a state-space

trajectory. The derivative is the direction in which the trajectory

is headed. Two states are thus tangled if they are nearby but

associated with different trajectory directions. For visualization,

we consider a subset of the data: the middle five cycles of

seven-cycle movements projected onto two dimensions (Fig-

ures 5A and 5B). Of course, two-dimensional projections only

partially reflect the true population state; activity spans multiple

dimensions. As a practical choice, we computed tangling in eight

dimensions (results were robust with respect to this choice—see

below). Muscle trajectories (Figure 5A) show three features sug-

gestive of high tangling. First, muscle trajectories counter-rotate

when cycling forward versus backward, yielding opposing deriv-

atives for similar states. Second, muscle trajectories often cross

themselves at right angles, resulting in similar states with very

different derivatives. Third, non-circular trajectories sometimes

yield nearby muscle states that move in different directions.

These features indeed produced occasional moments of high

tangling. For example, the gray arrow shows the muscle state

and its derivative at a chosen time t. At time t0, there exists

another state at a similar location in state space but with a very

different derivative (black arrow).

Neural trajectories (Figure 5B) appear potentially less tangled.

Co-rotation prevents trajectories from continuously opposing

one another between forward and backward cycling. Even within

a condition, trajectories are closer to circular with fewer sharp

bends. There are moments when trajectories cross in these

two dimensions, but this did not result in high tangling because

trajectories were separated in other dimensions. Notably, at

moments when muscle trajectories became highly tangled,

neural trajectories did not. For example, the muscle state at

time t was strongly tangled, while the neural state at that same

time was much less tangled.

Before comparing tangling across all times/conditions, we

wished to confirm that the tangling metric behaves as intended

when the ground truth is known. We examined trajectories
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Figure 6. Trajectory Tangling for Multiple Datasets

(A) Motor cortex versus muscle trajectory tangling (monkey D). Points are shown for all times during movement for all twenty conditions. Blue line indicates unity

slope. Gray/orange triangles denote 90th percentile tangling.

(B) Same for monkey C.

(C) Neural versus muscle populations are distinguishable based on tangling. For a given subpopulation size, we drew that many neurons and muscles and

computed tangling. 500 such draws were made per subpopulation size. The vertical axis gives the percentage of instances where the neural subpopulation was

correctly identified based on lower tangling. Envelopes show SEMs based on binomial statistics.

(D) S1 versus muscle trajectory tangling.

(E) Motor cortex versus muscle trajectory tangling during reaching (monkey A).

(F) Same but for monkey B.

(G) Motor cortex versus muscle trajectory tangling in three mice (black, blue, and green symbols). (Illustration by E. Daubert).

(H) Comparison of motor cortex and V1 trajectory tangling. Because V1 data have no corresponding muscle activity, tangling is quantified by 90th percentile

values. Motor cortex data are from the cycling task as in (A) and (B). SEMs were computed via bootstrap: the distribution of tangling values was resampled

200 times, producing a sampling distribution of 90th percentile tangling values.

See also Figures S2 and S3.
from a simulated recurrent neural network trained to produce

muscle activity for the subset of data plotted in Figure 5A. The

network output closely resembled those muscle signals, yet

the dominant signals internal to the network did not (cf. Figure 5C

with Figure 5A). To compare tangling, we plotted QNetworkðtÞ
versus QEMGðtÞ for every time during both simulated conditions

(Figure 5D). Network-trajectory tangling was consistently lower

than muscle-trajectory tangling, despite producing muscle tra-

jectories as an output. We repeated this analysis for multiple

simulated networks, using different weight initializations and

meta-parameters. The degree of network-trajectory tangling

was variable (distributions in Figure 5E) but was nearly always

lower than muscle-trajectory tangling.

Neural- versus Muscle-Trajectory Tangling
For motor cortex, we compared QNeural and QEMG for all times

across all twenty conditions. At least four results are possible.
First, if motor cortex activity is a straightforward code for muscle

activity, QNeural andQEMG should have a linear relationship with a

slope near unity. Second, if motor cortex reflects unknown vari-

ables, and/or if tangling captures nothing fundamental, QNeural

andQEMG may show no clear relationship. Third, if neural activity

is more complex, intricate, or ‘‘noisier’’ than muscle activity,

QNeural could tend to be greater than QEMG. Finally, QNeural could

be systematically reduced relative to QEMG, as was the case for

the simulated networks.

The data obeyed the final prediction (Figures 6A and 6B).

The neural state was less tangled than the correspondingmuscle

state in 99.9% and 96.6% of cases (monkey D and C). The rare

exceptions occurred when tangling was low for both. Strikingly,

muscle-trajectory tangling could be quite high with no accom-

panying increase in neural-trajectory tangling. Statistically, dis-

tributions of QNeural and QEMG were indeed different (paired

t test, p < 10�10 for each monkey). The difference in tangling
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was robust to analysis choices: it did not depend on the use

of PCA versus ‘‘raw’’ data (Figure S2), on the number of PCs

analyzed (Figure S3), on whether we matched dimensionality

or variance explained (Figure S3), or on the relative number of

neurons versus muscles (Figure S3). The large difference be-

tween QNeural and QEMG is striking given that visual inspection

does not readily reveal whether individual recordings are neural

or muscular (cf. Figure 3 with Figure 2). Yet the tangling metric

readily distinguished between even small populations of neurons

versus muscles (Figure 6C).

Tangling across Tasks, Species, and Areas
Is low neural- versus muscle-trajectory tangling specific to

cycling or a more general property of motor cortex? We lever-

aged recently collected data (Elsayed et al., 2016) from two

monkeys performing a center-out reach task. Again, QNeural

was greatly reduced relative to QEMG (Figures 6E and 6F). We

also compared QNeural and QEMG in mice during an experiment

with two behaviors: reaching to pull a joystick and walking on a

treadmill (Miri et al., 2017). We observed a slightly weaker yet

similar effect (Figure 6G) to that seen in primates. Thus, low tra-

jectory tangling inmotor cortex appears to be a general property.

We also examined responses in the proprioceptive region

(area 3a) of primary somatosensory cortex (S1) during cycling.

This region is immediately adjacent to motor cortex, and individ-

ual-neuron responses (Figure S4) are surprisingly similar to those

in motor cortex. Yet tangling was not as consistently low in S1

(Figure 6D) as it was in motor cortex (Figure 6A, same task and

monkey). At moments where the muscle state became highly

tangled, the S1 state often also became quite tangled. All three

tangling distributions were significantly different: p < 10�10

comparing muscle and S1 populations; p < 10�10 comparing

S1 and motor cortex populations (paired t test).

We also considered a primary visual cortex (V1) population

responding to natural-scene movies. V1 trajectories were

much more tangled than motor cortex trajectories (Figure 6H;

p < 10�10 and p < 10�10, two-sample t test comparing V1 with

motor cortex for monkey D and C). Across datasets (motor cor-

tex, muscles, S1, V1), there was no clear relationship between

dimensionality and tangling (Figure S5). Instead, tangling was

highest for those populations (muscles and sensory areas) where

driving inputs are expected to have the largest impact. This

agrees with the fact that driving inputs, unless they can be pre-

dicted from outgoing commands, can readily cause the same

state to be followed by different future states. For example, no

constraint prevents image A from being followed by image B

on one occasion, and by image C on another occasion.

Noise-Robust Networks Display Low Tangling
For a recurrent or feedback-driven network, it is intuitive that

high tangling must be avoided. If the flow-field has some degree

of smoothness, nearby states cannot be associated with very

different derivatives. Thus, moments of high tangling cannot be

produced without relying on disambiguating external inputs.

Yet motor cortex trajectories avoided even moderate tangling.

This is not strictly necessary even in the idealized case of a fully

autonomous dynamical system. For example, some recurrent

networks did showmoderate tangling (right tail of the distribution
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in Figure 5E) yet still functioned. Might the very low empirical

tangling confer some computational advantage? Formal consid-

erations suggest so: even moderate tangling implies potential

dynamical instabilities (STAR Methods).

To explore potential advantages of low tangling, we consid-

ered neural networks trained to generate a simple idealized

output: cos t for one muscle and sin 2t for a second muscle (Fig-

ure 7A, top). The output trajectory was thus a figure eight (left

subpanel). It is not possible for a network’s internal trajectory

to follow a pure figure eight; the center-most state is very highly

tangled. Tangling can be reduced by employing a third dimen-

sion such that the trajectory is ½cos t; sin 2t; bsin t�. Even a

modest value of b reduces tangling enough (middle subpanel)

that the trajectory can be produced. As the network follows

that three-dimensional trajectory, the figure-eight pattern can

still be ‘‘read out’’ via projection, with the third dimension falling

in the null space of the readout (Druckmann and Chklovskii,

2012; Kaufman et al., 2014). Are further decreases in tangling

(right subpanel) advantageous? We examined noise tolerance

across networks with internal trajectories ½cos t; sin 2t; bsin t�
and different values of b. This necessitated the unusual step of

training networks not only to produce a desired output, but to

follow a specified internal trajectory (STAR Methods).

Networks with high trajectory tangling failed to produce the

figure-eight output in the presence of even small amounts of

noise (Figure 7B). Networks with low trajectory tangling were

much more noise robust. We performed a similar analysis with

trajectories that encoded the empirical muscle trajectories, but

with varying degrees of tangling (found using the optimization

approach in the next section). Again, low tangling provided noise

robustness (Figure S6). This was true both for networks that

generated a single internal trajectory, and networks that gener-

ated different forward and backward trajectories based on

inputs. Intuitively, when tangling is low, noise is less likely to

perturb the network onto a nearby but inappropriate part of the

trajectory. More formally, low tangling aids local stability (Fig-

ure S1; STAR Methods).

While the example in Figures 7A and 7B is simplified, it illus-

trates a feature that may help interpret the empirical neural

trajectories. Setting b= 1 yields a weakly tangled trajectory that

encodes the desired figure-eight output in one projection and

is a circle in another projection (Figure 7A, right subpanel). This

is a natural shape to introduce: a circle is the least-tangled

rhythmic trajectory.

Hypothesis-Based Prediction of Neural Responses
The results above suggest a hypothesis: motor cortex may

embedoutgoingcommands (which, ifmuscle-like,wouldbequite

tangled) in a larger trajectory such that the full orbit is minimally

tangled. Inspired by optimizations that predicted V1 responses

(Olshausen and Field, 1996), we employed an optimization

approach to predict the dominant patterns of motor cortex activ-

ity. Optimization found a predicted neural population response,bX , that couldbe linearly decoded toproduce theempiricalmuscle

activity Z, yet was minimally tangled. Specifically:

bX = argmin
X

�
kZ � ZXyX k 2

F + l
X
t

QXðtÞ
�
; (Equation 2)
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(A) Illustration of how an output can be embedded in a larger trajectory with varying degrees of tangling. Top traces: a hypothetical two-dimensional output

½cos t; sin 2t�. Plotted in state space, that output trajectory is a figure eight and contains a highly tangled central point. Adding a third dimension (bsin t) reduces

tangling.

(B) Noise robustness of recurrent networks trained to follow the internal trajectory ½cos t; sin 2t; bsin t�. By varying b, we trained a set of networks that could all

produce the same output but had varying degrees of trajectory tangling. Noise tolerance (mean and SEMacross initializations) is plotted versus network trajectory

tangling for each value of b.

(C) Similarity of the predicted and empirical motor cortex population responses (monkey D). Blue trace: prediction yielded by optimizing the cost function in

Equation 2. Cyan dot indicates similarity at initialization; i.e., the similarity of empirical neural and muscle trajectories. This also provides a lower benchmark

(orange dashed line). Gray traces: same as blue trace but with Gaussian noise added during initialization. Multiple initializations yielded a family of

predictions. Black dashed line shows upper benchmark as described in the text, with a 95% confidence interval computed across random divisions of the

population.

(D) Same but for monkey C.

(E) Projection of a representative predicted population response onto the top two PCs. Prediction based on EMG from monkey D. Green/red traces show

trajectories for three cycles of forward/backward cycling.

(F) Same but for monkey C.

See also Figures S6 and S7.
where each column of the matrix Z describes the muscle popu-

lation response for one time and condition. The first term of the

cost function ensures that neural activity ‘‘encodes’’ muscle ac-

tivity; ZXyX is the optimal linear reconstruction of Z from X (y in-
dicates the pseudo-inverse; k, k F indicates the Frobenius norm).

This formulation should not be taken to imply that the true neural-

to-muscle mapping is linear, merely that the predicted neural ac-

tivity should yield a reasonable linear readout of muscle activity,

consistent with empirical findings (Griffin et al., 2008; Morrow

et al., 2009; Schieber and Rivlis, 2007). The second term of the

cost function encourages low trajectory tangling. The predicted

neural population response thus balances optimal encoding of

muscle activity with minimal tangling.

We applied optimization using muscle data during three mid-

dle cycles of forward cycling and three middle cycles of back-

ward cycling. Thus, we are attempting to simultaneously predict

two ‘‘steady-state’’ neural trajectories. We used canonical corre-

lation to assess similarity between predicted and actual neural
responses. Canonical correlation finds linear transformations of

two datasets such that they are maximally correlated. We em-

ployed a variant of canonical correlation that enforces ortho-

normal transformations. Unity similarity thus indicates two data-

sets are the same but for a rotation, isotropic scaling, or offset.

We initialized optimization with bXinit =Z, corresponding to the

baseline hypothesis that neural activity is a ‘‘pure’’ code for

muscle activity. This yielded reasonably high initial similarity (Fig-

ures 7C and 7D, cyan dot) because muscle activity shares many

basic features with neural activity (e.g., the same fundamental

frequency).

During optimization, we insisted that the predicted neural pop-

ulation response, bX , have the same dimensionality as themuscle

population response, Z (both were ten dimensional). Matching

dimensionality is a conservative choice that aids interpretation.

When optimization cannot add dimensions, some muscle-like

features must be lost in order to gain features that reduce

tangling. Similarity will therefore increase only if the features
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gained during optimization are more realistic/prominent than the

features that are lost.

Similarity between predicted and empirical populations

increased with optimization (Figures 7C and 7D, blue), reaching

a similarity roughly halfway between the ‘‘pure muscle encod-

ing’’ hypothesis and perfect similarity. To provide a rough bench-

mark of good similarity, we computed the average similarity

between two random halves of the empirical neural population

(black dashed trace with 95% confidence intervals). Similarity

approached this benchmark for both monkeys. To assess this

result’s consistency, we repeated optimization, each time initial-

izing with the empirical patterns of muscle activity plus tempo-

rally smooth noise in each of the ten dimensions. Similarity to

the data always increased during optimization (gray traces).

This analysis also revealed that adding random structure de-

creases initial similarity (gray traces start below the blue trace).

This underscores that similarity increased during optimization

due to the introduction of structure matching that in the neural

data, and not simply any arbitrary structure.

Each initialization resulted in a slightly different solution (the

optimized bX ). We were thus able to ask which solutions were

common and whether the nature of those solutions explains

the increased similarity with the empirical data. For all 200 solu-

tions (100 per monkey), optimization produced near-circular tra-

jectories. When comparing between forward and backward, two

classes of solutions emerged. The less common (31/100 for

monkey D and 13/100 for monkey C) involved dominant circular

trajectories in planes that were nearly orthogonal (first principal

angle >85�) for forward and backward. The most common

(69/100 and 87/100 for monkey D and C) involved at least

some overlap between these planes. In such cases, trajectories

were almost always co-rotational (67/69 and 85/87 for monkey D

and C) in the top two PCs. Two typical solutions are shown in

Figures 7E and 7F. Co-rotations dominate because, when trajec-

tories exist in a common subspace, tangling is lowest if they

co-rotate (if they exist in orthogonal planes, co-rotation versus

counter-rotation is not defined). Similar structure was seen

for the empirical data: the planes that best captured neural

trajectories during forward and backward cycling overlapped

(principal angles were 72� and 61� for monkey D, and 73� and

40� for monkey C) and showed co-rotation in the top two PCs

(as in Figures 4E and4H). Thus, optimization based onEquation 2

not only increased quantitative similarity, it reproduced the

dominant features of the neural data: nearly circular trajectories

that exist in distinct but overlapping planes, and that co-rotate in

the projection capturing the most variance.

Alternative Predictions
We performed a variety of optimizations corresponding to cost

functions embodying other hypotheses (Figure S7). Optimizations

thatsought to reduce thenormofactivityor to increasesparseness

(standard forms of regularization) decreased similarity. Optimizing

for local smoothness (one aspect of low tangling) increased simi-

larity but not as effectively as optimizing for low tangling itself.

Thus, similarity increasedonlywhenoptimization reduced tangling

and increased most when low tangling was directly optimized.

However, low tangling per se was not sufficient to increase

similarity. We created simulated populations where the response
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of each unit was either the response of a muscle or the derivative

of that response. This reflects the hypothesis that neurons

might represent both muscle activity and the change in muscle

activity (Evarts, 1968). By construction, these simulated popula-

tions had fairly low tangling (Figure S8A). Yet, they did not partic-

ularly resemble the neural population. Quantitatively, similarity

increased modestly for monkey D (roughly half as much as

when optimizing for low tangling directly) and decreased for

monkey C. The dominant signals in these simulated populations

did not show the same dominant circular structure seen in the

neural data (Figure S8B). The mismatch can be understood by

noting that differentiation increases the prevalence of high-fre-

quency features. This does not lead to amatchwith the dominant

circular structure at the fundamental frequency in the empirical

data. In summary, optimizing directly for low tangling introduced

features that were both particularly effective in reducing tangling

and matched features in the data. Reducing tangling in a more

‘‘incidental’’ fashion did not produce these realistic features.

Signals Introduced by Optimization Yield Incidental
Correlations
The optimization based on Equation 2 added structure that

reduced tangling. That structure is unconnected to kinematics—

of which optimization had no knowledge. Nevertheless, the

predicted neural population response appeared to encode kine-

matics to a greater degree than would a pure code for muscle ac-

tivity. We used linear regression to decode a set of kinematic pa-

rameters (horizontal and vertical position and velocity) from the

activity of the muscle population. Fits were reasonable (R2 =

0.86 and 0.88 for monkey D and C) but improved (R2 = 0.97 and

0.94) when we instead decoded kinematics from the predicted

neuralpopulation response. Thisperformancewasnearly identical

to that observed when decoding kinematics from the empirical

neural population (R2 = 0.98 and 0.93). The ability to decode

horizontal and vertical velocity might initially seem surprising: the

dominant signals in the neural data co-rotated in the top two

PCs—inconsistent with a velocity representation. However, the

presence of more than two dimensions with sinusoidal structure

ensured that velocity could be read out reasonably accurately.

Despite these excellent decodes, generalization performance

was poor: generalization R2 was near-zero (or even negative)

when fitting kinematics for one direction and predicting for the

other. This was true whether decoding was based on the pre-

dicted or empirical neural response. While poor generalization

does not exclude the possibility that the empirical population

encodes kinematic signals, we saw no direct evidence for this

hypothesis. As noted above, we also rarely observed neurons

whose firing rates resembled kinematic parameters.

Muscle-like Signals Are Embedded in Trajectories with
Low Tangling
The success of optimization based on Equation 2 suggests

a hypothesis: the dominant population-level signals in motor

cortex may function to yield low tangling, with muscle-like

signals encoded by relatively modest ‘‘ripples’’ in dimensions

that point off the plane of dominant circular structure. A rough

analogy would be a phonograph, where the direction encoding

the temporally complex output is orthogonal to the dominant
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See also Figure S9.
motion of the record. Can such structure be viewed in the

empirical data? We projected the neural population response

onto triplets of dimensions (Figure 8). The first and second di-

mensions were always the first two PCs. The third was based

on the readout direction of a particular muscle, defined by the

set of weights found via linear regression. The third dimension

was then the vector that was both orthogonal to the first two

PCs and allowed the three dimensions to span the readout

direction. Consider first a triplet of dimensions spanning the

trapezius readout direction (Figure 8A). Trajectories trace out

circular paths in the top PCs. Ripples in a third dimension pro-
vide the fine temporal structure that matches trapezius activity

Figure 8B). The overall trajectory thus has the joint properties

of encoding trapezius activity while exhibiting low tangling.

Similar structure was observed for other muscles (Figures 8C

and 8E; data for monkey C are shown in Figure S9).

The dimensions that encode muscle activity captured only

modest variance. In the examples in Figure 8, each muscle-

readout dimension captured �10% as much variance as the

average of the top two PCs. The vertical dimensions in Figures

8A, 8C, and 8E are thus shown on an expanded scale for visual-

ization. A similar structure was present for the network model in

Figure 5C and also for the predicted population responses in Fig-

ures 7E and 7F: the activity of each encoded muscle constituted

a set of ripples upon dominant circular structure that yielded low

tangling.

In addition to dimensions from which muscle-like signals

can be read out, there exist other dimensions (not visible in Fig-

ure 8) that provide separation between neural trajectories during

forward and backward cycling. Low tangling may require such

separation—otherwise forward and backward trajectories would

need to encode very different patterns of muscle activity despite

following similar paths. Indeed, forward and backward neural

trajectories were on average much better separated than the

corresponding muscle trajectories (Figure S10). This difference

in separation was large but not as profound as the difference

in tangling. Thus, low neural-trajectory tangling (relative to mus-

cle-trajectory tangling) results from a variety of factors: more cir-

cular trajectories, increased separation between forward and

backward trajectories, and greater alignment of flow-fields

(e.g., co-rotation in the dominant dimensions).

Tangling in Sulcal Motor Cortex
The results abovesupport thehypothesis thatpopulationactivity in

motor cortex is less tangled than the outputs of that population. If

so, tangling might be predicted to be moderately higher in sulcal

motor cortex, where some neurons (cortico-motoneurons) make

mono-synaptic connections onto spinal motoneurons (Rathelot

andStrick, 2009), andsignals related tooutgoingmuscle-likecom-

mands might thus be enriched. This is worth investigating both as

an additional test of the central hypothesis, and because ourmea-

surements of muscle activity are only a proxy for the output of

motor cortex. Ideally, we would be able to compute tangling for

a subpopulation of identified cortico-motoneurons. In the absence

of such recordings, we considered the subpopulation of sulcal re-

cordings as a whole and compare with a subpopulation from the

most anterior region fromwhichwe recorded: the aspect of dorsal

premotor cortex contiguous with surface primary motor cortex.

Cortico-motoneurons are largely absent from this anterior region

(Rathelot and Strick, 2006). The subpopulation of sulcal neurons

did indeed show significantly higher tangling during both cycling

and reaching (Figure S11).

DISCUSSION

Are the Dominant Signals in Motor Cortex
Representational or Computational?
We found that the dominant signals in motor cortex were not

muscle-like. This result echoes findings during reaching, where
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aspects of neural responses depart from expectations under

a muscle-encoding framework (Evarts, 1968; Heming et al.,

2016; Kakei et al., 1999; Moran and Schwartz, 1999b; Scott,

2008; Scott and Kalaska, 1997; Todorov, 2000). The dominance

of non-muscle-like signals is more patent during cycling; non-

muscle-like signals are apparent simply via inspection of projec-

tions onto the top PCs.

A traditional explanation for non-muscle-like signals is that

they represent higher-level movement parameters. The present

results are inconsistent with the most common proposal: a rep-

resentation of direction or velocity. Under that proposal, trajec-

tories should have been co-planar and counter-rotated between

forward and backward cycling. We also found that single-neuron

responses rarely resembled velocity profiles. Our data do not

rule out the possibility that neural activity encodes a yet-to-be-

determined set of kinematic parameters (perhaps in addition to

muscle-like signals). However, our results urge caution when

considering such hypotheses. For example, reducing tangling

via optimization increases the degree to which activity appears

(incorrectly) to represent kinematic parameters. More broadly,

it may often be possible post hoc to select kinematic parameters

that resemble the dominant neural signals, but this may gener-

alize poorly across tasks. As one example, a representation of

horizontal position and velocity would produce ellipses that

co-rotate during forward/backward cycling. However, this ‘‘hor-

izontal kinematics’’ hypothesis would require a high relative po-

sition sensitivity to ensure a circular trajectory. A high position

sensitivity is inconsistent with observations during reaching,

where correlations are strongest with reach velocity and direc-

tion (Ashe and Georgopoulos, 1994). In summary, in this study

as in others, there will always be correlations that are incidental

rather than fundamental (Churchland and Shenoy, 2007; Fetz,

1992; Mussa-Ivaldi, 1988; Reimer and Hatsopoulos, 2009; To-

dorov, 2000). While it remains possible that kinematic parame-

ters are represented, we saw no compelling evidence for this

idea. The dominant signals were already naturally explained by

the hypothesis that tangling should be minimized. Furthermore,

the observation of low tangling generalized well across tasks.

Our results thus suggest that the dominant signals in cortex

may play a computational rather than a representational function.

Specifically, the dominant signals may fall partly or largely in the

null space of communication with downstream structures yet

may be critical for ensuring reliable generation of the commands

that are communicated. Put differently, motor cortex is part of a

larger dynamical system (spanningmany areas, including the spi-

nal cord, and incorporating sensory feedback) that culminates in

the generation of muscle commands. Such a system as a whole

is almost certain to contain non-output signals. It does logically

follow thatmotor cortex itselfmust showeither non-output signals

or low tangling;motor cortex could be downstreamof the relevant

dynamics or reflect only a small part of the overall network state.

Yet empirically, motor cortex displayed very low tangling.

Differences and Commonalities across Tasks
During both cycling and reaching (Churchland et al., 2012), neu-

ral trajectories follow circular paths that rotate in a concordant

direction, a feature not seen in the muscle population during

either task. This shared feature may reflect the combination of
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two facts. First, a circle is the least-tangled rhythmic trajectory.

Second, muscle activity during both tasks involves rhythmic as-

pects. This is trivially true during cycling. It is more subtly true

during reaching, where multiphasic patterns of muscle activity

are readily constructed from a quasi-oscillatory basis (Church-

land and Cunningham, 2014; Churchland et al., 2012). Rotational

trajectories are thus a natural way of encoding muscle activity

while maintaining low tangling. This interpretation agrees with

the recent finding that a network model, trained to produce mus-

cle activity during reaching, produced rotational neural trajec-

tories (Sussillo et al., 2015). This occurred only if the network

was regularized to encourage smooth dynamics, a regularization

that would implicitly encourage low tangling.

Still, we stress that rotational structure per se is unlikely to be

the fundamental principle shared across tasks. There are many

ways of adding structure that can reduce tangling. Even if certain

motifs are common, the optimal way to reduce tangling will

be task dependent. Thus, we propose that the deeper connec-

tion across tasks will not be a specific form of dynamics, but

dynamics that yield low tangling.

We also note that different tasks may involve motor cortex

sending different classes of output commands. For some tasks,

the details of muscle activity may be largely determined by spinal

circuitry, while other tasks (especially learned or dexterous tasks)

may require more direct control of the musculature. The latter

is potentially true during cycling, and some of our analyses

thus assumed a roughly linear relationship between neural and

muscle activity. However, the hypothesized computational princi-

ple—embed outgoing commands in structure that minimizes

tangling—would apply even if commands were only somewhat

muscle-like (e.g., if theywere transformedconsiderablyby the spi-

nal cord). Indeed, itwouldapplyeven ifdescendingcommandsare

high-level, as may have been the case in mice during locomotion.

Tangling across Areas
Trajectory tangling was very low for motor cortex, considerably

higher for S1, and higher still for the muscles. Tangling was

also high for V1. The degree of tangling may depend on how fully

activity in that area reflects the relevant global network and feed-

back dynamics. Motor cortex may show particularly low tangling

because it processes many relevant sources of information.

It is not only a major output of the primate motor system but re-

sponds robustly and rapidly to sensory inputs (Herter et al., 2009)

and lies at the nexus of cerebellar and basal-ganglia feedback

loops (Middleton and Strick, 2000). Other areas, even those

that participate in the same task, may or may not exhibit low

tangling depending on how fully they reflect the overall network

state. In particular, S1 responses are likely dominated by sen-

sory feedback and may very incompletely reflect the broader

dynamics of motor control. Even within motor cortex, tangling

was modestly higher within the sulcus, where activity may be

more dominated by output commands. Although V1 presumably

does exhibit some dynamics, activity is likely dominated by vi-

sual inputs, which can produce high tangling. These compari-

sons echo our recent finding that population structure can be

fundamentally different depending onwhether an area is hypoth-

esized to primarily reflect population dynamics versus external

variables (Seely et al., 2016).



Differences between areas raise the question of whether

tangling might sometimes differ within a population. Might the

motor system, over the course of learning or development, adopt

network trajectories that are increasingly less tangled? When

a new skill is learned, is performance better if subjects achieve

lower tangling? Are pathological conditions associated with

increased tangling? Such questions illustrate that many aspects

of motor cortex activity may be best understood not in terms

of representations of external parameters, but in terms of the

computational strategies that allow outputs to be accurately

and reliably generated.
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M. Churchland (mc3502@columbia.edu).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Main Experimental Datasets
Subjects were two adult male rhesus macaques (monkeys D and C). Animal protocols were approved by the Columbia University

Institutional Animal Care and Use Committee. Experiments were controlled and data collected under computer control (Speedgoat

Real-time Target Machine). During experiments, monkeys sat in a customized chair with the head restrained via a surgical implant.

Stimuli were displayed on amonitor in front of the monkey. A tube dispensed juice rewards. The left arm was loosely restrained using

a tube and a cloth sling. With their right arm, monkeys manipulated a pedal-like device. The device consisted of a cylindrical rotating

grip (the pedal), attached to a crank-arm, which rotated upon a main axel. That axel was connected to a motor and a rotary encoder

that reported angular position with 1/8000 cycle precision. In real time, information about angular position and its derivatives was

used to provide virtual mass and viscosity, with the desired forces delivered by the motor. The delay between encoder measurement

and force production was 1 ms.

Horizontal and vertical hand position were computed based on angular position and the length of the crank-arm (64 mm). To mini-

mize extraneous movement, the right wrist rested in a brace attached to the hand pedal. The motion of the pedal was thus almost

entirely driven by the shoulder and elbow, with the wrist moving only slightly to maintain a comfortable posture. Wrist movements

were monitored via two reflective spheres attached to the brace, which were tracked optically (Polaris system; Northern Digital,

Waterloo, Ontario, Canada) and used to calculate wrist angle. The small wrist movements were highly stereotyped across cycles.

Visual monitoring (via infrared camera) confirmed the same was true of the arm as a whole (e.g., the lateral position of the elbow

was quite stereotyped across revolutions). Eye position and pupil dilation were monitored but are not analyzed here.

Reaching Datasets
Recordings from primate motor cortex during reaching have been described and analyzed previously (Elsayed et al., 2016). Briefly,

two male rhesus monkeys (A and B) performed center-out reaches in eight target directions on a fronto-parallel screen. This task

employed three ‘contexts’ in which reach initiation was prompted by different cues. That manipulation was incidental to the present

analysis: we analyzed only movement-related responses, which were empirically very similar across the three contexts. We therefore

simply computed the trial-averaged time-varying firing rate (smoothed with a 20 ms SD. Gaussian) across all reaches for each of the

eight directions. Trials were aligned tomovement onset andwe analyzed the period from 100ms beforemovement onset until 100ms

after the average time of movement offset. Neural populations included 101 and 129 neurons (monkey A and B) recorded from the

arm region of motor cortex (including sulcal and surface primary motor cortex and the adjacent aspect of dorsal premotor cortex).
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During this same task, activity was recorded from the muscles of the upper arm (deltoid, trapezius, biceps, brachialis, pectoralis,

latissimus dorsi muscles) using the same procedures described above (13 and 10 recordings for monkey A and B; smoothed with

a 20 ms SD. Gaussian). The median number of analyzed trials per direction was 48 (monkey A) and 60 (monkey B).

Visual Cortex Datasets
Data fromprimate V1were recorded using natural-movie stimuli from an anaesthetized adult monkey (Macaca fascicularis) implanted

with a 96-electrode silicon ‘Utah’ array (Blackrock Microsystems, Salt Lake City, UT) in left-hemisphere V1 as previously described

(Seely et al., 2016). These data were recorded in the laboratory of Adam Kohn. Procedures were approved by the Animal Care

and Use Committees at Albert Einstein College of Medicine (protocol #20150303). The left eye was covered. Receptive field centers

(2–4 degrees eccentric) were determined via brief presentations of small drifting gratings. Stimuli, which spanned the receptive fields,

were 48 natural movie clips (selected from YouTube) with 50 repeats each. The frame rate was �95 Hz. Each stimulus lasted 2.63 s

(100 movie frames followed by 150 blank frames). Spikes from the array were sorted offline using MKsort (available at https://github.

com/ripple-neuro/mksort/). A total of 108 single units and stable multi-unit isolations were included. It is unclear how anesthesia

might affect trajectory tangling of this neural population. However, responses to stimuli were robust and only stimulus-evoked

aspects of the responses were analyzed.

Mouse Datasets
Data from mouse motor cortex have been described and analyzed previously (Miri et al., 2017). Briefly, three head-fixed mice per-

formed a task that included both a reach-to-grasp sub-task and natural treadmill walking (10 cm/s), performed in separate blocks.

Multiple neurons / muscles were recorded simultaneously, but were also accumulated across days to allow analysis of larger pop-

ulations. The populations for each mouse were analyzed separately. Neural recordings were made with independently movable

tetrode micro-drives, lowered over the course of two weeks to primarily target layer 5. A total of 890 well-isolated units from three

animals were recorded across 11 behavioral sessions. Muscle activity from the forelimb was recorded from electrodes chronically

implanted in the trapezius, pectoralis, biceps, triceps, extensor digitorum communis, and palmaris longus. For two mice, recordings

weremade from all six of thesemuscles. For onemouse, recordings could only bemade from four. Eachmuscle was recorded across

eleven sessions. PCA thus extracted the top EMG signals across 66 total records for two mice and 44 for the other. Spike-trains and

muscle activity were smoothed with a Gaussian filter (20 ms SD) and averaged across trials.

METHOD DETAILS

Task
The monitor displayed a virtual landscape, generated by the Unity engine (Unity Technologies, San Francisco). Surface texture and

landmarks to each side provided visual cues regarding movement through the landscape. Movement was along a linear ‘track’. One

rotation of the pedal produced one arbitrary unit of movement. Targets on the landscape surface indicated where themonkey should

stop for juice reward.

Each trial of the task began with the appearance of an initial target. To begin the trial, the monkey had to cycle to and to acquire

the initial target (i.e., stop on it and remain stationary) within 5 s. Acquisition of the initial target yielded a small reward. After a 1000ms

hold period, the final target appeared at a prescribed distance. Following a randomized (500-1000ms) delay period, a go-cue (bright-

ening of the final target) was given. The monkey then had to cycle to acquire the final target. After remaining stationary in the final

target for 1500 ms, the monkey received a large reward.

Successfully completing a trial necessitated satisfying a variety of constraints. Cycling had to begin between within 650 ms after

the go cue. Once cycling began, the final target had to be reached within a distance-dependent time limit. The trial was aborted if this

time elapsed (< 0.01% of trials for both monkeys), or if cycling speed dropped below a threshold before entering the final target

(�1.5% of trials in monkey D and �1.7% in monkey C). The trial was also aborted if the monkey moved past the final target

(�1.5% / 0.6% of trials), or if the monkey acquired the final target and thenmoved while waiting for the reward (�0.6% / 0.3%). These

constraints, combined with the monkeys’ natural desire to receive reward quickly, produced movements that were both brisk and

quite consistent across trials. The primary difference in behavior across trials was modest variation in overall movement duration

(as illustrated in Figure 1). In rare cases, behavior on a successful trial differed notably from typical behavior for that condition.

Such trials were removed prior to analysis.

The task included 20 conditions distinguishable by final target distance (half-, one-, two-, four-, and seven-cycles), initial starting

position (top or bottom of the cycle), and cycling direction. Salient visual cues (landscape color) indicated whether cycling must be

‘forward’ (the hand moved away from the body at the top of the cycle) or ‘backward’ (the hand moved toward from the body at the

top of the cycle) to produce forward virtual progress. Trials were blocked into forward and backward cycling. Other trials types were

interleaved using a block-randomized design. We collected a median of 15 trials / condition for both monkeys

Neural Recordings during Cycling
After initial training, we performed a sterile surgery during which monkeys were implanted with a head restraint and recording cylin-

ders. Cylinders (Crist Instruments, Hagerstown, MD) were placed surface normal to the cortex, centered over the border between
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caudal PMd and primary motor cortex, located according to a previous magnetic resonance imaging scan. The skull within the

cylinder was left intact and covered with a thin layer of dental acrylic. Electrodes were introduced through small (3.5 mm diameter)

burr holes drilled by hand through the acrylic and skull, under ketamine / xylazine anesthesia. Neural recordings were made using

conventional single electrodes (Frederick Haer Company, Bowdoinham, ME) driven by a hydraulic microdrive (David Kopf Instru-

ments, Tujunga, CA).

Sequential recording with conventional electrodes (as opposed to simultaneous recording with an array) allowed us to acquire re-

cordings from a broader range of sites, including sulcal sites inaccessible tomany array techniques. Recording locationswere guided

via microstimulation, light touch, and muscle palpation protocols to confirm the trademark properties of each region. For motor cor-

tex, recordings were made from primary motor cortex (both surface and sulcal) and the adjacent (caudal) aspect of dorsal premotor

cortex. For most analyses, these recordings are analyzed together as a single motor cortex population (although see Figure S11).

Motor cortex recordings were restricted to regions where microstimulation elicited responses in shoulder, upper arm, chest, and

forearm. For one monkey, we also recorded from area 3a (proprioceptive primary motor cortex). These recordings (44 neurons)

were made from the deeper aspects of the posterior bank of the central sulcus, where microstimulation did not produce movement.

Neural signals were amplified, filtered, andmanually sorted using BlackrockMicrosystems hardware (Digital Hub and 128-channel

Neural Signal Processor). A total of 277 isolations were made across the two monkeys. Nearly all neurons that could be isolated in

motor cortex were responsive during cycling. A modest number (21) of isolations were discarded due to low signal-to-noise ratios or

insufficient trial counts. No further selection criteria were applied. On each trial, the spikes of the recorded neuron were filtered with a

Gaussian (25 ms standard deviation; SD) to produce an estimate of firing rate versus time. These were then averaged across trials as

described below.

EMG Recordings
Intra-muscular EMG was recorded from the major muscles of the arm, shoulder, and chest using percutaneous pairs of hook-wire

electrodes (30mm x 27 gauge, Natus Neurology) inserted �1 cm into the belly of the muscle for the duration of single recording ses-

sions. Electrode voltages were amplified, bandpass filtered (10-500 Hz) and digitized at 1000 Hz. To ensure that recordings were of

high quality, signals were visualized on an oscilloscope throughout the duration of the recording session. Recordings were aborted if

they contained significantmovement artifact or weak signal. Thatmuscle was then re-recorded later. Offline, EMG recordswere high-

pass filtered at 40 Hz and rectified. Finally, EMG records were smoothed with a Gaussian (25 ms SD, same as neural data) and trial

averaged (see below). Recordings were made from the following muscles: the three heads of the deltoid, the two heads of the biceps

brachii, the three heads of the triceps brachii, trapezius, latissimus dorsi, pectoralis, brachioradialis, extensor carpi ulnaris, extensor

carpi radialis, flexor carpi ulnaris, flexor carpi radialis, and pronator. Recordings were made from 1-8 muscles at a time, on separate

days from neural recordings. We often made multiple recordings for a given muscle, especially those that we have previously noted

can display responses that vary with recording location (e.g., the deltoid).

Trial Alignment and Averaging
To preserve response features, it was important to compute the average firing rate across trials with nearly identical behavior. This

was achieved by 1) training to a high level of stereotyped behavior, 2) discarding rare aberrant trials, and 3) adaptive alignment of

individual trials prior to averaging. Because of the temporally extended nature of cyclingmovements, standard alignment procedures

(e.g., locking to movement onset) often misalign responses later in the movement. For example, a seven-cycle movement lasted

�3500 ms. By the last cycle, a trial 5% faster than normal and a trial 5% slower than normal would thus be misaligned by

350 ms, or over half a cycle.

To ensure response features were not lost to misalignment, we developed a technique to adaptively align trials within a condition.

First, trials were aligned on movement onset. Individual trials were then scaled so that all trials had the same duration (set to be the

median duration across trials). Because monkeys usually cycled at a consistent speed (within a given condition) this brought trials

largely into alignment: e.g., the top of each cycle occurred at nearly the same time for each trial. The adaptive alignment procedure

was used to correct any remaining slight misalignments. The time-base for each trial was scaled so that the position trace on that trial

closely matched the average position of all trials. This involved a slight non-uniform stretching, and resulted in the timing of all key

moments – such as when the hand passed the top of the cycle – being nearly identical across trials. This ensured that high-frequency

temporal response features (e.g., the small peak in Figure 1G) were not lost to averaging.

All variables of interest (firing rate, hand position, hand velocity, EMG, etc.) were computed on each trial before adaptive alignment.

Thus, the above procedure never alters themagnitude of these variables, but simply aligns when those values occur across trials. The

adaptive procedure was used once to align trials within a condition on a given recording session, and again to align data across

recording sessions. This allowed, for example, comparison of neural and muscle responses on a matched time-base.

QUANTIFICATION AND STATISTICAL ANALYSIS

Preprocessing and PCA
Because PCA seeks to capture variance, it can be disproportionately influenced by differences in firing rate range (e.g., a neuron with

a range of 100 spikes/s has 25 times the variance of a similar neuron with a range of 20 spikes/s). This concern is larger still for EMG,
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where the scale is arbitrary and can differ greatly between recordings. The response of each neuron / muscle was thus normalized

prior to application of PCA. EMG data were fully normalized: response := response=rangeðresponseÞ, where the range is taken

across all recorded times and conditions. Neural data were ‘soft’ normalized: response := response=ðrangeðresponseÞ+ 5Þ. We stan-

dardly (Churchland et al., 2012; Seely et al., 2016) use soft normalization to balance the desire for PCA to explain the responses of all

neurons with the desire that weak responses not contribute on an equal footing with robust responses. In practice, nearly all neurons

had high firing rate ranges during cycling, making soft normalization nearly identical to full normalization.

Following preprocessing, neural data were formatted as a ‘full-dimensional’ matrix, Xfull, of size n3t, where n is the number of neu-

rons and t indexes across all analyzed times and conditions. We similarly formatted muscle data as a matrix, Zfull, of sizem3t, where

m is the number of muscles. Unless otherwise specified, analyzed times were from 100 ms before movement onset to 100 ms after

movement offset, for all conditions. Because PCA operates on mean-centered data, we mean-centered Xfull and Zfull so that every

row had a mean value of zero.

PCA was used to find X, a reduced-dimensional version of Xfull with the property that XfullzVX, where V are the PCs (‘neural di-

mensions’ upon which the data are projected). PCA was similarly used to find Z, the reduced-dimensional version of Zfull. For most

analyses, we employed eight PCs, such that X and Z were of size 83t. Eight PCs captured 70% and 68% (monkey D and C) of the

neural data variance, and 94% and 88% of the muscle data variance.

Regression
Decoding of muscle activity from neural activity was accomplished via a linear model: Zfull =BXfull. B was found using ridge regres-

sion. Performance was assessed using generalization R2, using Leave-One-Out Cross Validation. Regularization strength was cho-

sen tomaximize Leave-One-Out Cross Validation performance, though in practice a broad range of regularization strengths provided

similar performance. We also attempted to decode neural activity frommuscle activity using the model Xfull =BZfull. Decoding neural

activity from muscle activity was less successful than decoding muscle activity from neural activity. Although our neural recordings

generally had very good signal-to-noise, we considered that poor decoding of neural activity frommuscle activity (relative to decod-

ing muscle activity from neural activity) could potentially result because neural responses tend to have higher sampling error than

muscle responses. We therefore re-ran the regression above after de-noising the neural data by replacing each neuron’s response

with its reconstruction using the top thirty PCs. The same discrepancy was observed.

In a subsequent analysis, we decoded kinematic parameters from both predicted and empirical population activity. The predicted

population response pertained only to the three middle cycles of seven-cycle movements. Thus, all decoding of kinematic param-

eters involved only those three cycles. Decoding employed ridge regression as described above. Regularization strength was chosen

to improve generalization performance without overly sacrificing test performance. Kinematics were mean centered, and regressed

against the ten dimensions of the predicted population response, or the projection of the empirical data onto the top ten PCs. Match-

ing dimensionality ensured that it is appropriate to compare R2 and generalization R2 values when regressing against the predicted

versus empirical population. Generalization performance was tested by fitting to data for one direction (e.g., forward cycling) and

generalizing to the other (e.g., backward cycling).

Tangling
Tangling was computed as described in the results (Equation 1). The neural state, xt was an 831 vector comprised of the tth column of

X, where X is of size 83t. Muscle tangling was computed analogously, based on Z. Essentially identical results were found if we used

Xfull and Zfull (Figure S2) but this was less computationally efficient and did not allow matched dimensionality between neurons and

muscles.We computed the derivative of the state as _xt = ðxt � xt�DtÞ=Dt, whereDtwas 1ms.When computing tangling, we employed

the squared distance between derivatives, k _xt � _xt0 k 2, because its magnitude more intuitively tracks the difference in trajectory di-

rection. For example, if the angle between derivatives doubles from 90� to 180�, the norm grows by only 41%, but the squared norm is

doubled. The constant ε was set to 0.1 times the average squared magnitude of xt across all t. Results were essentially identical

across an order of magnitude of values of ε.

Tangling estimates how non-smooth a flow-field would have to be to have produced the observed trajectories. While there are

many potential measures one could use, tangling is simple to compute directly from the data, without any need to attempt to estimate

the underlying flow-field. The simplicity of the tanglingmeasure is desirable not only from a data analysis standpoint, but also from the

standpoint of the optimizations in Figures 7 and S7. A more complicated measure would have resulted in a cost function that was

difficult or impossible to minimize. The ability to compute tangling without fitting a flow-field is desirable because even with many

conditions and temporally extended trajectories, the data leave many large ‘gaps’ in high-dimensional state space, making it difficult

to fit an overall flow-field with any confidence. That said, one would still hope that tangling would correlate with howwell the flow-field

can be fit by a dynamical model with smoothness constraints (e.g., a linear model). This was indeed the case. Muscle trajectories

(which were highly tangled) were less well fit by a linear dynamical model (R2 = 0.51 and 0.37 for monkey D and C) than were the

empirical neural trajectories (R2 = 0.79 and 0.73). Despite this agreement, we avoided using the above R2 as our primary measure,

because there exist trajectories that could be readily produced by a dynamical system with smooth dynamics but are poorly

described by a linear model – e.g., the trajectory in Figure 7A (right subpanel). We also found that the quality of a linear dynamical

fit was somewhat sensitive to both the span of time and the number of dimensions considered. In contrast, tangling gave consistent

results regardless of such choices.
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Computational Motivation for the Tangling Measure
Here we show that, given limits on how rapidly a flow-field can change, when two trajectories (or two portions of the same trajectory)

come close and then diverge, a potential instability is inevitable. We define a potential instability as a direction along which an error

will grow with time in the local vicinity. The argument below is a simple proof by contradiction. Avoiding a potential instability requires

that, for all directions, local errors shrink with time. For a linearized system, this implies that all eigenvalues are less than zero. Yet if

two trajectories diverge, there must be at least one positive eigenvalue.

Assume two time-evolving trajectories, x1ðtÞ, and x2ðt0Þ. These could be two portions of a larger trajectory or could correspond to

two different conditions. We consider themoment where they become closest: i.e., when kx1ðtÞ � x2ðt0Þ k is smallest. Without loss of

generality, we assume this happens at t = 0 and t0 = 0. We also consider the state, x halfway between x1ð0Þ and x2ð0Þ. Without loss of

generality, we define x as the origin. Thus x1ð0Þ= � x2ð0Þ. As in Figure S1, we assume that tangling between x1 and x2 is high

because k _x1ð0Þ � _x2ð0Þ k is large while kx1ð0Þ � x2ð0Þ k is small. We can therefore use the Taylor series to approximate the flow-field

at state x in the vicinity of x. We ignore higher-order terms:

_x =a+Bx

where the matrix B is the Jacobian evaluated at x = 0.

Because both x1ð0Þ and x2ð0Þ are near x, we have:

_x1ð0Þ=a+Bx1ð0Þ
and

_x2ð0Þ=a+Bx2ð0Þ=a� Bx1ð0Þ:
We now consider some perturbation of the x1 trajectory, such that x

0
1ð0Þ= x1ð0Þ+ ε. Stability requires, cε:

kx0
1ðDtÞ � x1ðDtÞ k 2

< kx0
1ð0Þ � x1ð0Þ k 2

0k�x0
1ð0Þ+Dt

�
a+Bx0

1ð0Þ
��� ðx1ð0Þ+Dtða+Bx1ð0ÞÞÞ k 2

< kx1ð0Þ+ ε� x1ð0Þ k 2

0kε+DtBε k 2
< kε k 2

0kε k 2 + 2DtεTBε+Dt2εTBTBε< kε k 2

0kε k 2 + 2DtεTBε< kε k 2
; as Dt2 is very small:

0ε
TBε< 0

Because this must be true for all ε, this is equivalent to stating that all eigenvalues ofBmust be negative. However, because x1ðtÞ, and
x2ðtÞ are closest at t = 0, we have:

kx1ðDtÞ � x2ðDtÞ k 2
> kx1ð0Þ � x2ð0Þ k 2

0kðx1ð0Þ+Dtða+Bx1ð0ÞÞÞ � ðx2ð0Þ+Dtða+Bx2ð0ÞÞÞ k 2 > kx1ð0Þ � x2ð0Þ k 2

0k2x1ð0Þ+ 2DtBx1ð0Þ k 2
> k2x1ð0Þ k 2

0kx1ð0Þ k 2 + 2Dtx1ð0ÞTBx1ð0Þ+Dt2x1ð0ÞTBTx1ð0Þ> kx1ð0Þ k 2

0kx1ð0Þ k 2 + 2Dtx1ð0ÞTBx1ð0Þ> kx1ð0Þ k 2
; as Dt2 is very small:

0x1ð0ÞTBx1ð0Þ> 0

This is in contradiction to the claim above that εTBε< 0 for c ε. Equivalently, it implies that at least one eigenvalue of B must be

positive, in contrast to the claim above that all eigenvalues must be negative.

Thus, local stability is inconsistent with the fact that trajectories are close but diverging. The above argument does not strictly

depend on k _x1ð0Þ � _x2ð0Þ k being large. However, a larger k _x1ð0Þ � _x2ð0Þ k implies larger positive eigenvalue(s) of B. All other things

being equal, this will result in a larger potential instability due to greater local divergence.

Standard Recurrent Neural Networks
Weused two very different approaches to train recurrent neural networks (RNNs). In the first approach, we trained RNNs to produce a

target output (Figure 5) as is conventionally done. We used a network with dynamics:

xðt + 1; cÞ= fðAxðt; cÞ+BuðcÞ+wðt; cÞÞ
where x is the network state (the ‘firing rate’ of every unit) for time t and condition c. The function f : = tanh is an element-wise transfer

function linking a unit’s input to its firing rate,Ax captures the influence of network activity on itself via the connection weights in A,Bu

captures external inputs, and the random vector w � Nð0; swIÞ adds modest noise. Network output is then a linear readout of its

firing rates:

yðt; cÞ=Cxðt; cÞ
The parameters A;B;C; and xð0; cÞ were optimized to minimize the difference between the network output, y and a target, ytarg.

That target output was the pattern of activity, across all muscles, during the middle five cycles of a seven-cycle movement. We used
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two conditions with different target outputs: ytargð:;1Þ and ytargð:; 2Þ contained muscle activity during forward and backward cycling

respectively. The input provided the network with the condition identity: uð1Þ= ½1;0� and uð2Þ= ½0;1�.
The loss function optimized during training contained both error and regularization terms:

L=
X
t;c

�
1

2
kytargðt; cÞ � yðt; cÞ k 2

2

�
+
lA

2
kA k 2

F +
lC

2
kC k 2

F +
X
t;c

�
lx

2
kxðt; cÞ k 2

2

�

where the first term is the error between the network output and the target, the second and third terms penalize large recurrent and

output weights respectively, and the last term penalizes large firing rates. By varying the hyper-parameters lA, lC, lx, sw, and the

initial weight values, we simulated a family of networks that found different solutions for producing the same output. This allowed

us to ask whether low network-trajectory tangling was a common feature of those solutions.

We trained 1000 such networks. Hyper-parameters were drawn randomly from log uniform distributions, lA˛½10�4;10�1�;
lC˛½10�6; 101�; lx˛½10�4; 101�, and sw˛½10�4;101�. Each RNN included n= 100 units. Each matrix of the RNN was initialized to a

random orthonormal matrix. RNNs were trained using TensorFlow’s Adam optimizer. We discarded RNNs that were not successful

(R2 < 0:5 between target and actual outputs). Because of the broad range of hyper-parameters, only a subset of networks (463) were

successful.

As a technical point, we were concerned that, despite regularization, networks might find overly specific solutions. Each cycle of

the empirical muscle activity had different small idiosyncrasies, and optimizationmight promote overfitting of these small differences.

We therefore added ‘new’ conditions to ytargðt; cÞ. Each new condition involved a target output that was almost identical to that for

one of the original two conditions, but wasmodified such that the small idiosyncrasies occurred on different cycles. This ensured that

networks produced a consistent output very close to the empirical muscle activity, but did not attempt to perfectly match small cycle-

specific idiosyncrasies. The inclusion of noise viaw also encouraged optimization to find robust, rather than overfit, solutions. Noise

magnitude, sw, was a hyper-parameter that was varied across networks, to encourage varied solutions. However, sw was always set

to zero when measuring network tangling.

Trajectory-Constrained Neural Networks
To examine how tangling relates to noise-robustness (Figure 7B) we trained RNNs to follow a set of target internal trajectories. This

involved the unconventional approach of employing both a target output, ytarg, and a target internal network trajectory, starg. Net-

works consisted of 100 units. Network dynamics were governed by

vðt + 1Þ= vðtÞ+Dt=tð � vðtÞ+A fðvðtÞÞ+wðtÞÞ
yðtÞ=CfðvðtÞÞ

where f := tanh, andw � Nð0;swIÞ adds noise. v can be thought of as the membrane voltage and fðvðtÞÞ as the firing rate. AfðvðtÞÞ is
then the network input to each unit: the firing rates weighted by the connection strengths. CfðvðtÞÞ is a linear readout of firing rates.

During training, A was adjusted using recursive least-squares (Sussillo and Abbott, 2009) so that AfðvðtÞÞzstarg. Training thus

insured that the synaptic inputs to each unit closely followed the pre-determined trajectory defined by starg. Firing rates therefore

also followed a pre-determined trajectory. C was adjusted so that yzytarg. Training was deemed successful if the R2 between

y and ytarg was >0.9. Noise tolerance was assessed as the largest value of sw for which the network could be trained to accurately

produce the target output for five consecutive cycles (R2 > 0:9 between y and ytarg, averaged across 100 iterations) despite the

constraint of following the target internal trajectory, starg.

We set ytarg = ½cos t; sin 2t�. To construct starg, we beganwith an idealized low-dimensional target, sðtÞ0targ = ½cos t; sin 2t; bsint�. To
give each unit a target, we set starg =Gs0targ whereG is a randommatrix of size 10033with entries drawn independently from a uniform

distribution from �1 to 1. Noise tolerance was tested for a range of values of b. That range produced target trajectories that varied

greatly in their tangling, allowing us to examine how tangling related to noise tolerance. Noise tolerance was the largest magnitude of

state noise for which the network still produced the desired output. For each target trajectory, and each of the 20 random initializa-

tions of A, C, and G, we doubled sw starting at 0.005 until we found the noise tolerance. We then computed the average (and SEM)

noise tolerance across the 20 parameter initializations.

Predicting Neural Population Activity
The optimization described by Equation 2 was performed using the Theano Python module. Optimization was initialized either withbXinit =Z, or with bXinit =Z + noisewhere the noisewas smoothwith time but independent for each dimension. Both bX andZwere 103T;

they contained the projection onto the top ten PCs. T is the total number of time points across the conditions being considered.

Specifically, we predicted neural activity for three middle cycles of forward cycling and three middle cycles of backward cycling

(both taken from seven-cycle movements). Because dimensionality is equal for bX and Z, the ability to decode Z from bX will suffer

as optimization modifies bX . However, because some dimensions of Z contain more variance than others, bX can gain considerable

new structure while compromising the decode only modestly. This tradeoff can be determined by the choice of l. However, for sci-

entific reasons, we employed a modified approach to better control that tradeoff. We wished to ensure that the predictions made

by different cost functions all encoded muscle activity equally well. This aids interpretation when comparing the results of the
e6 Neuron 97, 953–966.e1–e8, February 21, 2018



optimization in Figures 7C and 7Dwith optimizations using different cost functions in Figure S7. Bymatching encoding accuracy, any

differences in similarity must be due to other structure that differs due to the cost function being optimized. Thus, instead of mini-

mizing the first term of Equation 2 (which attempts to create a perfect decode) we minimized the squared difference between the

decodeR2 and 0.95. We only considered optimizations that achieved this with a tolerance of 0.01. This approach insures that muscle

encoding is equally good for the predicted populations responses yielded by different cost functions. Optimizations employed

gradient descent using an inexact line search for the Wolfe conditions c1 = 0:05 and c2 = 0:1. As a technical point, the derivative

used to compute QðtendÞ was based on the assumption that the three-cycle pattern would repeat.

Similarity between Empirical and Predicted Data
We assessed similarity using a modified version of canonical correlation (Cunningham and Ghahramani, 2015). This method

finds a pair of orthogonal transformations, one for each dataset, that maximizes the correlation between the transformed datasets.

Specifically, for mean-centered datasets Xa ˛ RKxT and Xb˛RKxT , similarity is:

SðXa;XbÞ= argmax
Ma ;Mb

tr
�
Mu

a XaX
u
b Mb

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
tr
�
Mu

a XaX
u
a Ma

�
tr
�
Mu

b XbX
u
b Mb

�q :

Subject to the constraint that Ma and Mb are orthonormal matrices. Similarity will thus be unity if two datasets are the same but

for an orthonormal transformation. Note also that an overall shift of one dataset relative to the other does not impact similarity

because the data are mean-centered before computing similarity. Due to the normalization in the denominator of the above cost

function, similarity is also not impacted by an isotropic scaling of one dataset relative to the other.

Predictions via Alternate Cost Functions
Weperformed a variety of optimizations corresponding to several alternate cost functions (Figure S7). Each cost function embodied a

hypothesis regarding the relationship between neural activity and muscle activity.

All cost functions were of the form:

bX = argmin
X

XK
k = 1

lkfkðX; ZÞ

where fk is some function of the input data and lk are scaling coefficients used to ensure that one term of the cost function did not

dominate at the expense of the others. The arguments of fkðÞ are the optimization variable, X and the empirical muscle activity, Z. All

cost functions examined in Figure S7 are described below in terms of different definitions of fkðÞ.
Muscle encoding and low tangling (same as Equation 2):

f1ðX;ZÞ= fdecodeðX;ZÞ= k Z � ZXyX k 2

F

f2ðXÞ= ftanglingðXÞ=
X
t

QXðtÞ

Nonlinear mapping with L-2 minimization:

f1
�
X;Z

�
= fdecode�nonlin

�
X;Z

�
= kZ � bZ k 2

F

Z contains individual muscle activity. Here we consider the activity of all muscles individually (rather than the top ten PCs as above)

because this matters in the non-linear case. The hypothesis being considered is that motor cortex may use a simplified set of muscle

‘synergies’ that becomes, via a set of non-linear transformations, the activity of each muscle. bZ =a+ tanhðBX +gÞ with the param-

eters a, B, and g optimized to minimize fdecode�nonlinðX;ZÞ.
f2ðXÞ= fnormðXÞ= kX k 2

F

where F denotes the Frobenius norm.

Nonlinear mapping with tangling minimization:

f1
�
X;Z

�
= fdecode�nonlin

�
X;Z

�

f2ðXÞ= ftanglingðXÞ
where fdecode�nonlin and ftangling are as described above.

Low curvature:

f1ðX;ZÞ= fdecodeðX;ZÞ
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f2ðXÞ= fcurvatureðXÞ=
X
t

k _xnorm
t � _xnorm

t�1 k
st

where,

_xnorm
t =

_xt

k _xt k
and st is the normalized ‘speed’ of the neural trajectory,

st =
k _xt kP
t0 k _xt0 k

As a technical point, we wished to ensure that the predictions made by different cost functions all encoded muscle activity equally

well. By matching the accuracy of muscle encoding, any differences in similarity must be due to other structure introduced during

optimization. We therefore modified fdecodeðX;ZÞ and fdecode�nonlinðX;ZÞ so that they were minimized when decode accuracy had

an R2 of 0.95, rather than 1.0. We only considered optimizations that achieved this with a tolerance of 0.01.
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