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A. Related Work (cont’d)
Interpreting and understanding black-box models is an ac-
tive area of research. Doshi-Velez & Kim (2017) describe
guidelines to assess and contextualize work on interpretabil-
ity of machine learning systems. Within this framework, we
view our approach as a way to address the incompleteness of
scientific understanding by forming data-driven “cognitive
chunks” with a particular focus on “intrinsic task explana-
tions” (Narayanan et al., 2018).

Another approach to interpreting a black-box model is to
consider a simpler surrogate model. The local interpretable
model agnostic explanation (LIME) approach builds a lo-
cally linear (and sometimes sparse) approximation of the
original model at a particular input (Ribeiro et al., 2016).
One can also estimate Shapley values to explain important
predictors (Lundberg & Lee, 2017). In addition to simple
local models, program induction has been proposed as a
representation of interpretable explanations of complex al-
gorithms (Singh et al., 2016). These approaches aim to pro-
vide insight into how important input variables contribute to
the model prediction. However, when the input is a highly
structured high-dimensional observation (e.g an image or
a time series) it can be unclear what constitutes a distinct
“variable” — these kind of inputs require a learned repre-
sentation before these (local) variable importance measures
become applicable. Visualizing intermediate layer activa-
tions of deep neural networks is another way to peer into
the structure of a prediction algorithm (Olah et al., 2018).

Wagstaff (2013) details an approach somewhat similar to our
discriminative representation inversion, however, does not
explicitly represent unlabeled latent variation. Similarly, the
“lensing” approach incorporates interpretable latent variable
mappings into the model building, fitting, and criticism loop
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(Dinakar, 2017).

In unsupervised settings, maximum likelihood (or approx-
imate maximum likelihood) is commonly used to train
generative models. However, for representation learning,
maximum likelihood optimization with flexible generative
models may not yield useful representations z without task-
specific constraints (Huszàr, 2017; Alemi et al., 2018).

Similarly, learning interpretable representations with
DGMs has received recent attention. These unsupervised
approaches use a particular type of regularization on
the latent space — a group-sparsity penalty (Ainsworth
et al., 2018), an information theoretic penalty on the total
correlation (Chen et al., 2018), or additional penalties on
the variational objective (Higgins et al., 2016).

To compute model-based morphs, the gradient is one of
many directions that increase the model output m(·); we
leave the construction of other trajectories for future study.
We also note that one can better incorporate the geometry
of the surface model represented by gθ (z) using the Rie-
mannian metric tensor Jᵀz Jz where Jz is the Jacobian of
gθ (z) with respect to input z, as suggested in Arvanitidis
et al. (2017). For computational reasons, however, we form
paths using the standard gradient and leave comparisons to
geodesics formed with the Riemannian metric tensor for
future investigation.

B. Synthetic Experiment Details
The synthetic data have a structured covariance matrix. The
dimensions in x are correlated via a non-stationary squared
exponential kernel. We construct the covariance over syn-
thetic data x as follows
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where si is on an evenly spaced grid between -2 and 2,
σi is on a fixed grid from .1 to 1, and the length scale
`= (1/15)1/2 = .258. This is a squared exponential kernel
covariance function with heteroscedastic marginal variance
— the later dimensions will have much larger marginal vari-
ance than the first dimensions.
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C. Modified MNIST Experiments
To bridge the gap between the totally synthetic setting and
a real-world example, we apply a DR-VAE to a modified
MNIST data set. We construct a semi-synthetic dataset
based on MNIST where the predictive pixels form a cross (5
pixels in the + configuration) in the upper left corner of the
image. The intensity of the cross is uniformly distributed
between 0 and 1, and this constitutes the only true “predic-
tive variation” — the higher the intensity, the higher the
predicted value. Figure 1a depicts this training dataset.

We fit deep generative models with a single 400-unit hidden
layer with a ReLU non-linearity and a sigmoid output layer.
We fix the latent variable size to K = 10 across all models,
and train each model for 200 epochs on the MNIST training
examples.

In high-dimensional data, specific directions of variation
can easily be buried. Without guidance, the VAE reverts
those pixels to their population average values, and focuses
on predicting the more complex (but more rewarding in
the loss function) variation in the digits themselves. The
variation in the cross is ignored by the VAE even when these
are the five most variable pixels in the entire dataset.

In Figure 1b we visualize test sample reconstructions from
a VAE — a generative model without guidance from the
discriminative model. In these reconstructions, we see the +
is reconstructed, however each reconstruction simply takes
on the average value in those pixels.

With discriminative regularization, we see in Figure 1c that
the variation in each + is represented (from 0 to 1). We
quantify this predictive variation captured by the DR-VAE
(vs. the VAE) in Figure 1d. We see that setting β to be-
tween .001 and .0025, we recover variation in those pixels
close to the population variation (the rightmost bar). The
VAE generative model, without this additional constraint,
is unable to explore the predictive variation in the + pixels
by perturbing the latent variable z. The DR-VAE trained
model does contain this variation with a sufficiently large β
coefficient.

D. EKG Data and Experimental Setup
The details of each EKG data set are presented in Figure 2.
We model four outcomes — age, bundle branch block, major
adverse cardiac events, and ST elevation.

E. EKG Morphing Statistics
This section contains further summaries and visualizations
of model-morphed data. In Figure 3 we visualize the mean
morphing and marginal standard deviation in all three leads
for the VAE, and DR-VAE with β = 1,5, and 10 for ST

Elevation. In Figure 4 we visualize the variance of the
principal components of Σ̂morph.

F. Expert Test Experimental Setup
To further validate our generative model of EKGs, we ran an
expert labeling experiment. The goal of the experiment is to
test how realistic the synthetic data and the model-morphing
induced feature look to a physician expert.

To answer these questions, we construct a two-alternative
forced choice labeling task. We present an expert — an
emergency medicine physician with experience interpretting
EKG tracings — with N trials, where each trial compares a
pair of EKG beats. In each trial we present a real EKG beat
and a fake EKG beat (in a randomized order). One task is
straightforward — can the expert distinguish the real from
the fake beat? We compare the empirical rate of accurately
labeled trials to random guessing.

We generate four different types of synthetic examples

• x̄lo: model reconstruction of test data point — both
m(x) and m(x̃) are “low” (i.e. Pr(y= 1|xlo) = ε)

• x̄hi: model reconstruction of test data point — both
m(xhi) and m(x̃hi) are “high” (i.e. Pr(y = 1|xhi) =
1− ε).

• x̃↑: morphed data — the original reconstruction started
“low” (i.e. Pr(y = 1 |xstar t) = ε)) and the resulting
morphed image is “high”.

• x̃↓: same as above, but the other direction.

EKGs were labeled “low ST Elevation” if the predictor m(x)
put them in the second decile. EKGs were labeled “high
ST Elevation” if the predictor m(x) put them in the ninth
decile. The morphed images started from the second decile
and were morphed to the ninth (or vice versa).

We reproduce the results of the expert labeling task in Fig-
ure 5 — the real-vs-fake test in Table 5a and the high-vs-low
ST elevation results in Table 5b.
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(a) Training examples

(b) VAE reconstructions

(c) DR-VAE reconstructions (β = .005)
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Figure 1. Modified MNIST data experiment. (a) The original training examples with variable + pixels. (b) VAE reconstructions. (c)
DR-VAE reconstructions. (d) The standard deviation of the predictive pixels — we depict the marginal standard deviation of the 5
predictive + pixels with increasing β values. On the left is the standard VAE, which represents nearly zero variation in those pixels.
On the right is the true population marginal standard eviation. With a strong enough regularizer (e.g. β = .0025), the generative model
represents nearly all variation with the generative model structure gθ (z).
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Train Val Test
Dataset Characteristics

# EKGs 211838 53094 87205
Patient demographics

# unique patients 14274 3568 5949
mean age (sd) 57.1 (19.1) 57.7 (18.5) 57.7 (18.9)
# female (%) 7852 (55.0 %) 1957 (54.8 %) 3369 (56.6 %)

Beat outcomes: mean (stdev)
age (standardized) -0 (1.00 %) 0 (0.97 %) 0 (0.99 %)

(a) age

Train Val Test
Dataset Characteristics

# EKGs 183688 44828 75135
Patient demographics

# unique patients 11916 2979 4966
mean age (sd) 60.1 (19.2) 59.7 (19.0) 59.8 (19.0)
# female (%) 6235 (52.3 %) 1549 (52.0 %) 2630 (53.0 %)

Beat outcomes: total positive (%)
bbb 61080 (33.25 %) 13857 (30.91 %) 24679 (32.85 %)

(b) Bundle Branch Block

Train Val Test
Dataset Characteristics

# EKGs 88908 21308 36383
Patient demographics

# unique patients 5677 1419 2367
mean age (sd) 58.7 (19.8) 59.3 (19.4) 59.1 (19.5)
# female (%) 3142 (55.3 %) 766 (54.0 %) 1299 (54.9 %)

Beat outcomes: total positive (%)
mace 45089 (50.71 %) 10915 (51.22 %) 19047 (52.35 %)

(c) MACE

Train Val Test
Dataset Characteristics

# EKGs 24767 6075 10301
Patient demographics

# unique patients 1995 498 833
mean age (sd) 55.9 (19.7) 56.2 (19.1) 55.7 (20.1)
# female (%) 992 (49.7 %) 216 (43.4 %) 390 (46.8 %)

Beat outcomes: total positive (%)
steleva 8060 (32.54 %) 1965 (32.35 %) 3469 (33.68 %)

(d) ST Elevation

Figure 2. Data set statistics for the four outcomes
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(a) VAE
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(b) DR-VAE, β = 1
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(c) DR-VAE, β = 5
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(d) DR-VAE, β = 10

Figure 3. Model-morph variation, Σ̂morph, visualization varying β . Above we plot the mean morphing delta (for lead V1) and one standard
deviation (computed on 1024 for the ST Elevation predictor). On the left, the standard VAE exhibits small morphing variation. As we
increase β , the model morphs exhibit significantly more variation, indicating the DR-VAE represents a richer set of predictive features
than the standard VAE. Note that generative reconstruction is similar for all three of these models.
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(a) ST Elevation: low-to-high morph
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(b) ST Elevation: high-to-low morph

Figure 4. DR-VAEs have more dimensions of morphing variation than VAEs. Depicted the eigenvalues of the morphing covariance
matrix for the two experiments — (a) low-to-high model-morphs and (b) high-to-low. The VAE has the least amount of total variation
(summed across all dimension) and fewer dimensions of non-zero variance, indicating that the DR-VAE representation z is capturing
more predictive variation in data x.

type accuracy

x̄lo 60% [46-74%]
x̄hi 64% [50-78%]
x̃ low-to-high 76% [64-88%]
x̃ high-to-low 42% [28-56%]

(a) Expert test real vs. synthetic accuracy results

type accuracy

x̄lo 100% [100-100%]
x̄hi 92% [84-100%]
x̃ low-to-high 88% [78-96%]
x̃ high-to-low 94% [88-100%]

(b) Expert test low vs. high ST accuracy results

Figure 5. Expert labeling results.


