BIOLOGY

©PLOS

COMPUTATIONAL

CrossMark

click for updates

E OPEN ACCESS

Citation: Merel J, Carlson D, Paninski L,
Cunningham JP (2016) Neuroprosthetic Decoder
Training as Imitation Learning. PLoS Comput Biol
12(5): €1004948. doi:10.1371/journal.pcbi.1004948

Editor: Steven M Chase, Carnegie Mellon University,
UNITED STATES

Received: November 11, 2015
Accepted: April 26, 2016
Published: May 18, 2016

Copyright: © 2016 Merel et al. This is an open
access article distributed under the terms of the
Creative Commons Aftribution License, which permits
unrestricted use, distribution, and reproduction in any
medium, provided the original author and source are
credited.

Data Availability Statement: All relevant data are
within the paper and its Supporting Information files.
There is a public github repository associated with
this project at https://github.com/jsmerel/BCI_
imitation_learning/.

Funding: This work was supported by ONR N00014-
16-1-2176 (http://www.onr.navy.mil/) and a Google
Research Award (http:/research.google.com/
university/relations/) to LP. Simons Global Brain
Research Awards SCGB#325171 and
SCGB#325233 (https://www.simonsfoundation.org/)
supported LP and JPC. JPC is supported by a Sloan
Research Fellowship (http:/www.sloan.org/sloan-
research-fellowships/). All authors receive support

RESEARCH ARTICLE

Neuroprosthetic Decoder Training as
Imitation Learning

Josh Merel'2*, David Carlson®*, Liam Paninski'*>%4, John P. Cunningham'-23#

1 Neurobiology and Behavior program, Columbia University, New York, New York, United States of America,
2 Center for Theoretical Neuroscience, Columbia University, New York, New York, United States of America,
3 Department of Statistics, Columbia University, New York, New York, United States of America, 4 Grossman
Center for the Statistics of Mind, Columbia University, New York, New York, United States of America

* jsmerel@gmail.com

Abstract

Neuroprosthetic brain-computer interfaces function via an algorithm which decodes neural
activity of the user into movements of an end effector, such as a cursor or robotic arm. In
practice, the decoder is often learned by updating its parameters while the user performs a
task. When the user’s intention is not directly observable, recent methods have demon-
strated value in training the decoder against a surrogate for the user’s intended movement.
Here we show that training a decoder in this way is a novel variant of an imitation learning
problem, where an oracle or expert is employed for supervised training in lieu of direct
observations, which are not available. Specifically, we describe how a generic imitation
learning meta-algorithm, dataset aggregation (DAGGER), can be adapted to train a generic
brain-computer interface. By deriving existing learning algorithms for brain-computer inter-
faces in this framework, we provide a novel analysis of regret (an important metric of learn-
ing efficacy) for brain-computer interfaces. This analysis allows us to characterize the
space of algorithmic variants and bounds on their regret rates. Existing approaches for
decoder learning have been performed in the cursor control setting, but the available design
principles for these decoders are such that it has been impossible to scale them to naturalis-
tic settings. Leveraging our findings, we then offer an algorithm that combines imitation
learning with optimal control, which should allow for training of arbitrary effectors for which
optimal control can generate goal-oriented control. We demonstrate this novel and general
BCl algorithm with simulated neuroprosthetic control of a 26 degree-of-freedom model of an
arm, a sophisticated and realistic end effector.

Author Summary

There are various existing methods for rapidly learning a decoder during closed-loop
brain computer interface (BCI) tasks. While many of these methods work well in practice,
there is no clear theoretical foundation for parameter learning. We offer a unification of
closed-loop decoder learning setting as an imitation learning problem. This has two major
consequences: first, our approach clarifies how to derive “intention-based” algorithms for

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016

1/24

http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1004948&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/jsmerel/BCI_imitation_learning/
https://github.com/jsmerel/BCI_imitation_learning/
http://www.onr.navy.mil/
http://research.google.com/university/relations/
http://research.google.com/university/relations/
https://www.simonsfoundation.org/
http://www.sloan.org/sloan-research-fellowships/
http://www.sloan.org/sloan-research-fellowships/

@' PLOS | SoMputaTioNAL
NZJ : BIOLOGY Neuroprosthetic Decoder Training as Imitation Learning

from the Grossman Center at Columbia University
(http://grossmancenter.columbia.edu/), and the

Gatsby Charitable Trust (http://www.gatsby.org.uk/).

The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing Interests: The authors have declared
that no competing interests exist.

any BCI setting, most notably more complex settings like control of an arm; and second,
this framework allows us to provide theoretical results, building from an existing literature
on the regret of related algorithms. After first demonstrating algorithmic performance in
simulation on the well-studied setting of a user trying to reach targets by controlling a cur-
sor on a screen, we then simulate a user controlling an arm with many degrees of freedom
in order to grasp a wand. Finally, we describe how extensions in the online-imitation
learning literature can improve BCI in additional settings.

Introduction

Brain-computer interfaces (BCI, or brain-machine interfaces) translate noisy neural activity
into commands for controlling an effector via a decoding algorithm [1-4]. While there are vari-
ous proposed and debated encoding mechanisms describing how motor-relevant variables
actually relate to neural activity [5-9], in practice decoders are successful at leveraging the sta-
tistical relationship between the intended movements of the user and firing rates of recorded
neural signals. Under the operational assumption that some key variables of interest (e.g. effec-
tor kinematics) are linearly encoded by neural activity, the Kalman filter (KF) is a reasonable
decoding approach [10], and empirically it yields state-of-the-art decoding performance [11]
(see [12] for review). Once a decoder family (e.g. KF) is specified, a core objective in decoder
design is to obtain good performance by learning specific parameter values during a training
phase. For a healthy user who is capable of making overt movements (as in a laboratory setup
with non-human primates [1-3, 11]), it is possible to observe neural activity and overt move-
ments simultaneously in order to directly learn the statistical mapping—implicitly, we assume
the overt movements reflect intention, so this mapping provides a relationship between neural
activity and intended movement.

However, in many cases of interest the user is not able to make overt movements, so
intended movements must be inferred or otherwise determined. This insight that better
decoder parameters can be learned by training against some form of assumed intention appears
in [11], and extensions have been explored in [13, 14]. In these works, it is assumed that the
user intends to move towards the current goal or target in a cursor task, resulting in parameter
training algorithms that result in dramatically improved decoder performance on a cursor task.

Specifically, in the recalibrated feedback intention-trained Kalman filter formulation
(ReFIT, [11]), the decoder is trained in two stages. First, the subject makes some number of
reaches using its real arm. The hand kinematics and neural data are used to train a Kalman fil-
ter decoder. Next, the subject engages in the reach-task in an online setting using the fixed Kal-
man filter decoder. The decoder could be updated naively with the data from this second stage
(gathered via closed loop control of the cursor). However, the key parameter-fitting insight of
ReFIT is that a demonstrably better decoder is learned by first modifying this closed-loop data
to reflect the assumption that the user intended at each timestep to move towards the target
(rather than the movement that the decoder actually produced). Specifically, the modification
is that the instantaneous velocity from the closed-loop cursor control is rotated to point
towards the goal to create a goal-oriented dataset. The decoder is then trained on this modified
dataset. ReFIT additionally proposes a modified decoding algorithm. However, we emphasize
the distinction between the problem of learning parameters and selection of the decoding algo-
rithm—this paper focuses on the problem of learning parameters (for discussion concerning
decoding algorithm selection, see [12]).

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 2/24

http://grossmancenter.columbia.edu/
http://www.gatsby.org.uk/

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

Shortcomings of ReFIT include both a lack of understanding the conditions necessary for
successful application of its parameter-fitting innovation, as well as the inability for the user to
perform overt movements required for the initial data collection when the user is paralyzed (as
would be the norm for clinical settings [4, 15, 16]). But even more critical an issue is that ReFIT
is exclusively suited to the cursor setting by requiring the intuitively-defined, goal-rotated
velocities. The closed-loop decoder adaptation (CLDA) framework has made steps towards gen-
eralizing the ReFIT parameter-fitting innovation [13]. The CLDA approach built on ReFIT,
effectively proposing to update the decoder online as new data streamed in using an adaptive
scheme [13, 14]. While these developments significantly improve the range of applicability,
they still rely on rotated velocities and do not address the key issue of extending these insights
to more complex tasks, such as control with a realistic multi-joint arm effector. In the present
work, we provide a clear approach which generalizes this problem to arbitrary effectors and
contextualizes the style of parameter fitting employed in both ReFIT and CLDA approaches as
special cases of a more general online learning problem, called “imitation learning.”

In imitation learning (or “apprenticeship learning”), an agent must learn what action to
take when in a particular situation (or state) via access to an expert or oracle which provides
the agent with a good action at each timestep. The agent can thereby gradually learn a policy
for determining which action to select in various settings. This setting is related to online learn-
ing [17], wherein an agent makes sequential actions and receives feedback from the environ-
ment regarding the quality of the action. We propose that, in the BCI setting, instead of a
policy that asserts which action to take in a given state, we have a decoder that determines the
effector update in response to the current kinematic state and neural activity. Formally, the
decoder serves the role of the policy; the neural activity and the current kinematic pose of the
effector comprise the state; and the incremental updates to the effector pose correspond to
actions. We also formalize knowledge of the user’s instantaneous “true” intention as an inten-
tion-oracle. With this oracle, we can train the decoder in an online-imitation data collection
process using update rules that follow from supervised learning.

Our work helps to resolve core issues in the application of intention-based parameter fitting
methods. (1) By explicitly deriving intention-based parameter fitting from an imitation learn-
ing perspective, we can describe a family of algorithms, provide general guarantees for the
closed-loop training process, and provide specific guarantees for standard choices of parameter
update rules. (2) We generalize intention-based parameter fitting to more general effectors
through the use of an optimal control solver to generate an intention-oracle. We provide a con-
crete approach to derive goal-directed intention signals for a model monkey arm in a reaching
task. Simulations of the arm movement task demonstrate the feasibility of leveraging inten-
tion-based parameter fitting in higher dimensional tasks—something fundamentally ambigu-
ous given existing work, because it was not possible to infer intention for high-dimensional
tasks or arbitrary effector DOF representations.

In the next section, we formulate the learning problem. We then present a family of CLDA-
like algorithms which encompasses existing approaches. By relating BCI learning algorithms to
their general online learning counterparts in this way, we can leverage the results from the
larger online learning literature. We theoretically characterize the algorithms in terms of
bounds on “regret.” Regret is a measure of the performance of a learning algorithm relative to
the performance if that algorithm were set to its optimal parameters. However, while bounds
are highly informative about dominant terms, they are often ambiguous up to proportionality
constants. Therefore, we employ simulations to give a concrete sense of how well these algo-
rithms can perform and provide a demonstration that even learning to control a full arm is
now feasible using this approach.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 3/24

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

Results
Components of the imitation learning approach for BCI

The problem that arises in BCI parameter fitting is to learn the parameters of the model in an
online fashion. In an ideal world, this could be performed by supervised learning, where we
observe both the neural activity and overt movements, which reflect user intention. In a closed-
loop setting, we would then simply use supervised online learning methods. However, for
supervised learning we need labelled movement data. Neither overt movements nor user intent
are actually observable in a real-world prosthetic setting. Imitation learning, through the usage
of an oracle or expert, helps us circumvent this issue. To begin, we describe the core compo-
nents of BCI algorithms that follow the imitation learning paradigm—effector, task objective,
oracle, decoding algorithm, and update rule (Fig 1).

The effector for a BCI is the part of the system that is controlled in order to interact with the
environment (e.g. a cursor on a computer screen [11] or a robotic arm [15, 18, 19]). Minimally,
the degrees of freedom (DOF) that are able to be controlled must be selected. For example,
when controlling a robotic arm, it might be decided that the user only controls the hand posi-
tion of the robotic arm (e.g. as if it were a cursor in 3D) and the updates to the arm joint angles
are computed by the algorithm to accommodate that movement. A model of effector dynamics
provides a probabilistic state transition model, which permits the use of filtering techniques as
the decoding algorithm. The default assumption for dynamics is that the effector does not
move discontinuously, which yields smoothed trajectories.

The task objective refers to the performance measure of the task. For example, in a cursor task,
the objective could be for the cursor to be as close as possible to the goal as rapidly as possible, or
it may be for the cursor to acquire as many targets as possible in some time interval. Other objec-
tives related to holding the cursor at the target with a required amount of stability have also been
proposed (e.g. “dial-in-time” as in [11]). The objective may include be additional components
related to minimizing exertion (i.e. energy) or having smooth/naturalistic movements. Insofar as
this task has been communicated to the user (verbally in the human case or via training in the
case of non-human subjects), the user’s intention should be consistent with this objective, so it is
appropriate to consider the task objective to correspond to the user’s intended objective.

Imitation learning requires an oracle or expert to provide the labelled data. When overt
movements are available, we use overt movements as a proxy for the intended movements.

e

M—» DECODER Effector with
PPN NV E % specified

degrees of
freedom

C

xx\ 4
¥

Task :
Objective ’g“"

O/\,J

@

o

Fig 1. A BCl has an effector, such as a robotic arm, with predefined degrees of freedom. Given a task
objective (e.g. an objective function corresponding to reaching and grasping a target), an intention-oracle
can be computed to provide the intended updates to the arm kinematics. The actual trajectory of the arm is
evaluated deterministically from the neural activity via the decoder. In practice, the oracle update would be
recomputed at each timestep to reflect the instantaneous best movement in the direction of the goal.

doi:10.1371/journal.pcbi.1004948.9g001

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 4/24

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

Retrospectively, we re-interpret the parameter-fitting innovation of ReFIT in the imitation
learning framework—specifically, the choice to train using goal-directed velocity vectors [11]
was an implicit selection of intention-oracle (a model of the user’s intention). Indeed this is a
reasonable choice of oracle as it is goal-directed, presumably reflects user intent, and provides a
sensible heuristic for the magnitude of the instantaneous oracle velocities. More generally, the
oracle should be selected to match the user’s intention as closely as possible (for example by
compensating for sensory delays as in [20]). When the task objective is well-specified and there
exists a dynamics model for the effector, routine optimal control theory can be used to produce
the oracle (along the lines of [21]). That is, from the current position, the incremental update
to the effector state in the direction of the task objective can be computed. For a cursor, a sim-
ple mean-squared error (MSE) objective will result in optimal velocities directed towards the
goal/target, with extra assumptions governing the magnitudes of those velocities.

Different BCI algorithms also differ in their choice of decoder family and update rule. We
can abstract these decoders as learned functions mapping neural activity and current effector
state to kinematic updates (e.g. this is straightforward for the steady-state Kalman filter, see
methods). The parameters of the model will be adapted by an update rule, which makes use of
the observed pairs of data (i.e the intention-oracle and the neural activity). We note two com-
plementary perspectives—we can use our data to directly update decoder parameters or alter-
natively we can update the encoding model parameters and compute the corresponding
updated optimal decoder (i.e. using Bayes rule to combine the encoding model and the effector
dynamics model to decode via Bayesian filtering). In principle, either of these approaches
work, but in this work we will directly adapt decoder parameters because it is simpler and
closer to the convention in online learning.

In very general decision process settings, a function mapping from states to actions is called
a policy [22, 23]—in BCI settings, this is the decoder. The details of this mapping can be speci-
fied in a few essentially equivalent ways. Most consistent with the state-action mapping is for
the policy to produce an action corresponding to an update to the state of the effector. If the
effector state consists of positions, then these updates are velocities; but the effector state could
also be instantaneous velocities, forces, or other variables, in which case the actions correspond
to updates to these state variables and imply updates to the pose of the effector.

Relatively more familiar in BCI research is the use of a policy as decoder when reinforcement
learning (RL) is being used (see [24-27], or even with error feedback derived from neural activ-
ity in other brain regions [28]). Reinforcement learning and imitation learning involve similar
formalisms. However, the most suitable learning framework depends on the available informa-
tion. Conventional RL only provides information when feedback is available (e.g. when the task
is successful), whereas use of an oracle in imitation learning allows for training informed by
every state. This will yield considerably more rapid learning than RL. There are various ways to
learn a policy using frameworks between these extremes. In an actor-critic RL framework [29],
the policy (a.k.a. actor) is trained from a learned value function (a.k.a. critic)—readers familiar
with this framework may see this as a conceptual bridge between imitation learning and RL,
where imitation learning uses oracle examples rather than a learned value function. It is also
possible to learn an expert’s reward function from examples and directly train the policy [30].
Perhaps most usefully, a policy could also be learned from hybrid RL and imitation updates,
and this would be well-advised if the oracle is noisy or of otherwise low quality (see Discussion).

Parameter updating through imitation learning

We next present a BCI meta-algorithm which formalizes closed-loop data collection and online
parameter updating as a variant of imitation learning. This perspective is consistent with the
CLDA framework [13], but by formalizing the entire approach as a meta-algorithm, we gain

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 5/24

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

additional theoretical leverage. BCI training as described in this meta-algorithm amounts to a
non-standard imitation learning setting insofar as the oracle comes from a task-constrained
model of user intention, and the decoder is a policy that is conditioned on noisy neural activity.
The imitation learning formalization of this BCI learning procedure is consistent with the
online-imitation learning framework and meta-algorithm dataset aggregation (DAGGER) [17].
We will subsequently show the online-imitation learning framework encompasses a range of
reasonable closed-loop BCI approaches.

We set up the process such that the data is split into reach trajectories k =1, . . ., K that each
contain a sequence of T < T discretized time points, and K is not necessarily known a priori.
Each Ty corresponds to the time it takes for a single successful reach. The k™ reach is successful
when some task objective, such as the distance between the cursor position and a goal position
8k i satisfied to within some e (more generally, the goal g, corresponds to any sort of target
upon which the objective depends). At each time point within a reach, t, we assume that we
have the current state of the effector x;,, as well as a vector ny, that corresponds to neural activ-
ity (e.g. spike counts). Bold lower-case letters (x, n, g, . . .) denote column vectors. The decoder
will update the state of the effector based on the combined neural state and previous effector
state, {ny, X;,} (in a limiting case, the decoder may only rely on neural activity, but inclusion of
previous effector states allows for smoothing of effector trajectories).

Formally, we want a decoder 7 € II (i.e., a policy m within the space of policies IT) that trans-
forms the state information (x, n) into an action that matches the intention of the user. An imi-
tation learning algorithm trains the policy to mimic as closely as possible the oracle policy 7*,
which gives the oracle actions oy = 7" (Xxs Nk, ks). Note that the oracle policy is not a member
of IT (i.e. 7* ¢ I1): this distinction is important as the learnable policies 7z € IT do not have
access to goal information. Because we have finite samples, we use an instantaneous loss £(m
(Xkp» Dgy), Ok) (nOte this is a surrogate loss because it depends only on the available decoded
and oracle variables, and not the unavailable “true” user intention). In the cursor control case,
this loss could be the squared error between the oracle velocity and the decoder/policy velocity.

We write £(r, D"?) as shorthand for 3", 3%, £(n(x,,,n,,),0,,), where D% refers to the set
of data {x;,,n;,,0,,},., ; from justthe k™ reach, and D"* refers to the combined set of data

{Xpes Myors Og b e 1 g ser ., from reaches up to k.

Algorithml: Imitation learningperspective of decoder training
Initialize dataset D «— 0
Initialize decoder n'®
Input/select By, ..., Bx
for k=1toKtrajectoriesdo
Initializeeffector state, %, < Xy, (or continue fromendof previous
trajectory)
Randomly select goal state, gx: fromset of validgoals
Initializet«1
while distance (Xy:,gx:) > €eand t< T'do
Acquire neural datan;,
Query oracle update oy, = 0" (Rxry Nye, Gre)
Update state via assisted decoder:
Ki, e BT (Rpee, N, Ge) + (1= Br) 1) (%4,)
t—t+1
end
Aggregate D'*Y — D(l:k)U{(Xkrv ny, Okz)}le....‘rk
7+ « UPDATE(z®, DU*™) (see Alg. 2)
end
return best or lastn

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 6/24

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

The core imitation learning meta-algorithm is presented in Alg 1. This meta-algorithm
describes the general structure for different learning algorithms, and the uppATE line is distinct
for alternative learning methods (each UPDATE takes the current decoder and dataset and pro-
duces the new decoder). We emphasize that this meta-algorithm is specified only once the effec-
tor, task objective, oracle, decoding algorithm, and parameter update rule are determined. The
DAGGER process gradually aggregates a dataset D with pairs of state information and oracle
actions at each time point. The dataset is used to train a stationary, deterministic decoder, which
is defined as the deterministic optimal action (lowest average loss) based on the state informa-
tion, which includes both the neural activity (n) and the effector state (x) in the BCI setting.

The meta-algorithm begins with an initial decoder (i.e. stable, albeit poorly performing) and
uses this decoder, possibly blended with the oracle, to explore states. Specifically, the effective
decoder is given by §; n* + (1 - B)n™®, where 7* is the oracle policy and 7% is the current
decoder. When this mixing is interpreted as a weighted linear sum, this approach is equivalent
to assisted decoding in the BCI literature (as in [31] or [32]), where the effective decoder during
training is a mixture of the oracle policy and the decoder driven by the neural activity —in
[17], the policy blending is probabilistic (see S1 Text for detailed distinction). The assisted
decoder may reduce user frustration from poor initial decoding, and helps provide more task-
relevant sampling of states. As training proceeds, the effective decoder relies less on the oracle
and is ultimately governed only by the decoder. For example, 5; may be set to decrease accord-
ing to a particular schedule with iterations, or as an abrupt example, 8; = 1 and f; . 1 = 0.

For each time point in each trajectory, the state information and oracle pair are incorporated
into the stored dataset. The decoder is updated by a chosen rule at the end of each trajectory (or
alternatively after each time step). We note that computational and memory requirements are

k+1

less for updates that only require data from the most recent stage (D**"); however, using the

whole dataset is more general, may improve performance, and can stabilize updates.

Relating BCI and online learning

Imitation learning with an intention-oracle is a natural framework to reinterpret and under-
stand the parameter fitting insights that were proposed in the ReFIT algorithm [11]. In the
ReFIT work, the authors used modified velocity vectors in order to update parameters in a
fashion which incorporated the user’s presumed goal-directed intention, and this approach
was empirically justified. We can re-interpret the rotated vectors as an ad hoc oracle, with these
vectors and the single batch re-update being specific choices, hand-tailored for the task.

The CLDA framework extracted the core parameter-fitting principle from ReFIT, allowing
for the updates to occur multiple times and take different forms [13]. The simplest update con-
sistent with this framework is gradient-based decoder adaptation. Under this scheme the
decoder is repeatedly updated and the updates correspond to online gradient descent (OGD).
This general class of BCI algorithms take observations in an online fashion, perform updates to
the parameters using the gradient, and do not pass over the “old” data again. This urDATE takes
the form:

k) —) _ anC(n“),D(k“)), (1)
M
which simply means that decoder parameters are updated by taking a step in the direction of
the negative gradient of the loss with respect to those parameters. i corresponds to the learning
rate.
A second option for parameter updating is to smoothly average previous parameter esti-
mates with recent (temporally localized) estimates of those parameters computed from a mini-

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 7/24

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

batch—that is, to perform a moving average (MA) over recent optimal parameters. This UPDATE
takes the form:

a* = (1 — 2)a® + Zarg min £(n, D*) @

for A € [0, 1]. In practice, the second term here corresponds to maximum likelihood estimation
of the parameters. An update of this sort is presented as part of the CLDA framework as
smoothBatch [13].

A third parameter update option in the BCI setting is to peform a full re-estimation of the
parameters given all of the observed data at every update stage. This can be interpreted as a fol-
low-the-leader (FTL) update [33]. This urDATE takes the form:

7Y = arg min £(r, D), (3)

Here all data pairs are used as part of the training of the next set of parameters. We will show
in the next section that this update can provide especially good guarantees on performance.
DAGGER was originally presented using this FTL update, utilizing the aggregated dataset [17].
We note that this sort of batch maximum likelihood update is discussed as a CLDA option in
[14], where a computationally simpler, exponentially weighted variant is explored, termed
recursive maximum likelihood (RML). For BCI settings, data is costly relative to the memory
requirements, so it makes sense to aggregate the whole dataset without discarding old samples.
For all of these updates, especially early on, it can be useful to include regularization, and we
also incorporate this into the definition of the loss. We summarize the parameter update proce-
dures in Alg 2.

Algorithm2: Selecteddirect decoder uepate options
Switch:
Case—Online gradient descent (OGD), Eqg 1l :
kD) — o) _ ivnﬁ(n(k),p(kﬂ))
Nk
Case—Moving average (MA) , Eq 2 :
) = (1 — 2)n® 4 Jargmin_L(z, D)
Case—Follow the (regularized) leader (FTL), Eqg3 :

M = argmin L(r, D)

(k+1)

7l
return o

Adaptive filtering techniques in engineering are closely related to the online machine learn-
ing updates we consider in this work. OGD is a generic update rule. In the special case of linear
models with a mean square error cost, the solution that has a long history in engineering is
called the least mean square (LMS) algorithm [34]. Also, in the same setting, when FTL corre-
sponds to a batch LS optimization, its solution could be computed exactly in an online fashion
using recursive least squares (RLS) [35] (for more background on LMS or RLS see [36]) or by
keeping a running total of sufficient statistics and recomputing the LS solution.

We will more concretely discuss the guarantees of these algorithms in the subsequent sec-
tion. We remark that all of the algorithms described so far make use of our generalization of
the key parameter-fitting innovation from ReFIT, but they differ in parameter update rule.
Additionally, algorithms can differ in the selection of the decoding algorithm, effector, task
objective, and oracle. For example, if some objective other than mean squared error (MSE)
were prioritized (e.g. rapid cursor stopping) and it was believed that user intention should
reflect this priority, then the task objective and oracle could be designed accordingly.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 8/24

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

Algorithm regret bounds

In this section we provide theoretical guarantees for the BCI learning algorithms introduced
above. Our formalization of the BCI setting allows us to provide new theory for closed-loop
BCI learning by combining core theory for DAGGER [17] with adaptations of results from the
online learning literature. We provide specific terms and rates for the representative choices of
parameter update rules (discussed in previous sections, summarized in Table 1).

The standard way of assessing the quality of an online learning algorithm is through a regret
bound [33], which calculates the excess loss after K trajectories relative to having used an opti-
mal, static decoder from the set of possible decoders IT:

K T

Regret, (IT) = max ZZ (é(”(k) (Xis 1y,), 04) — e(nb(xkﬂnkt)?okt))' (4)

b
well =1 =1

A smaller regret bound or a regret bound that decays more quickly is indicative of an algo-
rithm with better worst-case performance. Note that 7 is the best realizable decoder (IT is the
set of feasible decoders, which may have a specific parameterization and will not depend on the
goal), so 77’ is not equivalent to the oracle. Since 7 will need to make use of noisy neural activ-
ity, the term f(rf’ (Xkp Dgp), Og) is not likely to be zero.

Because we have been able to formulate closed-loop BCI learning as imitation learning, we
inherit a variant of the core theorem of [17] (see S1 Text for our restatement), which can be
paraphrased as stating: Alg 1 will result in a policy (i.e. decoder) that has an expected total loss
bounded by the sum of three terms: (1) a term corresponding to the loss if the best obtainable
decoder had been used for the whole duration; (2) a term that compensates for the assisted train-
ing terms (B); (3) a term that corresponds to the regret of the online learning parameter update
rule used.

We emphasize that the power of this theorem is that it allows analysis of imitation learning
through regret bounds for well-established online optimization methods. Regret that accumu-
lates sublinearly with respect to observations implies that the trial-averaged loss can be
expected to converge. We usually want the regret accumulation to occur as slowly as possible.
A goal of online learning is to provide no-regret algorithms, which refers to the property that
limg _, o Regreti(IT)/K =0.

In this work, we have introduced three update methods that serve as a representative survey
of the simple, intuitive space of algorithms proposed for the BCI setting (see Table 1). We pro-
vide regret bounds for the imitation learning variants, here specifically assuming linear decod-
ing and a quadratic loss (see S1 Text for full details). This analysis is based on the steady-state
Kalman filter (SSKF) (see methods), but could be generalized to other settings.

OGD is a classical online optimization algorithm, and is well-studied both generally and in

the linear regression case. The regret scales as O(1/K) [37] (recall k indexes the reach

Table 1. Summary of regret for selected algorithms.

Online Learning Algorithm Closest BCI Algorithm Regret
Online Gradient Descent Gradient-based decoder adaptation o(\/;?) [37]
O(logK) *[38]
Moving Average SmoothBatch [13] O(K)
Follow-the-leader CLDA-style maximum likelihood [14] O(logK) [38]

* Bound obtained only under restrictive conditions (see main text).

doi:10.1371/journal.pcbi.1004948.1001

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 9/24

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

trajectory). We note that in order to saturate the performance of OGD, the learning rate must
be selected carefully, and the optimal learning rate essentially requires knowledge of the scaling
of the parameters. Each parameter may require a distinct learning rate for optimal performance
[39]. OGD is most useful in an environment where data is cheap because the updates have very
low computational overhead—this is relevant for many modern large-data problems. In BCI
applications, data is costly due to practical limits on collecting data from a single subject, so a
more computationally intensive update may be preferable if it outperforms OGD.

Under certain conditions, OGD can achieve a regret rate of O(log K) [38], which is an
improved rate (and the same order as the more computationally-intensive FTL strategy we dis-
cuss below). This rate requires additional assumptions that are realistic only for certain practi-
cal settings. Asymptotically, any learning rate 7, that scales as O(k) will achieve this
logarithmic rate, but choosing the wrong scale will dramatically negatively impact perfor-
mance, especially during the crucial, initial learning period. For this reason, we may desire
methods without step-size tuning.

We next provide guarantees available for the moving average update. This algorithm suffers
from regret that is O(K), so it is not a no-regret algorithm (see analysis presented in [13] where
there is an additional steady-state error). Conceptually this is because old data has decaying
weight, so there is estimation error due to prioritization of a recent subset of the data. While
this method has poor regret when analyzed for a static model (i.e. neural tuning is stable), it
may be useful when some of the data is meaningless (i.e. a distracted user who is temporarily
not paying attention), or when the parameters of the model may change over time. Also, in
practice, if A is large enough, the algorithm may be close “enough” to an optimal solution.

Motivated by findings from online learning, we also expect that Follow-the-leader (FTL) (or
if regularization is used, Follow-the-regularized-leader (FTRL, a.k.a. FoReL)) may improve
regret rates relative to OGD, generally at the expense of additional computational cost [33]
(though without much computational burden if RLS can be used). We derive that under mild
conditions that hold for the SSKF learned with mild regularization, FTL obtains a regret rate of
O(logK) [38] (see S1 Text for details and discussion of constants). Thus, keeping in mind
these bounds are worst-case, we expect that using FTL updates will provide improved perfor-
mance relative to OGD or MA. We validate our theoretical results in simulations in the next
section. We note that BCI datasets remain small enough that FTL updates for sets of reaches
should be tractable, at least for initial decoder learning in closed-loop settings.

While the focus here is on static models, we note that there is additional literature concern-
ing online optimization for dynamic models. Here dynamic refers to situations where the neu-
ral tuning drifts in a random fashion over time. Intuitively, something more like OGD is
reasonable, and specific variants have been well characterized [40]. If the absolute total devia-
tion of the time-varying parameters is constrained, these approaches can have regret of order
O(V/K) [40]. A dynamic model may provide better fit and therefore provide lower MSE despite
potential for additional regret.

Simulated cursor experiments

The first set of simulations concerns decoding from a set of neurons that are responsive to
intended movement velocity (see methods for full details). In these simulations, there is a cursor
that the user intends to move towards a target, and we wish to learn the parameters of the decoder
to enable this. The cursor task (leftside panel of Fig 2) is relatively simple, but the range of results
we obtain for well-tuned algorithm variants is consistent with our theoretically-motivated expec-
tations. Indeed, in the right panel of Fig 2, we see that the OGD algorithm, which takes only a sin-
gle gradient step after each reach, performs less well than the FTL algorithm that performs batch-

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 10/24

@' PLOS | soMpuTaTioNAL
NZJ : BIOLOGY Neuroprosthetic Decoder Training as Imitation Learning

5 10 15
y reach index (k)

Fig 2. Left panel is a cartoon of the cursor task. The blue cursor is under user control and the user intends
to move it towards the green target. On a given reach trajectory, the cursor is decoded according to the
current decoder yielding the path made up of red arrows. At each state, the oracle intention is computed
(green arrows) to be aggregated as part of D and incorporated into the update to the decoder. In the right
panel, we compare the performance of the algorithms on a simulation of the cursor task (loss incurred during
each trial k). We use Alg 1 with the three update rules discussed (Alg. 1 and Table 1). Intuitively, OGD makes
less efficient use of the data and should be dominated by FTL. Moreover OGD has additional parameters
corresponding to learning rate which were tuned by hand. MA performs least well, though we selected A to be
sufficiently close to 1 as to permit performance to gradually improve (smaller lambda leads to more unstable
learning). Each update index corresponds to the inclusion of 1 additional reach. The entire learning procedure
is simulated 100 times for each algorithm and errorbars are 2 standard errors across the simulations.

doi:10.1371/journal.pcbi.1004948.9002

style learning using all data acquired to the current time. MA performs least well, though for large
values of A (i.e. .9 in this simulation), the performance can become reasonable.

We also note that updates may require regularization to be stable, so we provide all algorithms
with equal magnitude ¢, regularization (the regularization coefficient per OGD update was equal
to 1/K times the regularization coefficient of the other algorithms). After fewer than 10 reaches
the OGD and FTL appear to plateau—this task is sufficiently simple that good performance is
quickly obtained when SNR is adequate. We note that we have opted to show sum squared error
(SSE) rather than MSE (in Fig 2 and elsewhere), because it reflects the aggregated single timestep
error combined with differences in acquisition time—MSE normalizes for the different lengths
of reach trajectories, thereby only providing a sense of single timestep error (compare to S1 Fig).

To get a sense of the magnitude of the performance improvements (i.e. the scale of the error
in Fig 2), we can visualize poorly-performed reaches from early in training and compare these
against well-performed reaches from a later decoder (Fig 3). While the early decoder performs
essentially randomly, the learned decoder performs quite well, with trajectories that move rap-
idly towards the target location. See S1 Movie for an example movie of cursor movements dur-
ing the learning process.

We emphasize that FTL essentially has no learning-related parameters (aside from the
optional ¢,-regularization coefficient). On the other hand, OGD and MA have additional learn-
ing parameters that must be set, which may require tuning in practical settings. The OGD exper-
iments presented here are the result of having run the experiment for multiple learning rates
and we reported only the results of a well-performing learning rate (since this requires tuning, it
may be non-trivial to immediately achieve this rate of improvement in a practical setting where
the learning rate is likely to be set more conservatively). Too large a learning rate leads to diver-
gence during learning, and too small a learning rate leads to needlessly slow improvement.

Simulated arm-reaching experiments

In this section we introduce a new opportunity, moving beyond BCI settings where intention-
based algorithmic capabilities have yet been explored. We validate the imitation learning

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 11/24

@' PLOS | soMpuTaTioNAL
NZJ : BIOLOGY Neuroprosthetic Decoder Training as Imitation Learning

Iy

Fig 3. Left panel is a visualization of 100 3D reach trajectories for a poorly-performing initial decoder
(trained on 1 reach). Right panel visualizes 100 trajectories for a well-performing decoder fit from 20 reaches
(approximately at performance saturation for this level of noise). Each trajectory is depicted with yellow
corresponding to initial trial time and blue corresponding to end of trial (time normalized to take into account
different reach durations). The goals were in random locations, so to superimpose the set of traces, all
positions have been shifted relative to the goal such that goal is always centered. Observe that the initial
decoder is essentially random and the learned decoder permits the performance of reaches which mostly
proceed directly towards the goal (modulo variability inherited from the neural noise). Units here relate to
those in Fig 2—here referring to position as compared with MSE of corresponding velocity units.

doi:10.1371/journal.pcbi.1004948.9003

framework through simulation results on a high dimensional task—BCI control of a simulated
robotic/virtual-arm (Fig 4). Whereas existing algorithms cannot be generalized to more com-
plicated tasks, our results allow for generalization to an arm effector. The simple ReFIT-style
oracle of rotating instantaneous velocities towards the “goal” is ill-posed in general cases—the
goal position could be non-unique and the different degrees of freedom (DOF) may interact
nonlinearly in producing the end-effector position (both of these issues are present for an
arm). Instead, we introduce an optimal control derived intention-oracle. As our proof of con-
cept, we present a set of simulated demonstrations of reaches of an arm towards a target-wand.

100

loss (SSE rad/s)

10 20 30 40
reach index (k)

Fig 4. Left panel depicts arm model in MuJoCo software and a trajectory of the arm during a simulated
closed-loop experiment, after the decoder has learned to imitate the optimal policy (for illustration).
This particular trajectory consists mostly of movement of an elbow joint, followed by slight movements of the
middle finger and thumb when near the target. Right panel depicts a comparison of loss (here SSE of
decoded joint angular velocities relative to oracle) as a function of reach index for the different update rules
(similar to Right panel in Fig 2). In this plot, we consider only the loss for the shoulder, elbow, and wrist DOF
as these are the dominant DOF (curves are similar when other critical joints are included). We see that FTL
again gives good performance both in terms of rate of convergence and resulting solution (see Fig 6 or S2
Mov for a sense of the quality of the performance). The entire learning procedure is simulated 50 times for
each algorithm and errorbars are 2 standard errors across the simulations.

doi:10.1371/journal.pcbi.1004948.9004

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 12/24

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

We envision this being incorporated into a BCI setting such as that described in [19], where a
user controls a virtual arm in a virtual environment. Extension to a robotic arm is also concep-
tually straightforward, if a model of the robotic arm is available.

For these simulations, we implement the reach task using a model of a rhesus macaque arm
in MuJoCo, a software that provides a physics engine and optimal control solver [41]. The
monkey arm has 26 DOF, corresponding to all joint-angles at the shoulder, elbow, wrist, and
fingers. The task objective we specified corresponds to the arm reaching towards a target
“wand,” placed in a random location for each reach, and touching the wand with two fingers.
Following from the task objective, at each timestep the optimal control solver receives the cur-
rent position of the arm and the position of the goal (i.e. wand position), from which it com-
putes incremental updates to the joint angles. These incremental updates to the joint angles
correspond to oracle angular velocities and we wish to learn a decoder that can reproduce these
updates via Alg 1. See methods for complete details of the simulations.

Given that this arm task is ostensibly more complicated than cursor control, it may be ini-
tially surprising that we see that task performance rapidly improves with a small number of
reaches (Right panel Fig 4, and see S2 Movie for an example movie of arm reaches during the
learning process). However, this relatively rapid improvement makes sense when we consider
that the data is not collected independently, rather there is a closed-loop sequential process
(see Alg 1). Consequently we expect that early improvement should occur by leveraging the
most widely used DOF (i.e. shoulder, elbow, and to a lesser extent wrist). More gradually, the
other degrees of freedom should improve (i.e. finger and less-relevant wrist DOF).

To empirically examine the rate at which we can learn about distinct DOF, we conduct an
analysis to see how well we can characterize the mapping between intention (per DOF) and neu-
ral activity. At each stage of the learning process (k = 1. . .K), we use the aggregated dataset D"
to estimate the encoding model by regression (see methods, Eq 5). The encoding model corre-
sponds to the mapping from intention to neural activity and our ability to recover this (per
DOF) reflects the amount of data we have about the various DOF. To quantify this, we compute
correlation coeffcients (per DOF, across neurons) between the true encoding model parameters
(known in simulation) and the encoding model parameters estimated from data aggregated up
through a given reach. We expect this correlation to generally improve with increasing dataset
size; however, regret bounds do not provide direct guarantees on this parameter convergence.
The key empirical observation is that DOF more integral to task performance are learned rap-
idly, whereas certain finger DOF which are less critical are learned more gradually (Fig 5).

Similarly to the cursor tasks, we want to examine the magnitude of the performance
improvements. For this case, it is difficult to statically visualize whole reaches. Instead, we look
at an example shoulder DOF and depict the trajectory of that joint during a reach (Fig 6).
Branching off of the actual trajectory, we show local, short-term oracle trajectories which
depict the intended movement. Note that the oracle update takes into account other DOF and
optimizes the end-effector cost, so it may change over time as other DOF evolve. We see that
the early decoder does not yield trajectories consistent with the intention—the decoded pose
does not move rapidly, nor does it always move in the direction indicated by the oracle. The
late decoder is more responsive, moving more rapidly in a direction consistent with the the ora-
cle. In the four examples using the late decoder, the arm successfully reaches the target, so the
reach concludes before the maximum reach time.

Model mismatch

An important potential class of model mismatch arises when there is a discrepancy between
the “oracle” policy and the true intention of the user (in such cases the oracle is not a proper

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 13/24

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

shoulder joints elbow joints
1 —_—
€
Qo
]
o 0.6
(8]
c
L04
3 shoulder DOF 1
502 shoulder DOF 2 elbow DOF 1
© shoulder DOF 3 elbow DOF 2
0
0 50 100 150 200 0 50 100 150 200
reach index (k) reach index (k)
wrist joints thumb joints mid joints

0.8 ff o —
06 ”"-JJ

—

—— mid DOF 1
——— mid DOF 2
0.4 —— wrist DOF 1 mid DOF 3
wrist DOF 2 thumb DOF 1
0.2 wrist DOF 3 thumb DOF 2|
wrist DOF 4 thumb DOF 3
0O 50 100 150 200 0 50 100 150 200 0 50 100 150 200

reach index (k)

reach index (k)

reach index (k)

Fig 5. Panels depict correlation between “true” encoding model and estimated encoding model
parameters as a function of index over reach trajectories (for a single trial). Each curve corresponds to
the correlation for a different DOF. The encoding model parameters are not directly guaranteed to converge.
We see, as expected, that the encoding model will improve for specific DOF in proportion to the extent to
which those dimensions are relied on to perform the task. Shoulder DOF are crucial for the task, being
implicated in most reaches, so are learned rapidly. Wrist and finger joints are relatively less critical for task
performance, so are learned more gradually. In the thumb and middle finger panels above, the least well-
learned DOF (thumb DOF 3 and mid DOF 3) can be interpreted as the “distal inter-phalangeal joint” (i.e. the
small joint near tip of the finger), which is not heavily relied upon in this reach task.

doi:10.1371/journal.pcbi.1004948.9005

oracle and is better thought of as an attempt at approximating an oracle). We can consider this
setting to suffer from “intention mismatch” (see [42] for a distinct, but related concept of dis-

crepant “internal models”).
In our results thus far, we have assumed we

have a true intention oracle. When such an ora-

cle is available, we are in the ideal statistical setting, and our simulations provide a sense of
quality of algorithmic variants in this setting. In order to characterize the robustness of this
approach, we consider the realism of this assumption and the consequences when it is violated.
This point concerning mismatch is not restricted to a specific oracle. Rather, it arises when
comparing the degree of discrepancy between actual user intention and any particular oracle.
There are a few classes of deviations we might expect between a true user’s intention and the

intention oracle.

A simple class of intention mismatch corresponds to random noise applied to the user
intention. This would be a simple model of single timebin variability arising from sensory feed-
back noise, inherent variability in biological control, or inconsistent task engagement. For such
a case, we perform simulations identical to those performed previously, but we model the
actual user intention (that drives the simulated neural activity) as a combination of a random
intention and the oracle intention. The magnitude of the intention noise here corresponds to
the magnitude of the random intention relative to the oracle (i.e. 100% noise indicates that
actual user intention is a linear combination of the oracle intention and a randomly directed
vector of equal magnitude norm). We emphasize that here the oracle is not correct and there is

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016

14/24

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

Early reach examples Late reach examples

== decoded trajectory
o) — 0 / local oracle update

Ly

N
selULLLLLLLL L

[AR R I I L N R R R

ON

joint angle (radians)
joint angle (radians)

0 UL T Of

20 40 60 80 100 120 140 20 40 60 80 100 120 140
time step index (t) time step index (t)

Fig 6. Plots depict reach trajectories of a representative shoulder DOF for 4 paired examples of
reaches, from separate re-initializations of the decoder (i.e. different trials). Left panels show a poorly-
performing early decoder (k = 2), and right panels show a well-performing decoder (k = 30). Rows correspond
to matched pairs of reaches for different repeats of the experiment. Blue curves correspond to the actual
decoded pose of the DOF over time, and red arrows depict the local oracle update (only visualized for a
subsampling of timesteps). For the early reaches, observe that the decoder does not always proceed in the
intended direction. For the late reaches, observe that actual pose updates are quite consistent with the oracle
and trajectories are shorter because the targets are acquired more frequently and more rapidly.

doi:10.1371/journal.pcbi.1004948.9006

additional noise in the system that is from the random intention. We can verify empirically
that performance decreases with noise level at a reasonable rate for this intention noise variant
of model mismatch (see Fig 7). While naturally performance (i.e. loss between noise-free oracle
and decoded intention) decreases when there is additional noise, we see gradual rather than
catastrophic decline in performance.

Although intention noise mismatch is realistic under certain assumptions, we may have
concerns regarding more systematically structured model mismatch. We next consider a class

300 -
—0% 80% 0%
—50% —100%
250 100% w0 \
3 4 f
[\
5 200
n
@
5 150
o
100
50

10 20 30 5 10 15 20
reach index (k) reach index (k)

Fig 7. Plots depict decline in performance (i.e. loss between noise-free oracle and decoded intention)
with intention noise model mismatch using sum square error (SSE) over the duration of a reach for
(left) cursor task and (right) arm reaching task trajectories, comparable to performance curves in Figs
2 and 4 respectively. In each task, noise performance curves are obtained when the user’s intent is a noisy
version of the oracle, captured by a linear combination of intention oracle and a random vector. The noise
level is indicated by a noise percentage, corresponding to the magnitude of the noise relative to the intention
oracle signal. The effects of the relative noise are not directly comparable across tasks because the noise is
distributed over more dimensions in the arm task.

doi:10.1371/journal.pcbi.1004948.9007

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 15/24

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

of intention mismatch where the user intention is consistently biased by a fixed linear operator
with respect to the oracle (i.e. user intention arises from a gain and/or rotation applied to the
oracle). If this linear mismatch is always present, then—crucially—the performance of the
resulting decoder will be equivalent under our loss, which compares the decoder output against
the oracle. This is because the algorithm would learn a decoder that undoes this consistent lin-
ear transform between the user intent and the oracle, resulting in good task performance. Note
that after training, there would remain a persistent discrepancy between the decoder output
and the actual user intention. Also note that changes in gain should only affect decoding per-
formance if such changes modulated the SNR of the neural activity.

While linear intention mismatch does not affect the ability to imitate the oracle, it is not
entirely realistic. For example, if the oracle and the user intention differ by a rotation that is
consistent over time, either the oracle or the user intention would not efficiently complete the
task (e.g. the intended cursor trajectory won’t be directed towards the target). Therefore, effi-
cient completion of the task serves to constrain plausible intention trajectories. This motivates
us to characterize a remaining class of nonlinear intention mismatch—wherein user intention
and the oracle both solve the task but do so in ways that are discrepant. While there may be
many satisfactory trajectories from the beginning of the task, as the effector nears goal acquisi-
tion, the discrepancy amongst efficient oracle solutions reduces. This means that the while the
oracle is systematically and reliably wrong, the discrepancy differs in a way that depends upon
the current pose and objective.

For the cursor task, we designed a conceptually illustrative second oracle that solves the task
and is not simply a linear transform of the first oracle (i.e. not gain mismatch). We consider
trajectories that arc towards the goal—this oracle can be generated by having a distance depen-
dent linear transform, where a sigmoid function of distance determines whether the actual user
intention is offset by zero up to some maximal ¢ from the standard straight-line oracle (see Fig
8). At far distances, this model of user intention and the straight-line oracle differ by a moder-
ate rotation, and as the cursor nears the goal, the discrepancy decreases. It would be impossible
for a simple decoder to compensate for this kind of mismatch because the decoder will not gen-
erally have access to distance between cursor and the goal. Instead, we expect the decoder will
partly compensate for this arc-shape intention by learning to “undo” a rotation relative to the

20
reach index (k)

Fig 8. Left panel depicts a cartoon for a 2D projection of the arc-trajectory intention mismatch setting for
the cursor task. Contrary to the assumption that the intention is directly towards the goal (black arrow), the
user intention actually is such that it would have induced an arc with initial angle ¢ (green arrow). After training,
the decoder partly compensates for the arc-offset, undercompensating initially and overcompensating near the
goal (red arrows). Center panel visualizes single trials from trained decoders from the 45° setting (each trace is
from a different realization of neural encoding and training). All decoded trajectories have been projected from
3D into 2D and rotated to match the center panel orientation, and trials have a diversity of initial distances from
the goal. Time during the trial is depicted from yellow to blue as in Fig 3. Right panel shows performance curves
under increasing levels of nonlinear mismatch for the cursor task, trained using FTL (axes comparable to left
panel of Fig 7).

doi:10.1371/journal.pcbi.1004948.9008

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 16/24

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

straight-line oracle. Since the correct rotation-compensation varies, the decoder will (at most
distances) be incorrectly undercompensating or overcompensating (see Fig 8).

We show empirical performance curves for the cursor arc-trajectory user intention and see
that for increasing levels of arc-angle, learned performance only gradually declines. Note that
these simulations were for a 3D cursor, so rotation corresponds to a rotation in all 3 planes of
the same magnitude. For minor discrepancy, the resulting performance is very robust. At the
largest level (45° angle), performance is noticeably worse but still suffices to perform the task.
The center panel of Fig 8 depicts many example single trial reach trajectories (projected into
2D and rotated to align with the cartoon in the middle panel).

While it is not feasible for us to test all forms of model mismatch here, the simulation frame-
work we presented allows for empirical investigation of any specific class or mismatch details
of interest that may arise. The representative classes of mismatch explored in this section illus-
trate the reasonable robustness of this framework.

Discussion

In this work, we have unified closed-loop decoder training approaches by providing a meta-
algorithm for BCI training, rooted in imitation learning. Specifically, we have focused on the
parameter learning problem, complementing other research that focuses on the problem of
selecting a good decoder family [12]. Our approach allows the parameter learning problem to
be established on a firmer footing within online learning, for which theoretical guarantees can
be made. This is crucial since ReFIT-based approaches are being translated to human clinical
applications where performance is of paramount concern [16, 43]. Moreover, we have demon-
strated that this approach now permits straightforward extension to higher dimensional set-
tings, enabling rapid learning even in the higher dimensional case. In scaling existing
algorithms to an arm-control task, we have provided generic approaches to solve two issues.
First, imitation learning (using data aggregation) serves as the generic framework for updating
parameters. Second, we have employed a generic, optimal control approach, which can be used
to compute intention-oracle kinematics in a broad range of BCI settings.

For simulations in this work, we employ linear encoding of kinematic variables because, in
addition to having a history in the BCI literature [10], this corresponds to an operationally use-
ful encoding model employed in recent, well-performing applications in the closed-loop BCI
[11, 16]. We do not intend to claim that simple, linear encoding models as assumed when
employing Kalman filter decoders correspond to the reality of innate neural computation in
motor cortex. Nonlinear filtering approaches that make more realistic assumptions about neu-
ral encoding have been explored offline [44-46]. However, it is not clear that offline results
employing more realistic encoding models always translate performance gains to closed-loop
settings [47]. Nevertheless, there have been successes using more complicated decoding algo-
rithms in closed-loop experiments [48-50]. Following on recent scientific work that has sought
to understand a role of intrinsic dynamics in motor cortices [9], dynamics-aware decoders are
also being developed [51-53]. While many decoder forms may be considered, in line with the
variety of theories about the motor cortex, the precise choice is orthogonal to the work here.
Intention-based parameter fitting does not depend, in any general way, on the encoding model
assumed by the decoding algorithm. Consequently, a key benefit of the theoretical statements
we present are that the algorithm performance guarantees hold for general classes of decoders,
and the meta-algorithm we describe is largely agnostic to the details of the encoding.

It is a key point that Alg 1 results in preferential acquisition of data that enables learning of
the most task-relevant DOF. This follows from the fact that the sampling of states in closed-
loop is non-uniform, since the current decoder induces the distribution of states visited during

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 17/24

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

the next reach. Exploration is not explicitly optimized, but more time is spent in relevant sets
of states as a consequence of preferential sampling of certain parts of what can be a high
dimensional movement space. This clarifies the potential utility of assisted decoding, which
may serve to facilitate initial data collection in positions in the movement space that are espe-
cially task-relevant. This non-uniform exploration of the movement space provides intuition
for the generality of the theoretical guarantees for DAGGERr-like learning. The decoder used in
this work is of a relatively simple form (steady-state velocity Kalman filter, described in meth-
ods), but the theoretical results hold for general stationary, deterministic decoders.

While we have focused on a simple, parametric decoder, the parameter learning approach
presented in this paper extends to more complicated decoders. For example, we may wish to
allow the neural activity to be decoded differently depending on the current state of the effec-
tor. In conventional imitation learning, policies are trained to yield sequences of actions (with-
out user input), so this general problem is extremely state-dependent. By building into the
decoder an expressive mapping that captures state-transition probabilities, we could design a
policy-decoder hybrid to exploit regularities in the dynamics of intended movements and
heavily regularize trajectories based on their plausibility. Additionally, we could augment the
state with extra information (e.g. extra data from sensors on the physical effector could be
added to the current kinematics and neural activity) such that decoding relies on autonomous
graceful execution of trajectories in addition to neural activity (see [54]). Similarly, this frame-
work accommodates decoders which operate in more abstract spaces (such as if the available
neural activity sent action-intention commands rather than low-level velocity signals).

A particularly interesting opportunity that corresponds to an augmentation of follow-the-
leader (FTL, Eq 3) would be to enrich the decoder family as the dataset grows. We can imagine
a system with decoders of increasing complexity (more parameters or decreasing regulariza-
tion) as the aggregated dataset of increasing size becomes available. While we focused on a sim-
ple decoder (i.e. the Kalman filter) which makes sense for small-to-moderate datasets, some
work suggests that complicated decoders trained on huge datasets can perform well (e.g. using
neural networks [50]). We anticipate that data aggregation would allow us to start with a sim-
ple decoder, and we could increase the expressive power of the decoder parameterization as
more data streams in.

Our formalization of BCI learning most closely resembles the DAGGER setting, but novel
extensions to the BCI learning setting follow from related imitation learning formulations.
Some particularly relevant opportunities are surveyed here. When starting from an initial condi-
tion of an unknown decoder-policy, it may be hard to directly train towards an optimal
decoder-policy. Training incrementally towards the optimal policy via intermediate policies has
been proposed [55]. Under such a strategy, a “coach” replaces the oracle, and the coach provides
demonstration actions which are not much worse than the oracle but are easier to achieve. For
example, in BCI, it may be hard to learn to control all DOF simultaneously, so a coach could
provide intention-trajectories that use fewer DOF. It has also been observed that DAGGER
explores using partially optimized policies, and these might cause harm to the agent/system.
Especially early in training, the policies may produce trajectories which take the agent through
states which may be dangerous to the agent or the environment. An appropriate modification to
solve this is to execute the oracle/expert action at timesteps when a second-system suspects
there may be an issue carrying out the policy action, thereby promoting safer exploration [56].

As touched upon in the results, we also want to be aware of the performance impact of
model mismatch and mitigate this problem. While we expect performance will erode with
increasing intention mismatch, our results indicated robustness to small levels of mismatch
(see Figs 7 & 8). In settings where, even after carefully designing the intention oracle there is
persistent mismatch, a combined imitation learning and reinforcement learning approach may

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 18/24

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

produce better results [57]. This amounts to a hybrid optimization that combines the error-rid-
den expert signals with RL signals obtained by successful goal acquisitions.

Finally, in this work we have assumed there is not gradual “drift” in the neural encoding
model—it is probably a fair assumption that neural encoding drift is not a dominant issue dur-
ing rapid training [58, 59]. We highlight a distinction between general closed-loop adaptation
(where the decoder should adapt as fast as possible), versus settings designed for the user to
productively learn, termed co-adaptive (for a review of co-adaptation, see [60]). We have
focused on the setting with user learning in other work [61, 62], but we here focused on opti-
mizing parameter learning under the assumption that the user’s neural tuning is fixed, allowing
us to rigorously compare algorithms. In future work, it may prove fruitful to attempt to unify
this analysis with co-adaptation. We also anticipate future developments that couple the sort
formalization of decoder learning explored in this work with more expressive decoders. We are
optimistic that progress in these directions will enable robust, high-dimensional brain-com-
puter interface technology.

Methods
Simulated experiments

In this work we present two sets of simulations. The first set of simulations consist of simulated
closed-loop experiments of 3D cursor control. In these simulations, the cursor serves as the
effector, and this cursor is maneuverable in all three dimensions. Goals are placed at random
locations and the task objective is to minimize the squared error loss between the cursor and
the current goal. Goals are acquired when the cursor is moved to within a small radius of the
target. The oracle for this task is determined from optimal control. When there is a quadratic
penalty on instantaneous movement velocity, the optimal trajectory from the cursor towards
the goal will be equal-length vectors directed towards the target. So at each timestep, we take
the oracle to correspond to a goal-directed vector from the current cursor position.

The second set of simulations are similar, but involve controlling an arm to reach towards a
“wand”. As the effector, we use an arm model with dimensions corresponding to those of a rhe-
sus macaque monkey used for BCI research (from Pesaran Lab, Center for Neural Science,
New York University, http://www.pesaranlab.org, as in [19]). For simplicity we treat each joint
as a degree of freedom (DOF) yielding 26 joint angles and 26 corresponding angular velocities.
We specify the task objective to be a spring-like penalty between the wrist position (3D spatial
coordinates) and the wand position. Specifically, in addition to the 26 joint-angle DOF, there
are also identifiers corresponding to the x-y-z coordinates of the wrist and select fingertips, as
well as points on the wand. Objective functions in terms of the x-y-z coordinates of these mark-
ers can be specified, and the MuJoCo solver computes trajectories (in terms of the specified
joint angles) in order to optimize the objective. We defined the initial objective in terms of the
Euclidean distance between the wrist and the wand. Once the wrist is within a radius & of the
wand, a new sping-like penalty is placed on the distance between tip of the middle finger and a
point on the wand and also between the tip of the thumb and a point on the wand—this causes
the fingertips to touch two points of the wand (a simple “grasp”). This explicit task objective
allows us to compute the oracle solution for the reach trajectory, and this oracle is computed
via an iterative optimal control solver on all joint angles in the model. The model, simulation,
and optimal control solver are implemented in an early release of the software simulation pack-
age MuJoCo [41]. At each timestep, given the wand position and current arm position, the
optimal control solver produces an incremental update to all (26) of the joint angles of the arm,
and this goal-directed angular velocity vector is taken as the oracle. As an alternative to explic-
itly posing the objective function and computing the oracle, one can imagine using increasingly

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 19/24

http://www.pesaranlab.org

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

naturalistic optimal-control-based oracles that use more elaborate motor models trained on
real data [63].

We produce synthetic neural activity similarly in both sets of simulations. In the cursor
task, we want the neurons to be tuned to intended cursor velocity. In the arm task, neurons
should encode velocities of the joint angles. To produce simulated neural data that reflects the
“user’s” intention, we have a convenient choice—the oracle itself. The simulation cycle entails:
(1) computing the intention-oracle (given the current state, goal, and task objective), (2) simu-
lating the linear-Gaussian neural activity from the intention-oracle (Eq 5), (3) using the current
decoder to update the effector, and (4) updating the decoder between reaches. We note that the
oracle is used twice, first to produce the neural activity and subsequently in the imitation learn-
ing decoder updates.

Specifically, we simulate neural activity via the neural encoding matrix A that maps
intended velocity to neural activity:

n, = Ao, + ¢, (with ¢, ~ N(0,C)). (5)

where the noise covariance C was taken to be a scaled identity matrix, such that the signal-to-
noise ratio (SNR) was ~1 per neuron (i.e. noise magnitude set to be roughly equal in magni-
tude to signal magnitude per neuron, which we considered reasonable for single unit record-
ings). In real settings this neural activity might be driven by some intended movement x;
(where here the star denotes intention as in [12]).

These simulations assume the intention-oracle is “correct”. As such, a feature of all ReFIT-
inspired algorithms is that there is model mismatch if the user is not engaged in the task or has
a meaningfully different intention than these algorithms presume. This problem affects any
algorithm that trains in closed-loop and makes assumptions about the user’s intention (see dis-
cussion for extensions to handle the case when the oracle is known to be imperfect). For the
model mismatch section of the results, we perform simulations with “intention mismatch” by
perturbing the oracle signal that drives the neural activity (i.e. by operating on o, before apply-
ing the neural encoding matrix A).

For the simulations, A was selected to consist of independently drawn random values. For
both tasks, we randomly sampled a new matrix A for each repeat of the simulated learning pro-
cess. For the cursor simulations, we simply sampled entries of A independently from a normal
distribution. For the higher dimensional arm simulations, we wanted to have neurons which
did not encode all DOFs, so for the results presented here we similarly sampled A from a nor-
mal distribution, but then set any negative entries of A to zero (results were essentially the
same if negative entries were included).

Assisted decoding (see Alg 1) was not heavily used. To provide stable initialization, 5, was
set to 1 (and noise was injected into the oracle for numerical stability), and all subsequent Sy
were set to 0. For the cursor simulations, we used 10 neurons and the maximum reach time T
was set to 200 timesteps. For arm simulations, we used 75 neurons and the maximum reach
time T was set to 150 timesteps. We consider simulated timesteps to correspond to real time-
steps of order 10-50ms.

For both sets of simulated experiments the decoding algorithm was chosen to be the steady-
state velocity Kalman Filter (SSVKF), which is a simple decoder and representative of decoders
used in similar settings (i.e. it corresponds to a 2nd order physical system according to the
interpretation in [12]). The SSVKF has a fixed parametrization as a decoder, but it also has a
Bayesian interpretation. When the encoding model of the neural activity is linear-Gaussian
with respect to intended velocity, the velocity Kalman filter is Bayes-optimal, and the steady
state form is a close approximation for BCI applications.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 20/24

©PLOS

COMPUTATIONAL

BIOLOGY

Neuroprosthetic Decoder Training as Imitation Learning

The steady state Kalman Filter (SSKF) generally has the form:
X, = Fn, + Gx, (6)

Here G can be interpreted as a prior dynamics model and F can be interpreted as the function
mediating the update to the state from the current neural data. In practice, a bias term can be
included in the neural activity to compensate for non-zero offset in the neural signals. The
generic SSKF equation can be expanded into a specific SSVKF equation, where the state con-
sists of both position and velocity. At the same time we will constrain the position to be physi-
cally governed by the velocity, and we will only permit neural activity to relate to velocity.

Pt | _ 0 O0||n, N I dtxI||p,)
VH—l Fv bv 1 0 Gv \L
It is straightforward to augment the decoder to include past lags of neural activity or state. A

very straightforward training scheme that is apparent for this specific decoder is to simply per-
form regression to fit {F,, b,, G,}, from the function:

VH~1 = Fvnt + bv + vat + et (8)

where e, denotes an additive Gaussian noise term.

Supporting Information

S1 Text. Restatement of theoretical results for DAGGER and presentation of regret bounds
in linear-quadratic case. We restate and interpret the theoretical results for DAGGER. We also
describe specific bounds on regret for selected BCI update rules under a quadratic loss and lin-
ear decoder.

(PDF)

S1 Fig. Comparison of MSE and acquisition time. This figure compares MSE and time to
acquisition for the cursor task, and motivates the use of SSE in the figures in the main text. Left
panel depicts MSE for cursor task (for same trials as SSE curves in Fig 2). Right panel depicts
time to acquisition for the same set of trials. While we might hope that MSE would give a com-
plete indication of performance, this is not the case. This is because the quality of the different
algorithms are differentially reflected when considering trial duration. Low MSE can be
achieved multiple different ways—essentially mapping to the bias-variance tradeoff. In the tri-
als considered here, the slow acquisition for the MA decoder arises from bias towards decoder
outputs with smaller magnitude.

(TIFF)

S1 Movie. Example cursor trials. Video of cursor task during learning via DAGGER. Blue dot
corresponds to controlled cursor. Green dot corresponds to target. Green line from blue cursor
points towards the target. Red line from cursor corresponds to actual direction of motion.
(MOV)

$2 Movie. Example full-arm trials. Video of full arm task during learning via DAGGER. Arm is
controlled to reach towards the wand. Initial arm pose is reset between reaches.
(MOV)

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 21/24

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004948.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004948.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004948.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pcbi.1004948.s004

B PLOS | Suryanonat

Neuroprosthetic Decoder Training as Imitation Learning

Acknowledgments

We'd like to thank the Pesaran Lab, especially Adam Weiss and Yan Wong, who provided
assistance related to using an arm model of one of their monkeys. Chris Cueva helped with
MATLAB scripts to interact with MuJoCo. Grace Lindsay contributed the illustration in Fig 1.

Author Contributions

Conceived and designed the experiments: JM LP JPC. Performed the experiments: JM. Ana-
lyzed the data: JM. Contributed reagents/materials/analysis tools: JM DC LP JPC. Wrote the
paper: JM DCLP JPC.

References

1.

10.

1.

12

13.

14.

15.

16.

Serruya MD, Hatsopoulos NG, Paninski L, Fellows MR, Donoghue JP. Brain-machine interface: Instant
neural control of a movement signal. Nature. 2002; 416(6877):141-142.

Taylor DM, Tillery SIH, Schwartz AB. Direct cortical control of 3D neuroprosthetic devices. Science.
2002; 296(5574):1829-1832. doi: 10.1126/science.1070291 PMID: 12052948

Carmena JM, Lebedev MA, Crist RE, O’doherty JE, Santucci DM, Dimitrov DF, et al. Learning to control
a brain-machine interface for reaching and grasping by primates. PLoS Biology. 2003; 1(2):E42. doi:
10.1371/journal.pbio.0000042 PMID: 14624244

Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, et al. Neuronal ensemble
control of prosthetic devices by a human with tetraplegia. Nature. 2006; 442(7099):164—171. doi: 10.
1038/nature04970 PMID: 16838014

Georgopoulos A, Caminiti R, Kalaska J. Static spatial effects in motor cortex and area 5: quantitative
relations in a two-dimensional space. Experimental Brain Research. 1984; 54(3):446—454. doi: 10.
1007/BF00235470 PMID: 6723864

Moran DW, Schwartz AB. Motor cortical activity during drawing movements: population representation
during spiral tracing. Journal of Neurophysiology. 1999; 82(5):2693-2704. PMID: 10561438

Todorov E. Direct cortical control of muscle activation in voluntary arm movements: a model. Nature
Neuroscience. 2000; 3(4):391-398. doi: 10.1038/73964 PMID: 10725930

Moran DW, Schwartz AB, Georgopoulos AP, Ashe J, Todorov E, Scott SH. One motor cortex, two dif-
ferent views. Nature Neuroscience (letters to the editor). 2000; 3(963):963-5. doi: 10.1038/79880

Churchland MM, Cunningham JP, Kaufman MT, Foster JD, Nuyujukian P, Ryu SI, et al. Neural popula-
tion dynamics during reaching. Nature. 2012; 487(7405):51-56. doi: 10.1038/nature11129 PMID:
22722855

Wu W, Gao Y, Bienenstock E, Donoghue JP, Black MJ. Bayesian population decoding of motor cortical
activity using a Kalman filter. Neural Computation. 2006; 18(1):80—118. doi: 10.1162/
089976606774841585 PMID: 16354382

Gilja V, Nuyujukian P, Chestek CA, Cunningham JP, Byron MY, Fan JM, et al. A high-performance neu-
ral prosthesis enabled by control algorithm design. Nature Neuroscience. 2012; 15(12):1752-1757.
doi: 10.1038/nn.3265 PMID: 23160043

Zhang Y, Chase SM. Recasting brain-machine interface design from a physical control system per-
spective. Journal of Computational Neuroscience. 2015; 39(2):107—118. doi: 10.1007/s10827-015-
0566-4 PMID: 26142906

Dangi S, Orsborn AL, Moorman HG, Carmena JM. Design and analysis of closed-loop decoder adapta-
tion algorithms for brain-machine interfaces. Neural Computation. 2013; 25(7):1693—-1731. doi: 10.
1162/NECO_a_00460 PMID: 23607558

Dangi S, Gowda S, Moorman HG, Orsborn AL, So K, Shanechi M, et al. Continuous closed-loop
decoder adaptation with a recursive maximum likelihood algorithm allows for rapid performance acqui-
sition in brain-machine interfaces. Neural Computation. 2014; 26(9):1811-1839. doi: 10.1162/NECO_
a_00632 PMID: 24922501

Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, et al. Reach and grasp by peo-
ple with tetraplegia using a neurally controlled robotic arm. Nature. 2012; 485(7398):372-375. doi: 10.
1038/nature11076 PMID: 22596161

Gilja V, Pandarinath C, Blabe CH, Nuyujukian P, Simeral JD, Sarma AA, et al. Clinical translation of a
high-performance neural prosthesis. Nature Medicine. 2015;.

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 22/24

http://dx.doi.org/10.1126/science.1070291
http://www.ncbi.nlm.nih.gov/pubmed/12052948
http://dx.doi.org/10.1371/journal.pbio.0000042
http://www.ncbi.nlm.nih.gov/pubmed/14624244
http://dx.doi.org/10.1038/nature04970
http://dx.doi.org/10.1038/nature04970
http://www.ncbi.nlm.nih.gov/pubmed/16838014
http://dx.doi.org/10.1007/BF00235470
http://dx.doi.org/10.1007/BF00235470
http://www.ncbi.nlm.nih.gov/pubmed/6723864
http://www.ncbi.nlm.nih.gov/pubmed/10561438
http://dx.doi.org/10.1038/73964
http://www.ncbi.nlm.nih.gov/pubmed/10725930
http://dx.doi.org/10.1038/79880
http://dx.doi.org/10.1038/nature11129
http://www.ncbi.nlm.nih.gov/pubmed/22722855
http://dx.doi.org/10.1162/089976606774841585
http://dx.doi.org/10.1162/089976606774841585
http://www.ncbi.nlm.nih.gov/pubmed/16354382
http://dx.doi.org/10.1038/nn.3265
http://www.ncbi.nlm.nih.gov/pubmed/23160043
http://dx.doi.org/10.1007/s10827-015-0566-4
http://dx.doi.org/10.1007/s10827-015-0566-4
http://www.ncbi.nlm.nih.gov/pubmed/26142906
http://dx.doi.org/10.1162/NECO_a_00460
http://dx.doi.org/10.1162/NECO_a_00460
http://www.ncbi.nlm.nih.gov/pubmed/23607558
http://dx.doi.org/10.1162/NECO_a_00632
http://dx.doi.org/10.1162/NECO_a_00632
http://www.ncbi.nlm.nih.gov/pubmed/24922501
http://dx.doi.org/10.1038/nature11076
http://dx.doi.org/10.1038/nature11076
http://www.ncbi.nlm.nih.gov/pubmed/22596161

B PLOS | Suryanonat

Neuroprosthetic Decoder Training as Imitation Learning

17.

18.

19.

20.

21,

22,

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.
35.

36.

37.

38.

39.

40.
41.

42.

Ross S, Gordon GJ, Bagnell JA. A Reduction of Imitation Learning and Structured Prediction to No-
Regret Online Learning. Atrtificial Intelligence and Statistics (AISTATS). 2011; 15.

Wodlinger B, Downey J, Tyler-Kabara E, Schwartz A, Boninger M, Collinger J. Ten-dimensional anthro-
pomorphic arm control in a human brain- machine interface: difficulties, solutions, and limitations. Jour-
nal of Neural Engineering. 2014; 12(1):016011. doi: 10.1088/1741-2560/12/1/016011 PMID: 25514320

Putrino D, Wong YT, Weiss A, Pesaran B. A training platform for many-dimensional prosthetic devices
using a virtual reality environment. Journal of Neuroscience Methods. 2015; 244:68-77. doi: 10.1016/.
jneumeth.2014.03.010 PMID: 24726625

Golub MD, Chase SM, Byron MY. Learning an internal dynamics model from control demonstration.
International Conference on Machine Learning (ICML). 2013;p. 606.

Ross S, Bagnell JA. Agnostic system identification for model-based reinforcement learning. Interna-
tional Conference on Machine Learning (ICML). 2012;.

Bellman R. A Markovian Decision Process. Indiana University Mathematics Journal. 1957; 6:679-684.
doi: 10.1512/iumj.1957.6.56038

LaValle SM. Planning algorithms. Cambridge university press; 2006.

DiGiovanna J, Mahmoudi B, Fortes J, Principe JC, Sanchez JC. Coadaptive brain-machine interface
via reinforcement learning. IEEE Transactions on Biomedical Engineering. 2009; 56(1):54—64. doi: 10.
1109/TBME.2008.926699 PMID: 19224719

Mahmoudi B, Pohimeyer EA, Prins NW, Geng S, Sanchez JC. Towards autonomous neuroprosthetic
control using Hebbian reinforcement learning. Journal of Neural Engineering. 2013; 10(6):066005. doi:
10.1088/1741-2560/10/6/066005 PMID: 24100047

Bryan MJ, Martin SA, Cheung W, Rao RP. Probabilistic co-adaptive brain-computer interfacing. Journal
of Neural Engineering. 2013; 10(6):066008. doi: 10.1088/1741-2560/10/6/066008 PMID: 24140680
Pohlmeyer EA, Mahmoudi B, Geng S, Prins NW, Sanchez JC. Using reinforcement learning to provide
stable brain-machine interface control despite neural input reorganization. PloS One. 2014; 9(1). doi:
10.1371/journal.pone.0087253 PMID: 24498055

lturrate I, Chavarriaga R, Montesano L, Minguez J, Millan JdR. Teaching brain-machine interfaces as
an alternative paradigm to neuroprosthetics control. Scientific Reports. 2015; 5. doi: 10.1038/
srep13893 PMID: 26354145

Sutton RS, Barto AG. Reinforcement learning: An introduction. MIT press; 1998.

Abbeel P, Ng AY. Apprenticeship learning via inverse reinforcement learning. International Conference
on Machine Learning (ICML). 2004;p. 1.

Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB. Cortical control of a prosthetic arm for
self-feeding. Nature. 2008; 453(7198):1098—1101. doi: 10.1038/nature06996 PMID: 18509337

So K, Dangi S, Orsborn AL, Gastpar MC, Carmena JM. Subject-specific modulation of local field poten-
tial spectral power during brain—-machine interface control in primates. Journal of Neural Engineering.
2014; 11(2):026002. doi: 10.1088/1741-2560/11/2/026002 PMID: 24503623

Shalev-Shwartz S. Online Learning and Online Convex Optimization. Foundations and Trends in
Machine Learning. 2011; 4(2):107-194. doi: 10.1561/2200000018

Widrow B, Stearns SD. Adaptive signal processing. Englewood Cliffs. 1985;.

Plackett RL. Some theorems in least squares. Biometrika. 1950; 37(1-2):149-157. doi: 10.2307/
2332158 PMID: 15420260

Sayed AH. Fundamentals of adaptive filtering. John Wiley & Sons; 2003.

Kivinen J, Warmuth MK. Additive Versus Exponentiated Gradient Updates for Linear Prediction. In:
Proceedings of the Twenty-seventh Annual ACM Symposium on Theory of Computing. STOC’95. New
York, NY, USA: ACM; 1995. p. 209-218.

Hazan E, Agarwal A, Kale S. Logarithmic regret algorithms for online convex optimization. Machine
Learning. 2007; 69(2—3):169—-192. doi: 10.1007/s10994-007-5016-8

Duchi J, Hazan E, Singer Y. Adaptive subgradient methods for online learning and stochastic optimiza-
tion. The Journal of Machine Learning Research. 2011; 12:2121-2159.

Hall EC, Willett RM. Online Convex Optimization in Dynamic Environments. 2015;.

Todorov E, Erez T, Tassa Y. MuJoCo: A physics engine for model-based control. Intelligent Robots
and Systems (IROS). 2012;p. 5026-5033.

Golub MD, Byron MY, Chase SM. Internal models for interpreting neural population activity during sen-
sorimotor control. eLife. 2015;p. e10015. PMID: 26646183

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 23/24

http://dx.doi.org/10.1088/1741-2560/12/1/016011
http://www.ncbi.nlm.nih.gov/pubmed/25514320
http://dx.doi.org/10.1016/j.jneumeth.2014.03.010
http://dx.doi.org/10.1016/j.jneumeth.2014.03.010
http://www.ncbi.nlm.nih.gov/pubmed/24726625
http://dx.doi.org/10.1512/iumj.1957.6.56038
http://dx.doi.org/10.1109/TBME.2008.926699
http://dx.doi.org/10.1109/TBME.2008.926699
http://www.ncbi.nlm.nih.gov/pubmed/19224719
http://dx.doi.org/10.1088/1741-2560/10/6/066005
http://www.ncbi.nlm.nih.gov/pubmed/24100047
http://dx.doi.org/10.1088/1741-2560/10/6/066008
http://www.ncbi.nlm.nih.gov/pubmed/24140680
http://dx.doi.org/10.1371/journal.pone.0087253
http://www.ncbi.nlm.nih.gov/pubmed/24498055
http://dx.doi.org/10.1038/srep13893
http://dx.doi.org/10.1038/srep13893
http://www.ncbi.nlm.nih.gov/pubmed/26354145
http://dx.doi.org/10.1038/nature06996
http://www.ncbi.nlm.nih.gov/pubmed/18509337
http://dx.doi.org/10.1088/1741-2560/11/2/026002
http://www.ncbi.nlm.nih.gov/pubmed/24503623
http://dx.doi.org/10.1561/2200000018
http://dx.doi.org/10.2307/2332158
http://dx.doi.org/10.2307/2332158
http://www.ncbi.nlm.nih.gov/pubmed/15420260
http://dx.doi.org/10.1007/s10994-007-5016-8
http://www.ncbi.nlm.nih.gov/pubmed/26646183

B PLOS | Suryanonat

Neuroprosthetic Decoder Training as Imitation Learning

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Jarosiewicz B, Sarma AA, Bacher D, Masse NY, Simeral JD, Sorice B, et al. Virtual typing by people
with tetraplegia using a self-calibrating intracortical brain-computer interface. Science Translational
Medicine. 2015; 7(313):313ra179-313ra179. doi: 10.1126/scitransimed.aac7328 PMID: 26560357

Shoham S, Paninski LM, Fellows MR, Hatsopoulos NG, Donoghue JP, Normann R, et al. Statistical
encoding model for a primary motor cortical brain-machine interface. IEEE Transactions on Biomedical
Engineering. 2005; 52(7):1312-1322. doi: 10.1109/TBME.2005.847542 PMID: 16041995

Wang Y, Paiva AR, Principe JC, Sanchez JC. Sequential Monte Carlo point-process estimation of kine-
matics from neural spiking activity for brain-machine interfaces. Neural Computation. 2009; 21
(10):2894-2930. doi: 10.1162/neco.2009.01-08-699 PMID: 19548797

Nazarpour K, Ethier C, Paninski L, Rebesco JM, Miall RC, Miller LE. EMG prediction from motor cortical
recordings via a nonnegative point-process filter. IEEE Transactions on Biomedical Engineering. 2012;
59(7):1829-1838. doi: 10.1109/TBME.2011.2159115 PMID: 21659018

Koyama S, Chase SM, Whitford AS, Velliste M, Schwartz AB, Kass RE. Comparison of brain-computer
interface decoding algorithms in open-loop and closed-loop control. Journal of Computational Neuro-
science. 2010; 29(1-2):73-87. doi: 10.1007/s10827-009-0196-9 PMID: 19904595

Shpigelman L, Lalazar H, Vaadia E. Kernel-ARMA for Hand Tracking and Brain-Machine interfacing
During 3D Motor Control. Advances in Neural Information Processing Systems (NIPS). 2009;p. 1489—
1496.

Li Z, O’doherty JE, Hanson TL, Lebedev MA, Henriquez CS, Nicolelis MA. Unscented Kalman filter for
brain-machine interfaces. PloS One. 2009; 4(7):e6243. doi: 10.1371/journal.pone.0006243 PMID:
19603074

Sussillo D, Nuyujukian P, Fan JM, Kao JC, Stavisky SD, Ryu S, et al. A recurrent neural network for
closed-loop intracortical brain-machine interface decoders. Journal of Neural Engineering. 2012; 9
(2):026027. doi: 10.1088/1741-2560/9/2/026027 PMID: 22427488

Wu W, Kulkarni JE, Hatsopoulos NG, Paninski L. Neural decoding of hand motion using a linear state-
space model with hidden states. IEEE transactions on Neural Systems and Rehabilitation Engineering.
2009; 17(4):370. doi: 10.1109/TNSRE.2009.2023307 PMID: 19497822

Lawhern V, Wu W, Hatsopoulos N, Paninski L. Population decoding of motor cortical activity using a
generalized linear model with hidden states. Journal of Neuroscience Methods. 2010; 189(2):267-280.
doi: 10.1016/j.jneumeth.2010.03.024 PMID: 20359500

Kao JC, Nuyujukian P, Ryu S|, Churchland MM, Cunningham JP, Shenoy KV. Single-trial dynamics of
motor cortex and their applications to brain-machine interfaces. Nature Communications. 2015; 6. doi:
10.1038/ncomms8759

Muelling K, Venkatraman A, Valois JS, Downey J, Weiss J, Javdani S, et al. Autonomy infused teleo-
peration with application to BCI manipulation. arXiv preprint arXiv:150305451. 2015;.

He H, Eisner J, Daume H. Imitation learning by coaching. Advances in Neural Information Processing
Systems (NIPS). 2012;p. 3149-3157.

Kim B, Pineau J. Maximum Mean Discrepancy Imitation Learning. Robotics: Science and Systems.
2013;.

Kim B, Massoud Farahmand A, Pineau J, Precup D. Learning from limited demonstrations. Advances
in Neural Information Processing Systems (NIPS). 2013;p. 2859-2867.

Chestek CA, Gilja V, Nuyujukian P, Foster JD, Fan JM, Kaufman MT, et al. Long-term stability of neural
prosthetic control signals from silicon cortical arrays in rhesus macaque motor cortex. Journal of Neural
Engineering. 2011; 8(4):045005. doi: 10.1088/1741-2560/8/4/045005 PMID: 21775782

Kowalski KC, He BD, Srinivasan L. Dynamic analysis of naive adaptive brain-machine interfaces. Neu-
ral Computation. 2013; 25(9):2373-2420. doi: 10.1162/NECO_a_00484 PMID: 23777523

Shenoy KV, Carmena JM. Combining Decoder Design and Neural Adaptation in Brain-Machine Inter-
faces. Neuron. 2014; 84(4):665-680. doi: 10.1016/j.neuron.2014.08.038 PMID: 25459407

Merel, J, Fox, R, Jebara, T, Paninski, L. A multi-agent control framework for co-adaptation in brain-com-
puter interfaces. Advances in Neural Information Processing Systems (NIPS). 2013;.

Merel J, Pianto DM, Cunningham JP, Paninski L. Encoder-Decoder Optimization for Brain-Computer
Interfaces. PLoS Computational Biology. 2015; 11(6):e1004288. doi: 10.1371/journal.pcbi.1004288
PMID: 26029919

Berniker M, Koerding KP. Deep networks for motor control functions. Frontiers in Computational Neuro-
science. 2015; 9(32). doi: 10.3389/fncom.2015.00032 PMID: 25852530

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004948 May 18,2016 24 /24

http://dx.doi.org/10.1126/scitranslmed.aac7328
http://www.ncbi.nlm.nih.gov/pubmed/26560357
http://dx.doi.org/10.1109/TBME.2005.847542
http://www.ncbi.nlm.nih.gov/pubmed/16041995
http://dx.doi.org/10.1162/neco.2009.01-08-699
http://www.ncbi.nlm.nih.gov/pubmed/19548797
http://dx.doi.org/10.1109/TBME.2011.2159115
http://www.ncbi.nlm.nih.gov/pubmed/21659018
http://dx.doi.org/10.1007/s10827-009-0196-9
http://www.ncbi.nlm.nih.gov/pubmed/19904595
http://dx.doi.org/10.1371/journal.pone.0006243
http://www.ncbi.nlm.nih.gov/pubmed/19603074
http://dx.doi.org/10.1088/1741-2560/9/2/026027
http://www.ncbi.nlm.nih.gov/pubmed/22427488
http://dx.doi.org/10.1109/TNSRE.2009.2023307
http://www.ncbi.nlm.nih.gov/pubmed/19497822
http://dx.doi.org/10.1016/j.jneumeth.2010.03.024
http://www.ncbi.nlm.nih.gov/pubmed/20359500
http://dx.doi.org/10.1038/ncomms8759
http://dx.doi.org/10.1088/1741-2560/8/4/045005
http://www.ncbi.nlm.nih.gov/pubmed/21775782
http://dx.doi.org/10.1162/NECO_a_00484
http://www.ncbi.nlm.nih.gov/pubmed/23777523
http://dx.doi.org/10.1016/j.neuron.2014.08.038
http://www.ncbi.nlm.nih.gov/pubmed/25459407
http://dx.doi.org/10.1371/journal.pcbi.1004288
http://www.ncbi.nlm.nih.gov/pubmed/26029919
http://dx.doi.org/10.3389/fncom.2015.00032
http://www.ncbi.nlm.nih.gov/pubmed/25852530

