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Abstract

We introduce a novel information-theoretic approach for active model selection
and demonstrate its effectiveness in a real-world application. Although our method
can work with arbitrary models, we focus on actively learning the appropriate
structure for Gaussian process (GP) models with arbitrary observation likelihoods.
We then apply this framework to rapid screening for noise-induced hearing loss
(NIHL), a widespread and preventible disability, if diagnosed early. We construct a
GP model for pure-tone audiometric responses of patients with NIHL. Using this
and a previously published model for healthy responses, the proposed method is
shown to be capable of diagnosing the presence or absence of NIHL with drastically
fewer samples than existing approaches. Further, the method is extremely fast and
enables the diagnosis to be performed in real time.

1 Introduction

Personalized medicine has long been a critical application area for machine learning [1–3], in which
automated decision making and diagnosis are key components. Beyond improving quality of life,
machine learning in diagnostic settings is particularly important because collecting additional medical
data often incurs significant financial burden, time cost, and patient discomfort. In machine learning
one often considers this problem to be one of active feature selection: acquiring each new feature
(e.g., a blood test) incurs some cost, but will, with hope, better inform diagnosis, treatment, and
prognosis. By careful analysis, we may optimize this trade off.

However, many diagnostic settings in medicine do not involve feature selection, but rather involve
querying a sample space to discriminate different models describing patient attributes. A particular,
clarifying example that motivates this work is noise-induced hearing loss (NIHL), a prevalent disorder
affecting 26 million working-age adults in the United States alone [4] and affecting over half of
workers in particular occupations such as mining and construction. Most tragically, NIHL is entirely
preventable with simple, low-cost solutions (e.g., earplugs). The critical requirement for prevention
is effective early diagnosis.

To be tested for NIHL, patients must complete a time-consuming audiometric exam that presents a
series of tones at various frequencies and intensities; at each tone the patient indicates whether he/she
hears the tone [5–7]. From the responses, the clinician infers the patient’s audible threshold on a
set of discrete frequencies (the audiogram); this process requires the delivery of up to hundreds of
tones. Audiologists scan the audiogram for a hearing deficit with a characteristic notch shape—a

1



narrow band that can be anywhere in the frequency domain that is indicative of NIHL. Unfortunately,
at early stages of the disorder, notches can be small enough that they are undetectable in a standard
audiogram, leaving many cases undiagnosed until the condition has become severe. Increasing
audiogram resolution would require higher sample counts (more presented tones) and thus only
lengthen an already burdensome procedure. We present here a better approach.

Note that the NIHL diagnostic challenge is not one of feature selection (choosing the next test to run
and classifying the result), but rather of model selection: is this patient’s hearing better described by
a normal hearing model, or a notched NIHL model? Here we propose a novel active model selection
algorithm to make the NIHL diagnosis in as few tones as possible, which directly reflects the time
and personnel resources required to make accurate diagnoses in large populations. We note that this
is a model-selection problem in the truest sense: a diagnosis corresponds to selecting between two
or more sets of indexed probability distributions (models), rather than the more-common misnomer
of choosing an index from within a model (i.e., hyperparameter optimization). In the NIHL case
this distinction is critical. We are choosing between two models, the set of possible NIHL hearing
functions and the set of normal hearing functions. This approach suggests a very different and more
direct algorithm than first learning the most likely NIHL function and then accepting or rejecting it as
different from normal, the standard approach.

We make the following contributions: first, we design a completely general active-model-selection
method based on maximizing the mutual information between the response to a tone and the posterior
on the model class. Critically, we develop an analytical approximation of this criterion for Gaussian
process (GP) models with arbitrary observation likelihoods, enabling active structure learning for GPs.
Second, we extend the work of Gardner et al. [8] (which uses active learning to speed up audiogram
inference) to the broader question of identifying which model—normal or NIHL—best fits a given
patient. Finally, we develop a novel GP prior mean that parameterizes notched hearing loss for NIHL
patients. To our knowledge, this is the first publication with an active model-selection approach that
does not require updating each model for every candidate point, allowing audiometric diagnosis of
NIHL to be performed in real time. Finally, using patient data from a clinical trial, we show empirically
that our method typically automatically detects simulated noise-induced hearing loss with fewer than
15 query tones. This is vastly fewer than the number required to infer a conventional audiogram
or even an actively learned audiogram [8], highlighting the importance of both the active-learning
approach and our focus on model selection.

2 Bayesian model selection

We consider supervised learning problems defined on an input space X and an output space Y .
Suppose we are given a set of observed data D = (X,y), where X represents the design matrix of
independent variables xi ∈ X and y the associated vector of dependent variables yi = y(xi) ∈ Y .

LetM be a probabilistic model, and let θ be an element of the parameter space indexingM. Given a
set of observations D, we wish to compute the probability ofM being the correct model to explain
D, compared to other models. The key quantity of interest to model selection is the model evidence:

p(y | X,M) =

∫
p(y | X, θ,M)p(θ | M) dθ, (1)

which represents the probability of having generating the observed data under the model, marginalized
over θ to account for all possible members of that model under a prior p(θ | M) [9]. Given a set of
M candidate models {Mi}Mi=1, and the computed evidence for each, we can apply Bayes’ rule to
compute the posterior probability of each model given the data:

p(M | D) =
p(y | X,M)p(M)

p(y | X)
=

p(y | X,M)p(M)∑
i p(y | X,Mi)p(Mi)

, (2)

where p(M) represents the prior probability distribution over the models.

2.1 Active Bayesian model selection

Suppose that we have a mechanism for actively selecting new data—choosing x∗ ∈ X and observing
y∗ = y(x∗)—to add to our dataset D = (X,y), in order to better distinguish the candidate models
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{Mi}. After making this observation, we will form an augmented dataset D′ = D ∪
{

(x∗, y∗)
}

,
from which we can recompute a new model posterior p(M | D′).

An approach motivated by information theory is to select the location maximizing the mutual
information between the observation value y∗ and the unknown model:

I(y∗;M | x∗,D) = H[M | D]− Ey∗
[
H[M | D′]

]
(3)

= H[y∗ | x∗,D]− EM
[
H[y∗ | x∗,D,M]

]
, (4)

where H indicates (differential) entropy. Whereas Equation (3) is computationally problematic
(involving costly model retraining), the equivalent expression (4) is typically more tractable, has been
applied fruitfully in various active-learning settings [10, 11, 8, 12, 13], and requires only computing
the differential entropy of the model-marginal predictive distribution:

p(y∗ | x∗,D) =

M∑
i=1

p(y∗ | x∗,D,Mi)p(Mi | D) (5)

and the model-conditional predictive distributions
{
p(y∗ | x∗,D,Mi)

}
with all models trained with

the currently available data. In contrast to (3), this does not involve any retraining cost. Although
computing the entropy in (5) might be problematic, we note that this is a one-dimensional integral
that can easily be resolved with quadrature. Our proposed approach, which we call Bayesian active
model selection (BAMS) is then to compute, for each candidate location x∗, the mutual information
between y∗ and the unknown model, and query where this is maximized:

arg max
x∗

I(y∗;M | x∗,D). (6)

2.2 Related work

Although active learning and model selection have been widely investigated, active model selection
has received comparatively less attention. Ali et al. [14] proposed an active learning model selection
method that requires leave-two-out cross validation when evaluating each candidate x∗, requiring
O
(
B2M |X∗|

)
model updates per iteration, where B is the total budget. Kulick et al. [15] also

considered an information-theoretic approach to active model selection, suggesting maximizing the
expected cross entropy between the current model posterior p(M | D) and the updated distribution
p(M | D′). This approach also requires extensive model retraining, with O

(
M |X∗|

)
model updates

per iteration, to estimate this expectation for each candidate. These approaches become prohibitively
expensive for real-time applications with large number of candidates. In our audiometric experiments,
for example, we consider 10 000 candidate points, expending 1–2 seconds per iteration, whereas
these mentioned techniques would take several hours to selected the next point to query.

3 Active model selection for Gaussian processes

In the previous section, we proposed a general framework for performing sequential active Bayesian
model selection, without making any assumptions about the forms of the models {Mi}. Here we
will discuss specific details of our proposal when these models represent alternative structures for
Gaussian process priors on a latent function.

We assume that our observations are generated via a latent function f : X → R with a known
observation model p(y | f), where fi = f(xi). A standard nonparametric Bayesian approach
with such models is to place a Gaussian process (GP) prior distribution on f , p(f) = GP(f ;µ,K),
where µ : X → R is a mean function and K : X 2 → R is a positive-definite covariance function or
kernel [16]. We condition on the observed data to form a posterior distribution p(f | D), which is
typically an updated Gaussian process (making approximations if necessary). We make predictions
at a new input x∗ via the predictive distribution p(y∗ |x∗,D) =

∫
p(y∗ | f∗,D)p(f∗ |x∗,D) df∗,

where f∗ = f(x∗). The mean and kernel functions are parameterized by hyperparameters that we
concatenate into a vector θ, and different choices of these hyperparameters imply that the functions
drawn from the GP will have particular frequency, amplitude, and other properties. Together, µ and
K define a model parametrized by the hyperparameters θ. Much attention is paid to learning these
hyperparameters in a fixed model class, sometimes under the unfortunate term “model selection.”
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Note, however, that the structural (not hyperparameter) choices made in the mean function µ and
covariance function K themselves are typically done by selecting (often blindly!) from several
off-the-shelf solutions (see, for example, [17, 16]; though also see [18, 19]), and this choice has
substantial bearing on the resulting functions f we can model. Indeed, in many settings, choosing
the nature of plausible functions is precisely the problem of model selection; for example, to decide
whether the function has periodic structure, exhibits nonstationarity, etc. Our goal is to automatically
and actively decide these structural choices during GP modeling through intelligent sampling.

To connect to our active learning formulation, let {Mi} be a set of Gaussian process models for the
latent function f . Each model comprises a mean function µi, covariance function Ki, and associated
hyperparameters θi. Our approach outlined in Section 2.1 requires the computation of three quantities
that are not typically encountered in GP modeling and inference: the hyperparameter posterior
p(θ | D,M), the model evidence p(y | X,M), and the predictive distribution p(y∗ | x∗,D,M),
where we have marginalized over θ in the latter two quantities. The most-common approaches to GP
inference are maximum likelihood–II (MLE) or maximum a posteriori–II (MAP) estimation, where
we maximize the hyperparameter posterior [20, 16]:1

θ̂ = arg max
θ

log p(θ | D,M) = arg max
θ

log p(θ | M) + log(y | X, θ,M). (7)

Typically, predictive distributions and other desired quantities are then reported at the MLE/MAP

hyperparameters, implicitly making the assumption that p(θ | D,M) ≈ δ(θ̂). Although a compu-
tationally convenient choice, this does not account for uncertainty in the hyperparameters, which
can be nontrivial with small datasets [9]. Furthermore, accounting correctly for model parameter
uncertainty is crucial to model selection, where it naturally introduces a model-complexity penalty.
We discuss less-drastic approximations to these quantities below.

3.1 Approximating the model evidence and hyperparameter posterior

The model evidence p(y | X,M) and hyperparameter posterior distribution p(θ | D,M) are in
general intractable for GPs, as there is no conjugate prior distribution p(θ | M) available. Instead, we
will use a Laplace approximation, where we make a second-order Taylor expansion of log p(θ | D,M)

around its mode θ̂ (7). The result is a multivariate Gaussian approximation:

p(θ | D,M) ≈ N (θ; θ̂,Σ); Σ−1 = −∇2 log p(θ | D,M)
∣∣
θ=θ̂

. (8)

The Laplace approximation also results in an approximation to the model evidence:

log p(y | X,M) ≈ log p(y | X, θ̂,M) + log p(θ̂ | M)− 1
2 log det Σ−1 + d

2 log 2π, (9)

where d is the dimension of θ [21, 22]. The Laplace approximation to the model evidence can be
interpreted as rewarding explaining the data well while penalizing model complexity. Note that
the Bayesian information criterion (BIC), commonly used for model selection, can be seen as an
approximation to the Laplace approximation [23, 24].

3.2 Approximating the predictive distribution

We next consider the predictive distribution:

p(y∗ | x∗,D,M) =

∫
p(y∗ | f∗)

∫
p(f∗ | x∗,D, θ,M)p(θ | D,M) dθ︸ ︷︷ ︸

p(f∗|x∗,D,M)

df∗. (10)

The posterior p(f∗ | x∗,D, θ,M) in (10) is typically a known Gaussian distribution, derived
analytically for Gaussian observation likelihoods or approximately using standard approximate GP
inference techniques [25, 26]. However, the integral over θ in (10) is intractible, even with a Gaussian
approximation to the hyperparameter posterior as in (8).

Garnett et al. [11] introduced a mechanism for approximately marginalizing GP hyperparameters
(called the MGP), which we will adopt here due to its strong empirical performance. The MGP assumes

1Using a noninformative prior p(θ | M) ∝ 1 in the case of maximum likelihood.
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that we have a Gaussian approximation to the hyperparameter posterior, p(θ | D,M) ≈ N (θ; θ̂,Σ).2
We define the posterior predictive mean and variance functions as

µ∗(θ) = E[f∗ | x∗,D, θ,M]; ν∗(θ) = Var[f∗ | x∗,D, θ,M].

The MGP works by making an expansion of the predictive distribution around the posterior mean
hyperparameters θ̂. The nature of this expansion is chosen so as to match various derivatives of the
true predictive distribution; see [11] for details. The posterior distribution of f∗ is approximated by

p(f∗ | x∗,D,M) ≈ N
(
f∗;µ∗(θ̂), σ2

MGP

)
, (11)

where
σ2

MGP = 4
3ν
∗(θ̂) +

[
∇µ∗(θ̂)

]>
Σ
[
∇µ∗(θ̂)

]
+ 1

3ν∗(θ̂)

[
∇ν∗(θ̂)

]>
Σ
[
∇ν∗(θ̂)

]
. (12)

The MGP thus inflates the predictive variance from the the posterior mean hyperparameters θ̂ by a
term that is commensurate with the uncertainty in θ, measured by the posterior covariance Σ, and
the dependence of the latent predictive mean and variance on θ, measured by the gradients ∇µ∗ and
∇ν∗. With the Gaussian approximation in (11), the integral in (10) now reduces to integrating the
observation likelihood against a univariate Gaussian. This integral is often analytic [16] and at worse
requires one-dimensional quadrature.

3.3 Implementation

Given the development above, we may now efficiently compute an approximation to the BAMS
criterion for active GP model selection. Given currently observed data D, for each of our candidate
modelsMi, we first find the Laplace approximation to the hyperparameter posterior (8) and model
evidence (9). Given the approximations to the model evidence, we may compute an approximation
to the model posterior (2). Suppose we have a set of candidate points X∗ from which we may
select our next point. For each of our models, we compute the MGP approximation (11) to the latent
posteriors

{
p(f∗ | X∗,D,Mi)

}
, from which we use standard techniques to compute the predictive

distributions
{
p(y∗ | X∗,D,Mi)

}
. Finally, with the ability to compute the differential entropies of

these model-conditional predictive distributions, as well as the marginal predictive distribution (5),
we may compute the mutual information of each candidate in parallel. See the Appendix for explicit
formulas for common likelihoods and a description of general-purpose, reusable code we will release
in conjunction with this manuscript to ease implementation.

4 Audiometric threshold testing

Standard audiometric tests [5–7] are calibrated such that the average human subject has a 50% chance
of hearing a tone at any frequency; this empirical unit of intensity is defined as 0 dB HL. Humans give
binary reports (whether or not a tone was heard) in response to stimuli, and these observations are
inherently noisy. Typical audiometric tests present tones in a predefined order on a grid, in increments
of 5–10 dB HL at each of six octaves. Recently, Gardner et al. [8] demonstrated that Bayesian active
learning of a patient’s audiometric function significantly improves the state-of-the-art in terms of
accuracy and number of stimuli required.

However, learning a patient’s entire audiometric function may not always be necessary. Audiometric
testing is frequently performed on otherwise young and healthy patients to detect noise-induced
hearing loss (NIHL). Noise-induced hearing loss occurs when an otherwise healthy individual is
habitually subjected to high-intensity sound [27]. This can result in sharp, notch-shaped hearing loss
in a narrow (sometimes less than one octave) frequency range. Early detection of NIHL is critical
to desirable long-term clinical outcomes, so large-scale screenings of susceptible populations (for
example, factory workers), is commonplace [28]. Noise-induced hearing loss is difficult to diagnose
with standard audiometry, because a frequency–intensity grid must be very fine to ensure that a notch
is detected. The full audiometric test of Gardner et al. [8] may also be inefficient if the only goal of
testing is to determine whether a notch is present, as would be the case for large-scale screening.

We cast the detection of noise-induced hearing loss as an active model selection problem. We will
describe two Gaussian process models of audiometric functions: a baseline model of normal human

2This is arbitrary and need not be the Laplace approximation in (8), so this is a slight abuse of notation.
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hearing, and a model reflecting NIHL. We then use the BAMS framework introduced above to, as
rapidly as possible for a given patient, determine which model best describes his or her hearing.

Normal-patient model. To model a healthy patient’s audiometric function, we use the model
described in [8]. The GP prior proposed in that work combines a constant prior mean µhealthy = c
(modeling a frequency-independent natural threshold) with a kernel taken to be the sum of two
components: a linear covariance in intensity and a squared-exponential covariance in frequency. Let
[i, φ] represent a tone stimulus, with i representing its intensity and φ its frequency. We define:

K
(
[i, φ], [i′, φ′]

)
= αii′ + β exp

(
− 1

2`2 |φ− φ′|2
)
, (13)

where α, β > 0 weight each component and ` > 0 is a length scale of frequency-dependent random
deviations from a constant hearing threshold. This kernel encodes two fundamental properties of
human audiologic response. First, hearing is monotonic in intensity. The linear contribution αii′
ensures that the posterior probability of detecting a fixed frequency will be monotonically increasing
after conditioning on a few tones. Second, human hearing ability is locally smooth in frequency,
because nearby locations in the cochlea are mechanically coupled. The combination of µhealthy with
K specifies our healthy modelMhealthy, with parameters θhealthy = [c, α, β, `]>.

Noise-induced hearing loss model. We extend the model above to create a second GP model
reflecting a localized, notch-shaped hearing deficit characteristic of NIHL. We create a novel, flexible
prior mean function for this purpose, the parameters of which specify the exact nature of the hearing
loss. Our proposed notch mean is:

µNIHL(i, φ) = c− dN ′(φ; ν, w2), (14)
where N ′(φ; ν, w) denotes the unnormalized normal probability density function with mean ν and
standard deviation w, which we scale by a depth parameter d > 0 to reflect the prominence of the
hearing loss. This contribution results in a localized subtractive notch feature with tunable center,
width, and height. We retain a constant offset c to revert to the normal-hearing model outside the
vicinity of the localized hearing deficit. Note that we completely model the effect of NIHL on patient
responses with this mean notch function; the kernel K above remains appropriate. The combination
of µNIHL with K specifies our NIHL modelMNIHL with, in addition to the parameters of our healthy
model, the additional parameters θNIHL = [ν, w, d]>.

5 Results

To test BAMS on our NIHL detection task, we evaluate our algorithm using audiometric data, comparing
to several baselines. From the results of a small-scale clinical trial, we have examples of high-fidelity
audiometric functions inferred for several human patients using the method of Gardner et al. [8]. We
may use these to simulate audiometric examinations of healthy patients using different methods to
select tone presentations. We simulate patients with NIHL by adjusting ground truth inferred from
nine healthy patients with in-model samples from our notch mean prior. Recall that high-resolution
audiogram data is extremely scarce.

We first took a thorough pure-tone audiometric test of each of nine patients from our trial with normal
hearing using 100 samples selected using the algorithm in [8] on the domain X = [250, 8000] Hz×
[−10, 80] dB HL,3 typical ranges for audiometric testing [6]. We inferred the audiometric function
over the entire domain from the measured responses, using the healthy-patient GP modelMhealthy
with parameters learned via MLE–II inference. The observation model was p(y = 1 | f) = Φ(f),
where Φ is the standard normal CDF, and approximate GP inference was performed via a Laplace
approximation. We then used the approximate GP posterior p(f | D, θ̂,Mhealthy) for this patient as
ground-truth for simulating a healthy patient’s responses. The posterior probability of tone detection
learned from one patient is shown in the background of Figure 1(a). We simulated a healthy patient’s
response to a given query tone x∗ = [i∗, φ∗] by sampling a conditionally independent Bernoulli
random variable with parameter p(y∗ = 1 | x∗,D, θ̂,Mhealthy).

We simulated a patient with NIHL by then drawing notch parameters (the parameters of (14)) from
an expert-informed prior, adding the corresponding notch to the learned healthy ground-truth latent
mean, recomputing the detection probabilities, and proceeding as above. Example NIHL ground-truth
detection probabilities generated in this manner are depicted in the background of Figure 1(b).

3Inference was done in log-frequency domain.
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(a) Normal hearing model ground truth.
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Figure 1: Samples selected by BAMS (red) and the method of Gardner et al. [8] (white) when run
on (a) the normal-hearing ground truth, and (b), the NIHL model ground truth. Contours denote
probability of detection at 10% intervals. Circles indicate presentations that were heard by the
simulated patient; exes indicate presentations that were not heard by the simulated patient.

5.1 Diagnosing NIHL

To test our active model-selection approach to diagnosing NIHL, we simulated a series of audiometric
tests, selecting tones using three alternatives: BAMS, the algorithm of [8], and random sampling.4
Each algorithm shared a candidate set of 10 000 quasirandom tones X∗ generated using a scrambled
Halton set so as to densely cover the two-dimensional search space. We simulated nine healthy
patients and a total of 27 patients exhibiting a range of NIHL presentations, using independent draws
from our notch mean prior in the latter case. For each audiometric test simulation, we initialized with
five random tones, then allowed each algorithm to actively select a maximum of 25 additional tones,
a very small fraction of the hundreds typically used in a regular audiometric test. We repeated this
procedure for each of our nine healthy patients using the normal-patient ground-truth model. We
further simulated, for each patient, three separate presentations of NIHL as described above. We plot
the posterior probability of the correct model after each iteration for each method in Figure 2.

In all runs with both ground-truth models, BAMS was able to rapidly achieve greater than 99%
confidence in the correct model without expending the entire budget. Although all methods correctly
inferred high healthy posterior probability for the healthy patient, BAMS wass more confident. For
the NIHL patients, neither baseline inferred the correct model, whereas BAMS rarely required more
than 15 actively chosen samples to confidently make the correct diagnosis. Note that, when BAMS
was used on NIHL patients, there was often an initial period during which the healthy model was
favored, followed by a rapid shift towards the correct model. This is because our method penalizes
the increased complexity of the notch model until sufficient evidence for a notch is acquired.

Figure 1 shows the samples selected by BAMS for typical healthy and NIHL patients. The fundamental
strategy employed by BAMS in this application is logical: it samples in a row of relatively high-
intensity tones. The intuition for this design is that failure to recognize a normally heard, high-intensity
sound is strong evidence of a notch deficit. Once the notch has been found (Figure 1(b)), BAMS
continues to sample within the notch to confirm its existence and rule out the possibility of the miss
(tone not heard) being due to the stochasticity of the process. Once satisfied, the BAMS approach then
samples on the periphery of the notch to further solidify its belief.

The BAMS algorithm sequentially makes observations where the healthy and NIHL model disagree
the most, typically in the top-center of the MAP notch location. The exact intensity at which BAMS
samples is determined by the prior over the notch-depth parameter d. When we changed the notch
depth prior to support shallower or deeper notches (data not shown), BAMS sampled at lower or

4We also compared with uncertainty sampling and query by committee (QBC); the performance was compa-
rable to random sampling and is omitted for clarity.
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Figure 2: Posterior probability of the correct model as a function of iteration number.

higher intensities, respectively, to continue to maximize model disagreement. Similarly, the spacing
between samples is controlled by the prior over the notch-width parameter w.

Finally, it is worth emphasizing the stark difference between the sampling pattern of BAMS and the
audiometric tests of [8]; see Figure 1. Indeed, when the goal is learning the patient’s audiometric
function, the audiometric testing algorithm proposed in that work typically has a very good estimate
after 20 samples. However, when using BAMS, the primary goal is to detect or rule out NIHL. As
a result, the samples selected by BAMS reveal little about the nuances of the patient’s audiometric
function, while being highly informative about the correct model to explain the data. This is precisely
the tradeoff one seeks in a large-scale diagnostic setting, highlighting the critical importance of
focusing on the model-selection problem directly.

6 Conclusion

We introduced a novel information-theoretic approach for active model selection, Bayesian active
model selection, and successfully applied it to rapid screening for noise-induced hearing loss. Our
method for active model selection does not require model retraining to evaluate candidate points,
making it more feasible than previous approaches. Further, we provided an effective and efficient
analytic approximation to our criterion that can be used for automatically learning the model class
of Gaussian processes with arbitrary observation likelihoods, a rich and commonly used class of
potential models.
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